743.

ON THE NEWTON-FOURIER IMAGINARY PROBLEM.

[From the Proceedings of the Cambridge Philosophical Society, vol. iII. (1880), pp. 231, 232.]

The Newtonian process of approximation to the root of a numerical equation $f(u)=0$, consists in deriving from an assumed approximate root ξ a new value $\xi_{1}=\xi-\frac{f(\xi)}{f^{\prime}(\xi)}$, which should be a closer approximation to the root sought for: taking the coefficients of $f(u)$ to be real, and also the root sought for, and the assumed value ξ, to be each of them real, Fourier investigated the conditions under which ξ_{1} is in fact a closer approximation. But the question may be looked at in a more general manner: ξ may be any real or imaginary value, and we have to inquire in what cases the series of derived values

$$
\xi_{1}=\xi-\frac{f(\xi)}{f^{\prime}(\xi)}, \quad \xi_{2}=\xi_{1}-\frac{f\left(\xi_{1}\right)}{f^{\prime}\left(\xi_{1}\right)}, \ldots
$$

converge to a root, real or imaginary, of the equation $f(u)=0$. Representing as usual the imaginary value $\xi,=x+i y$, by means of the point whose coordinates are x, y, and in like manner $\xi_{1},=x_{1}+i y_{1}, \& c$., then we have a problem relating to an infinite plane; the roots of the equation are represented by points A, B, C, \ldots; the value ξ is represented by an arbitrary point P; and from this by a determinate geometrical construction we obtain the point P_{1}, and thence in like manner the points P_{2}, P_{3}, \ldots which represent the values $\xi_{1}, \xi_{2}, \xi_{3}, \ldots$ respectively. And the problem is to divide the plane into regions, such that, starting with a point P_{1} anywhere in one region, we arrive ultimately at the root A; anywhere in another region we arrive ultimately at the root B; and so on for the several roots of the equation. The division into regions is made without difficulty in the case of a quadric equation; but in the next succeeding case, that of a cubic equation, it is anything but obvious what the division is: and the author had not succeeded in finding it.

