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476.

ON THE DETERMINATION OF THE ORBIT OF A PLANET FROM
THREE OBSERVATIONS.

[From the Memoirs of the Royal Astronomical Society, vol. Xxxvir (1870), pp. 17—I111.
Read December 10, 1869.]

I PROPOSE to consider from a geometrical point of view the problem of the
determination of the orbit of a planet from three observations. The orbit is a conic,
having the Sun for a focus; and each observation shows that the planet is at the
date thereof in a given line. We have thus a given point or focus S, and three
given lines, say the “rays” The orbit-plane, if known, would, by its intersections
with the three rays, determine the three positions of the planet; that is, we should
have the focus and three points on the orbit; or (what is the same thing) three
radius vectors from the focus, say a “trivector.” Geometrically, through three given
points, and with a given focus, there may be described four conics; but (as will be
explained) there is only one of these which can be the orbit; we may therefore say !
that the orbit will be determined, and that uniquely, by means of a given trivector.
The problem is therefore to find the orbit-plane, such that in the orbit determined by
means of the trivector the times of passage between the three positions on the orbit
may have the observed values; or (what is the same thing) that the orbital areas,
each divided by the square root of the latus rectum, may have given values. If,
instead of the orbit-plane, we consider the orbit-axis (that is, the line normal to the
orbit-plane at the point S), or, what is more convenient, the orbit-pole, or intersection
of the axis with a sphere about the centre S; then to a given position of the orbit-
pole, there corresponds, as above, a determinate orbit; and the problem is to find the
position of the orbit-pole, so that in the orbit belonging thereto the times of passage
may have given values as already mentioned; and it is clear that the required position
of the orbit-pole may be obtained as the intersection of two spherical curves; the one
of them, the locus of those positions of the orbit-pole for which the time of passage
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476] ON THE DETERMINATION OF THE ORBIT &cC. 401

between the first and second points on the orbit has its proper given value; the other
of them, the locus of those positions for which the time of passage between the second
and third points on the orbit has its proper given value: and in connexion therewith
we may consider other isoparametric loci of the orbit-pole; for instance, the iseccentric
lines, or loci of the orbit-pole such that along each of them the eccentricity of the
orbit has a given value. It is in this point of view that the problem is considered
in the present memoir, viz, the object proposed is the discussion of the configuration,
&c. of these loci. I consider, in the first instance, any three given rays whatever;
but in the ulterior discussion of the spherical curves, which it is difficult to carry out
otherwise than numerically, I have confined myself to the case of a particular symmetrical
position of the three rays; viz., these are taken to be lines each of them at an inclination
of 60° to a fixed plane through S, and such that their projections on this plane form
an equilateral triangle having S for its centre, and that each ray cuts the plane in
the mid-point of the corresponding side of the triangle.

The general theory as above explained is further developed in the memoir; and
I consider the formule for the determination of the orbit, &c. by means of a given
trivector ; those relating to the determination of the trivector obtained as above by
means of a variable plane passing through a given point and intersecting three given
rays; and lastly, the application to the particular system of three rays already referred
to. The Plates refer to this particular system; they are as follow :

Plate 1. General Planogram for a single ray,
2. Planogram for Meridian 90°—270°, | See Nos. 8—10 for explanation

» 3. Planogram for Meridian 0°—180°, of the terms Planogram and
» 4 Spherogram for the Eccentricity, Spherogram.
» 5. Spherogram for the Time.

Article Nos. 1 to 14, Considerations on the General Theory.

1. As explained in the introduction, we have a point or focus S, and three
lines called the “rays” The orbit-plane is any plane through S; it meets the rays in
three points, which are points on the orbit; and joining these with S, we have a
“trivector.” The orbit is for the present considered as in general uniquely determined

by means of the trivector.

2. There are certain critical positions of the orbit-plane.

First, the orbit-plane may be parallel to one of the rays; or (what is the same
thing) it may pass through the line through S parallel to the ray: the point on the
ray is at infinity; or say that it is at an indefinitely great distance in one direction
or in the other direction along the ray; and (from the particular way in which the
orbit is selected as one of four conics) there is, as will appear (see post, No. 20), a
discontinuity of orbit as the point passes from the one to the other of these positions.
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3. Secondly, the orbit-plane may be parallel to two of the rays; or (what is the
same thing) it may pass through the lines through S parallel to these two rays; the
points on the two rays are each at infinity; viz. each of them is at an indefinitely
great distance in one or the other direction along the ray; and there is a discontinuity
of the orbit as each point passes from the one to the other of its two positions.

4. Thirdly, the orbit-plane may be such that the orbit is a right line. To see
how this arises, observe that we may consider a system of lines meeting each of the
three rays, and of course generating a hyperboloid ; say these are the generating lines :
there is on the hyperboloid another system of lines, say the directrix lines, in which
are included the three rays; the point S is not on the hyperboloid. Then, if the
orbit-plane pass through a generating line, it will meet the three rays in the points
in which these are met by the generating line: and the orbit is, consequently, the
generating line (described, as being a right line not passing through S, with a velocity
= ). Any plane through S and a generating line also meets the hyperboloid in a
directrix line; and consequently touches it at the intersection of the two lines, viz.
it is a tangent plane of the hyperboloid. The planes in question thus envelope the
circumscribed cone whose vertex is S; or (what is the same thing) when the orbit-
plane is any tangent-plane of this cone, the orbit is a right line.

5. The only exception is, fourthly, when the orbit-plane passes through one of
the rays. Observe that the plane then meets the hyperboloid in another line, that
is, a generating line, or the case under consideration is included in the third case;
it is also included in the first case. The point on the ray in question is here not
a determinate point, but any point whatever of the ray; the points on the other two
rays being (as in general) determinate: the orbit is consequently indeterminate; viz.
to any point selected at pleasure as the intersection of the orbit-plane with the ray
contained therein, there corresponds a determinate orbit (in particular, the selected
point may be such that the orbit is, as in the third case, a right line); and, corre-
sponding to the position in question of the orbit-plane, we have the entire system of
such orbits.

6. Consider now the corresponding positions of ‘the orbit-pole on a sphere described
about the centre S. It will be convenient for the moment to attend to the two
opposite positions of the orbit-pole belonging to any position of the orbit-plane, and
thus to regard the orbit-pole as moving over the entire spherical surface. The parallel
through S to a ray meets the sphere in two points, poles of a great circle which I
call a “separator;” we have thus three separators, each two meeting in a pair of
opposite points which I call the points B; viz, these are the intersections with the
sphere of a line through S perpendicular to the plane containing the parallels of the
two rays. A line through S perpendicular to the plane through a ray meets the sphere
in a pair of opposite points which I call the points A ; these lying on the corre-
sponding separator; there are thus three pairs of points 4. The cone reciprocal to
the circumseribed cone (that is, generated by a line through S at right angles to any
tangent plane of the circumscribed cone) meets the sphere in a spherical conic which
I call the “regulator;” this touches each of the separators at the pair of points A4
on such separator.
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7. 1 say that in the first of the cases above considered the locus of the orbit-
pole is a separator; in the second case the orbit-pole is a point Bj; in the third case
the locus is the regulator; and in the fourth case the orbit-pole is a point A.

8. In the absence of models, the spherical figure must be represented by a pro-
jection; the stereographic projection is convenient for facility of description; and it has
the very great advantage that we can by means of it exhibit, no matter how large
a portion of the spherical surface. In the figures called “spherograms,” afterwards.
referred to, the representation of a hemisphere is all that is required; but, to give a
more distinct general idea, I annex a figure representing a larger portion of the
surface; the data are those belonging to the particular symmetrical case referred to as
intended to be specially considered: and the regulator conic is accordingly a pair of
opposite small circles, the points A and B being related to it symmetrically ; but,
disregarding these specialities, the figure is adapted to the illustration of the general

e vl
4

case (at least if the point S be situate within the hyperboloid), and it is here given
for that purpose. The circle marked “Ecliptic” does not properly belong to the figure:
it is added as showing the boundary of a hemisphere, so that, by omitting all that
lies outside this circle, the figure would be limited to the representation of a hemi-
sphere; and the orbit-pole be in every case represented, no longer as a pair of opposite
points, but as a single point; we should have the separators each as a half circle, and
the regulator as a single small circle; the separators would intersect in pairs, in the
three points B, and would touch the regulator in the three points 4, &c.

9. The figure constructed as above, but omitting so much of it as lies outside
the ecliptic circle, is the representation of a hemisphere—say of the northern hemi-
51—2
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sphere. It is readily seen that the central triangle BBB and the three circumjacent
triangles BBB, represent also the half-surface of the sphere, viz., instead of the omitted
portions of the mnorthern hemisphere we have the equal opposite portions of the
southern hemisphere. The adoption of this figure as the representation of the half-
surface of the sphere has the great advantage that the spherical curves can be delineated
without the apparent breaks which would otherwise occur at their intersections with
the ecliptic circle: I accordingly adopt it, and call the figure in question (viz., that
composed of the four triangles) a blank “spherogram.” We wish for any given position
thereon of the orbit-pole to determine the values of certain parameters (eccentricity,
latus rectum, time of passage between two rays, &c., as the case may be) belonging
to the orbit, with a view to the subsequent delineation of the corresponding isopara-
metric (iseccentric, isochronic, &c.) lines, so constructing a “spherogram” for any such
parameter, or system of lines.

10. It is for this purpose convenient to consider the values of the parameter
corresponding to a single series of positions of the orbit-pole, viz, we cousider the
orbit-pole as describing on the sphere a curve selected at pleasure. Consider for a
moment the orbit-plane as a material plane rigidly connected with the orbit-axis; the
motion of the orbit-pole does not absolutely determine the motion of the orbit-plane,
inasmuch as the orbit-plane, occupying the same position in space, might rotate about
the orbit-axis; but if we exclude any such motion by the assumption that the motion
of the orbit-plane is always about an axis in the orbit-plane, then the motion of the
orbit-pole determines that of the orbit-plane, viz, the orbit-plane envelopes a cone, the
reciprocal to that described by the orbit-axis. If then on the orbit-plane in each
position thereof we mark, as well its line of contact with the enveloped cone, as also
its intersections with the three rays, we obtain a figure (which may, if we please, be
regarded as drawn on the orbit-plane in some particular position thereof), such figure
consisting of a series of trivectors, and (belonging t6 each of them) a line through S
serving to fix the position of the trivector in space. The locus of each extremity of
the trivector is a certain curve, and the construction establishes a point-to-point corre-
spondence between these three curves; viz, to any point on one of them there
corresponds on each of the other two a single point, the three points being the
extremities of a trivector. The figure would be rendered more complete by drawing
the orbit belonging to each trivector thereof. Such a figure (with or without the
orbits) is termed a “ planogram.”

11. The most simple case is when the orbit-pole describes a great circle; the
orbit-plane here rotates about a fixed line, the axis of the circle, or (what is the
same thing) the enveloped cone reduces itself to this axis of rotation; and the line
of contact is thus a fixed line in the orbit-plane; or (what is the same thing) the
lines through S in the planogram are here a single fixed line, the axis of rotation.
I say that, for each extremity of the trivector, the locus is a hyperbola, having the
axis of rotation for its conjugate axis. In fact, attending to any one ray, it is the
same thing whether the orbit-plane be made to revolve round the axis of rotation, so
as continually to intersect the ray, or whether, considering the orbit-plane as fixed,
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and the ray as rigidly connected with the axis, we make the ray to rotate about this
axis, so as continually to intersect the orbit-plane. But in this last case the ray
describes about the axis a hyperboloid of revolution, and the orbit-plane, as an axial
plane, meets this surface in a hyperbola having the axis for its conjugate axis; which
hyperbola is the required locus of the trivector-extremity. It is moreover easy to see
that if the angle of position of the variable orbit-plane, or (what is the same thing)
the angle of position of the orbit-pole in the great circle which it describes be =g
(where ¢ is measured from any fixed plane or point), and if the coordinates 2’ and 7’
be measured from S in the direction of and perpendicular to the axis of rotation,
then the coordinates of the point on the hyperbola are expressed in the form
o =a+atan (¢+B), ¥y’ =bsec(q+ B), where a, a, b, B, are constants depending on the
position of the ray in regard to the axis of rotation: see as to this post, No. 49.

12. Considering the orbit-pole as describing a given curve, the value for the
several positions thereof of any parameter of the orbit may be exhibited by means
of a “diagram,” viz., we may take for abscissa any quantity serving to fix the position
of the orbit-pole on the described curve, and for ordinate the value of the parameter in
question. In the particular case where the orbit-pole describes a great circle passing
through the axis of the stereographic projection, and which is consequently in the
spherogram represented by a diameter of the ecliptic or bounding circle, it is natural
to take for the abscissa the distance (from the centre) of the representation of the
orbit-pole ; the diagram will then fit on to the diameter, and for any position of the
orbit-pole on such diameter give at once the value of the parameter to which the
diagram relates.

13. It is right to remark that the construction of planograms and diagrams is
merely subsidiary to that of the spherograms; the information given by any number
of planograms or diagrams would be all of it embodied in a spherogram for the same
parameter. And theoretically the construction of a spherogram is a mere matter of
geometry; for a given position of the orbit-pole we construct the trivector, thence the
orbit, and in relation thereto any parameters which it is desired to consider; and so,
for a sufficient number of points on the spherogram, determine the value of the
parameter, or parameters; and lay down the isoparametric lines. The construction of
the orbit from a given trivector, and in particular the selection of the orbit as one
of the four conics given by the trivector, has not yet been explained: in connexion
herewith we have the discontinuity of orbit which arises when the orbit-pole is upon
a separator, and which is a leading circumstance in the theory; until it is gone into,
there is little more to be said in the way of general explanation as to the spherogram,
or the isoparametric lines thereof.

14, Tt may however be noticed that for any parameter whatever, the points 4 of the
spherogram are common points, through which pass in general the lines belonging to
any value whatever of the parameter; the reason of course is that the orbit-plane
then passing through the ray, and the orbit itself being indeterminate, the value of
any parameter belonging to the orbit is also indeterminate. Moreover, for some
parameters the curve belonging to any particular value of the parameter not only
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passes through the points A, but passes through each point twice, or (whet is the
same thing) has each of the points 4 for a nodal point; when this 1s so, then it
is to be further observed that, for certain values of the parameters, they will be
acnodal points, properly belonging to the curve, although there is not any real branch
of the curve passing through the points 4 ; for others they will be crunodal points,
with two real branches through each; and in the transition between the two cases
they will be cuspidal points on the isoparametric curve; it will appear in the sequel
that this is really the case in regard to the iseccentric lines.

Article Nos. 15 to 30. Determination of the Orbit from a given Trivector.

15. With a given point S as focus, and through three given points, that is with
a given trivector, there may be described four conics. This appears from the general
theory according to which a given focus is equivalent to two given tangents; and also

Fig. 2.

from the geometrical construction, Principia, book 1. sect. 4; Scholium to Prop. XXI:
viz. given the focus S and the points 1, 2, 3, then if

On 23 we find @ so that ¢ 2 : ¢ 3=82 : 83,
» 31 ”» b 9 b3:bl=S3:S1,
» 12 » c Y 61 :C2=S].:S2,

the points a, b, ¢, are each of them on the directrix, so that any two of them deter-
mine the directrix. In the figure (as in Newton’s) the distances S1, S2, S8, are
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each regarded as positive, but the very same construction, taking two of the distances
each as positive and negative successively, would lead to three other positions of the
directrix ; or the construction would give in all four conics.

16. In the figure the directrix lies on the same side of the three points; and
the conic is thus an ellipse or parabola, or, if a hyperbola, then the three points lie
in the same branch thereof; and it is consequently an orbit such that along it a
body can pass through the three points successively. The construction as varied would
give in each case a directrix having on one side of it one, and on the other side
two, of the three points; so that the conic would be a hyperbola having the three
points not on the same branch thereof; consequently it would not be an orbit such
that along it a body could pass through the three points successively.

And it thus appears that though the trivector really determines four conics, yet
it is only one of these in which the directrix lies on the same side of the three
points; and this conic I call the “orbit:” the given trivector thus determines a single
orbit.

17. It is to be noticed however that the orbit constructed as above may be a
hyperbolic branch separated by the directrix from the focus S, and consequently convex
to the focus S; viz, the three points lie here in a hyperbolic branch convex to i,
and which is therefore not an orbit which can be described under the action of an
attractive force at S: say we have a “convex orbit.” I regard this as a real orbit,
but the times of passage therein as imaginary, or rather as non-existent, and the case
is thus excluded from -consideration in the formule and figures which relate to the
times of passage.

18. The same results are established analytically in a very similar manner, viz,
taking the focus for origin and starting from the focal equation

r=Axz+ By + C;

then if we take (z, 1), (%, %), (2, ¥;), as the coordinates of the three given points
and write
s */-7/'12 +hy12; g = \/-”22 + 2, 1= “/%2 %+ y32,
we have for the determination of the constants
r,= Az, + By, + C,
ry= Az, + By, + C,

ry=Aw;+ By; + C,
and the equation therefore is

piEg Sy BRI
7, &, Y, i
¢ e, g
T3, X3, Ys, 1
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which, attributing therein to 7, 7, 7, the signs +, — at pleasure, represents eight
different equations: these however give only four conies, viz, we have the same conic
whether we attribute to 7, 7, 75, any particular combination of signs, or reverse all

the signs simultaneously.

19. But the focal equation r= Az + By + C is precisely equivalent to the equation

T g u:
l+ecos(f—wm)’

and in this equation (taking as is allowable p as positive) then if +e be = or <1,
that is for an ellipse or parabola whatever be the value of 6 —w, r is always
positive; but if +e be >1, that is for a hyperbola, » is positive for those values
of @—w= which belong to one branch, negative for those which belong to the other
branch, of the curve. Hence in the determinant equation, unless =, 7,, 7r;, have the
same sign, the curve will be a hyperbola with the points two of them on one branch,
the third on the other branch thereof. But in the remaining case, when 7, 7, 7,
have all the same sign, or say when they are all positive, then the conic is an ellipse
or parabola, or else it is a hyperbola with the three points on the same branch
thereof ; that is, the foregoing determinant equation, regarding therein r,, r,, 7y, as all

of them positive, gives the orbit.

20. When one of the points is at infinity on a given line there is a discontinuity
of orbit. To explain this, suppose that the point (z,, ) is situate on the line
y=axtana, at an indefinitely great distance 7, in one or the other direction along the
line; viz, r, is an indefinitely large positive quantity, and we have in the one case
@, y=r,cosa, 7 sina; and in the other case #,, ¥, =—1rcosa, —rsina: the corre-
sponding equations of the orbit, putting therein ultimately », =+ o, are

T, z, . 1|=0, I N = S v, 1 = 0,
1, cosa, sina, 0 1 1, —cosa, —sina, 0 i
Tas F Jpa | oy &, P ¢ i
73, &y o gl e /% /P e

which equations belong, it is clear, to two distinct conics; or as the point (2, )
passes from a positive to a negative infinity along the given line, there is an abrupt
change of orbit. It is proper to remark that the two orbits are the very same as
would be obtained by writing 2, y,=rcosa, 7 sina, r,=4 o and 7,=—o in the
determinant equation: that is, the orbit passes abruptly from one to another of the
four conics which belong to the position (z;,, ), and we thus understand how the
transition from + o to —oo, which is geometrically no breach of continuity, occasions

in the actual problem a discontinuity.

21. The same thing appears from the geometrical construction; and we derive a
further result which will be useful. Suppose first that the point 1 is at infinity in
the direction shown by the arrow; then drawing 2¢=2S and 3b=3S each in the
direction opposite to S1, we have the points b, ¢ on the directrix, which is thus the
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line D joining these points. But if 1 is at infinity on the same line in the opposite
direction, then instead of ¢, b we have the points ¢/, b, and the directrix is the line
D’ joining these points.

Fig. 3.

(0)

(D)

22. Observe that in the first case the focus S and the three points are on
opposite sides of the directrix D, or the orbit is convex; but in the second case the
focus S and the three points are on the same side of the directrix I, and the orbit
is concave. That is, the line S, does not separate the two points 2, 3, and the orbits
are the one convex, the other concave.

23. But if 1 be at infinity along the line S(1) first in the direction shown by
the arrow, and then in the opposite direction; in the first case the directrix is (D)
not separating the focus S from the three points, and the orbit is concave; in the
second case the orbit is (), not separating S from the three points, and the orbit
is still concave; here the line S(1) does separate the points 2, 3, and the orbits are
both concave.

24. And we thus see in general that as the point 1 passes from a positive to
a negative infinity along a line passing through S; then, according as the line
through S does not or does separate the remaining two points 2, 3, the orbits corre-
sponding to the two positions of 1 are the one convex, the other concave, or they
are both concave.

25. The points 1 and 2 may be each of them at infinity along a given ray; we

have here in a similar manner z,, y, =7 cosa, 7 sina, or else =—7ncosa;, —7 sin a,
where 7, is an indefinitely large positive quantity; and ,, y,=7,cos8a,, 7ysina, or else
O VI, 52
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=—17;C08 @, —7,8ina,, where 7, is an indefinitely large positive quantity. And writing
ultimately 7, =+, 7, =+ », the equation of the orbit is obtained in the form

5y z ) Y ) =O:
1, +cosa, +sina,

1, +cosa, =+ sina,,

=S

1‘3, xs > ?/3 >

where the + of the second line and the + of the third line have each of them the
value + or — at pleasure. There are consequently four distinet orbits, corresponding
to the combinations of each of the two directions of the point 1 with each of the
two directions of the point 2. And it is moreover clear that these are the very conics
which are obtained from the determinant equation by writing therein @, 7, =7 cosa,
riSina; &, Yo=1yC08a, rsina, and 7=+, —w; 1=+, — 0 successively; viz,
the orbit changes abruptly between the four conics which correspond to the given
position of the points 1, 2, 3.

Fig. 4.

26. The geometrical construction is very simple indeed; viz., measuring off from
3 in the directions S1, S2, and in the opposite directions respectively, a distance
=S3, we have four points, the angles of a rectangle; and joining these in pairs, we
have the four positions of the directrix: the figure shows at once that the orbits are
three of them concave, the remaining one convex.

27. The determinant equation obtained for the orbit is an equation of the form
r=Az+ By+ C;

and it is clear that the equation of the directrix is Az+ By+C=0. By what
precedes, this line will lie on the same side of the three points; viz., either it does
not separate them from the focus, and the orbit is then concave, or it does separate
them from the focus, and the orbit is then convex. Although in general the sign of
C' is no criterion (for the equations r=Az+By+(C and r=— Axz— By—( represent
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476 ORBIT OF A PLANET FROM THREE OBSERVATIONS, 411
the same curve) yet in the present case it is so; for, observe that, in taking r, 7y, n
each of them positive, we make r to be positive for the orbit, that is, for the entire
curve if an ellipse or parabola, but for the branch containing the three points if the
curve is a hyperbola. Hence, considering the radius vector through S parallel to the
directrix, this is positive for a concave, negative for a convex orbit; or writing
Az + By=0, we have »r=C positive for a concave, negative for a convex orbit;
wherefore the orbit is concave or convex according as C is positive or negative.

28. Comparing the equation with
r=e(zcosw+ysinw)+a(l—e),
we see that the eccentricity and semiaxis major, taken to be each of them positive, are

+C

i 2 2 =) g
e=NA*+ B, a P ey T

(+C or —C, according as e<1 or e>1); and inasmuch as the focus and directrix
are known, there is no ambiguity as to the position of the orbit: it may be added
that the coordinates of the centre are given by

(A*=1)z+AB  y+AC=0,
AB a2+ (B =1)y+BC =0,

that is, we have for the coordinates of the centre

sl At peit PP 6 1
ot v [y R e oy oy O

and thence also
24C 2BC

Si—a-p YTi—4—m

@

for the coordinates of the other focus.

29. But to effect the comparison rather more precisely it is to be observed that
@, ¢ being positive, then for a concave orbit, if X be measured from the focus in the
direction away from the directrix, we should have

r=eX +a(l-¢)
(+ for the ellipse, — for the hyperbola, so that + a(l —e¢?) is positive): whence

- Az + By +C
e VAV B, (Kmi oV | gasscue=fl. oo
VA + B 1-4*—- B
(by what precedes, €' is = +, so that the formula gives as it should do a=+).
And similarly for a convex orbit, if X be measured in the direction towards the

directrix, we should have
r=eX—u(e—1);
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whence
e Az + By -C
£ 2 B °J eI R
e=NA*+ B, X—«/m’ a T B=1’
where by what precedes C is =—, and the formula gives as it should do a = +.

30. It is not necessary for the purpose of the present memoir, but I notice an
elegant form of the polar equation of the orbit belonging to a given trivector; viz.,
taking (r, 6) as polar coordinates, and therefore (ry, 6,), (r,, ), (75, 6;), as the coordinates
of the given points, the equation of the orbit is

1_21 sin 3 (6 — 6,)sin} (6 — 6,
r "1, ' sin}(6,—6,)sin} (6, -6,

In fact, it is clear that this is an equation of the form

L (0 Ao (aind B ood d 008

r
that is of the form

1 4

;=7\cos0+ps1n6+v;
and that it thus represents a conic with the given focus; and moreover that the
equation is satisfied by writing therein (r,, ), (r,, 6.), or (13, 6,), in place of (r, 6);
that is, the conic passes through the three given points. The foregoing remarks as
to the signs of r,, 7, 7, apply without alteration to this polar equation.

Article Nos. 31 to 41. TWme Formule; LAMBERTS Equation.

31. Suppose for a moment that the orbit is an ellipse; as the ellipse may be
described in either direction, the time of passage between any two points, 1 to 2, or
2 to 1, indifferently, may be regarded as positive. With only two points 1, 2, we
might pass, say from 1 to 2, in either direction along the ellipse, and the time of
passage would have ambiguously either of two positive values. In the case however
where we have on the ellipse three points, 1, 2, 3, this ambiguity is avoided; viz., it
is assumed that the passage between any two of the points is along the elliptic arc
which does not contain the third point; the three times of passage are thus all of
them positive, and their sum is equal to the periodic time, or time of describing the
entire ellipse.

32. But if the orbit be a parabola or concave hyperbolic branch, then, if the
points taken in their order of position along the orbit be 1, 2, 3, we have in like
manner a positive time of passage between 1 and 2, and also a positive time of
passage between 2 and 3; but, inasmuch as there is no passage between 1 and 3
except through 2 (which mode is excluded from consideration), I say that there is no
time of passage between 1 and 3; and so consider only two times of passage; viz,
between 1 and 2, and between 2 and 3.

33. In the case of a convex hyperbolic branch, since this cannot be described under
the action of an attractive force, there is not any time of passage to be considered.
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In the transition case of a right line not passing through the focus, since, as
mentioned, the velocity is infinite, if the order of the points on the line is 1, 2, 3,
the times of passage from 1 to 2 and from 2 to 3 are each =0; and these are the
only times of passage which are to be considered.

34. The preceding conventions are of course to be attended to in the application
of any formula to the calculation of the times of passage between given points of
the orbit; in the case of a parabolic or hyperbolic orbit we have only to ascertain
which are the two times of passage to be calculated; but, in the case of an ellipse,
we must take care that the time of passage between each two of the three points is
calculated along the arc not containing the third point; viz., it is in some cases to
be calculated through the angle <= between the two radius vectors, and in other
cases through the angle > between the two radius vectors; or, more simply, the time
to be calculated is sometimes the longer, and at other times the shorter time of passage.

35. For the purpose of the present memoir the unit of time is so fixed that
the periodic time in a circle radius 1 shall be equal 8. The period in a circle or
ellipse, radius or semiaxis major =g, is thus =3a?, and generally

P G . SR
™ A/} latus rectum

The time formule are first the ordinary ones in which the time from pericentre
is expressed in terms of an angle (the eccentric anomaly for an ellipse or hyperbola,
true anomaly for the parabola); secondly, Lambert’s formule, in which the time between

any two points on the orbit is expressed by means of the two radius vectors and the
chord.

36. The first set of formulee may be written:

Ellipse. u, the eccentric anomaly from pericentre, viz. #=a (cos u — ), y=aV1—¢*sin u,
if «, y, are the coordinates from the focus, # measured in the direction towards the
directrix.

Time from pericentre == a? (u — ¢sin ).
T {

Parabola. 6, the true anomaly, viz, r=psec*} 6, if p be the pericentric distance
or }-latus rectum.

Time from pericentre = 7—37_ f;; (tan 4 6 + } tan®} 6).

Hyperbola; concave branch. wu, the eccentric anomaly from pericentre, viz,

z=a(secu—e), y=aVe'—1tanu, if 2,y are the coordinates from the focus, # measured
in the direction away from the directrix.

Time from pericentre = :;(:: {e tan u — hyp. log tan (}7 + % u)},

and by taking the sum or the difference of two of these expressions, we obtain the
time of passage between two given points of the orbit.
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37. I remark that as to the elliptic and parabolic orbits, I have preferred using
Lambert’s equations, and I should have done the same for the hyperbolic orbits, but
for the absence of a table (see post, No. 39). As it is, for the few hyperbolic orbits
which it was necessary to calculate, I have used the foregoing formula(*): a table of
hyp. log tan (} 7+ 4 u), u=0° to u=90° at intervals of 30" to 12 places of decimals, with
fifth differences is given, Table IV. Legendre, Traité des Fonctions Elliptiques, t. 1L
pp. 256—259.

38. The other set of formulee may be written :
Ellipse. 7, 7’ the radius vectors, y the chord.
2a cosy =2a—1r—1" —4, 2acosy’ =2a—1r—1"+4.
Time = ia‘sf( — ' —siny +siny’
= g X x +sin ).
Parabola. =, 7/, v, ut supra ;
. 1 7 2 ’ 3
Time = 4-{(7'+7' + ) —(r+1" =)}
a
Hyperbola.
2acosh y =2a + 7+ +1v, 2a cosh y' = 2a + 7+ 1" —4.
: S ol et ; )
Time = 2_,”“7(_96'*‘% + sinh y — sinh ),
where cosh, sinh, denote the hyperbolic cosine and sine of y, viz. :
cosh y = % (ex + ), sinh y = §(ex — e 7).

39. The logarithms (ordinary) of the functions coshy, sinhy, and of tanh y are
tabulated by Gudermann, Crelle, tt. viiL. and 1X. from x = 2000 to y =800 at intervals
of ‘001 and subsequently of ‘01 to eight places of decimals. I do not know why the
tabulation was not commenced from x =0, but the omission from them of the values
0 to 2 rendered the tables unavailing for the present purpose, and I therefore, for the
hyperbolic orbits, resorted to the first set of formule.

40. As regards the elliptic formule it remains to be  explained how the values
of x, x' are to be selected from those which satisfy the required conditions

20 cosy =2a—1r—1" —1, 2acosx’=2a—7'—7"+fy.

It is remarked in Gauss’ Theoria Motis, p. 120, that y is a positive angle between
0° and 360°; x' a positive or negative angle between +180°, —180° viz. ' is positive

1T rather regret that I did not use the foregoing formul® in all cases.
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or negative according as the angle between the two radius vectors is < 180° or >180°.
This determines x/, but it is said that y is really indeterminate; viz. it is so if only
the values 7, 7/, v, a, are given, for there are then two orbits in which these quantities
have their given values, and the times in these have different values. But when, as
in the case here considered the orbit is known, y will of course have a determinate
signification, and it is easy to explain how this is to be fixed. I observe, in the first
place, that if y=m we have y=(2a¢ —7r)+ (2a—7’), that is, the chord « passes through
the other focus of the ellipse. The criterion thus depends on the position of the two
points on the ellipse in relation to the other focus, and it is easy to see that it is
as follows: viz. let the time between the points 1, 2, on the ellipse be understood
to mean the time of passage from 1 through apocentre to 2; then I say that, in the
preceding formula

i 3 TV 4
T1me=%a‘f(x—x-—smx+smx),

x will be <180° or >180° according as the chord from 1 through the other focus H
does not or does separate the point 2 from the focus S.

41. It is hardly nccessary to remark that in the application of the formule,
x> ¥ must be reckoned according to their lengths as circular arcs to the radius unity :
a table for the conversion of degrees and minutes to such circular measure, is given
in most collections of Trigonometrical Tables.

Article Nos. 42 to 45. Formule for the Transformation between two sets of Rectangular
Auwxes.

42. Consider an arbitrary set of fixed rectangular axes, Sz, Sy, Sz, which are con-
sidered as intersecting the sphere, centre S, in the points X, ¥, Z, and so the axes
Sz, Sy, 82, afterwards defined are considered as intersecting the sphere in the points
X', Y, Z. For convenience Sz is considered as an origin of longitudes, which are
measured in the plane of @y in the direction towards y; and an angular distance
from Sz is termed a polar distance or colatitude; so that the position of any line
through S, or point on the sphere, will be determined by its longitude b and colatitude c.

43. Tt is wished in the sequel to made the orbit-pole revolve about an arbitrary
line S/, and for this purpose I take the new set of rectangular axes, Sa’, Sy, 87/,
or points on the sphere X', Y’, Z, as follows,

X', longitude @, colatitude 90° + V.

Y'Z, is then a great circle, pole X', meeting ZX’ in a point II, longitude G, colatitude
N, and the position of Z’ in this great circle is fixed by its distance from II, 11Z’'=H,
the distance of ¥’ being T1Y’=90° + H, and these being each of them reckoned from II
in the direction of longitude X to Y. The position of the new axes Sa', Sy, 87,
or points X’, ¥’, Z’, is thus fixed by means of the three angles G, N, H.
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It is to be added that if the angle X'ZZ’ is called ¢, and if b, ¢, are the
longitude and colatitude of Z’, then we have sin NV=cotgtan H, which gives ¢, and
then

b=G+q

cos ¢ = cos NV cos H.

Fig. 5.

XI

44. The transformation-formulse between the two sets of axes are at once found to be

X "4 Z
X’ cos G cos IV sin G cos &V —sin ¥
7 —sin G cos H —cos Gsin Hsin NV | cos G cos H —sin @ sin H sin NV —sin H cos N
7. A —_sin G sin H + cos G cos H sin NT cos G sin H +sin @ cos H sin IV . Mc;)s Hcoer—

which are for shortness represented by

X i 4 z
X’ o B Y
Y' o’ B 4
& a” B Y’
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45 In the particular case where Sz’ is in the plane of zy, N=0; II coincides
with Z, and the longitude and colatitude of Z’ are b=G+90°, ¢=H. Writing
accordingly in the formula N =0, and introducing b, ¢ in the place of G, H, the
formulee become

X ¥G A
X' sin b — cos.b 0
. _Y’_ : “-(;(V)S beose i sin b cos ¢ —sine
) ; i COS;;iI; ; % sin b sin ¢ cos ¢ 3

and in particular if ¢=0, (Sz' here coincides with Sz, and the axes Sz’, Sy, are in the
plane of zy) then we have simply

X Y Z
e sin b —cos b 0
¥’ cos b sin b 0
e’ 0 0 1

Article Nos. 46 to 60. Application to finding the Intersection of the Orbit-plane by a
Single Ray.

46. The equations of the ray referred to the fixed axes are taken to be

v-4 y—Buw=d

QORI Y G T T = R suppose,
or, what is the same thing,
x=A + Rf,
y=B + Ryg,
z=C + Rh,

and if in the foregoing formulae the point Z’ is taken to be the orbit-pole (longitude
b=G@G+90°, and colatitude c¢=cos™cos N cos H as above) then the equation of the

C. VIIL 53
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orbit-plane is 2'=0. We have therefore merely to transform the equations of the ray
to the new axes by writing for z, y, 2, the values
aw’+a1y/+aﬂzl’
BwI+BIy/+ B//Z”
fym’ + fyly, +fy,/z/,
and then putting 2'=0, we find «/, 9/, the coordinates in the orbit-plane of its inter-
sections with the ray.
47. The equations thus become,
o' +ad'y—A —Rf =0,
Bz'+ By — B — Rg =0,
ya&' +9'y'— C — Rh =0,

or, what is the same thing, we have

AT e |
&id 1 5 L
|a, o, f, A g ot o, A R s | (IS A |
!13, ', & B B, o kR B,.8, & B B B, g B
Iy, o, b € v, o, b 1C v, v, h C v o, h ¢
= i e e b= R < = B4 T ficadipue

B, & B B g B B, B B g B B

o ,8h, O L b e e i h, vy, o

In these formule we have identically

// 7

ny' —Bl'y, 'ya'—fy’a, aB, P! aIB — all, : 'y ]
and if we write moreover
a, b, ¢, =Cg—Bh, Ah-Cf, Bf-—Ag,

(whence identically af+bg+ch=0, and where (a, b, ¢, f, g, h) are the “six coordinates’
of the ray), then we have the very simple formule

R e e |
=(a, b, czza/’ B,; ’Yl) . _(a’ b, Cﬁa, B, 'Y) \ (A, B, Oziau’ Bu, 'yﬂ) . (f, g’ hia//’ B”» 'Y//)’

or omitting (as not required for the present purpose) one of the proportional terms, we
have

@ 1y :1=(a b, chd, B, v): —(a, b, cYa, B, 7) : (f, g hYad", B, ¥"),

which are the required expressions for the coordinates.
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48. Consider in the equations just obtained the axis of &' as fixed but H as
variable ; that is, let the orbit-pole Z’ describe a great circle about the fixed pole X'
(longitude @, colatitude 90°+N). We have «/, g, 1, proportional to linear functions of
sin H, cos H ; viz., writing for shortness

X, = —asin G+ bcos G,
X; =(—acos G—bsinG)sin N —ccos NN,
Y, =(—a cos G —bsin.@)cos N +c sin N,
We=( fcosG+gsin @)sin N +hcos NN,
Ws=(— fsin G+ gcos @),

we have
Lri Xc, cp:%”H +X,sin H
" W,cos H+ Wysin H’
I Yo
Y =W, cos H+ W,sm H'
49. 1 write
We ot B Lik.
Y, —;lcosA, ?o—;lsmA,
)7(0 =%cosA—cot8sinA,
§5=%sinA+cotSCosA,
equations which determine m, A, [, §, viz, we have
W ¥
t A=78, =—;o-,
an W, m W g
e L R e A A 4 )Y
— X sin A+ X,cos A 1
cot' 8 = Yo = Yo '\/ Wﬁ¥iV;2 (Xs Wc s Xch);

and we then ifery easily find
&' =1l+mcotd tan (H — A),
9 = m sec (H — A),
and thence also

y?— (2’ —1)* tan® 8 = m?;

viz. the orbit-plane revolving about the fixed axis SX’, meets the ray in a series of
points forming in the orbit-plane a hyperbola having the line SX” for its conjugate

axis.

53—2
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50. As already remarked (ante, No. 11), this hyperbola is nothing else than the
intersection of the orbit-plane regarded as fixed, by the hyperboloid generated by the
rotation of the ray about the axis SX’. And we thus see the interpretation of the
constants, viz.

I is the distance from S along the axis SX’ of the “arm,” or shortest distance
of SX’ and the ray.

m is the length of this arm.
8 is the inclination of the ray to the axis SX';

and for the remaining quantity A, imagine parallel to the ray a line through S
meeting the sphere in L (L is the pole of the separator), I say that A—H is the
angle LX'Z': or (what is the same thing) drawing X'L to meet IIZ'Y’ in A, we have
IMIA=A=H+ZA, or (what is the same thing) Z/A=A — H.

51. To verify this, observe that the cosine distances of L from X, Y, Z, are as
f:g:h; and thence its cosine distances from X’, ¥’, Z, are as (f, g, hQja, B, v):
(f, g, hja, B, ) :(, g h{a", B”, ¢’); say, for a moment, as f’ : g’ : h’,

Now LA is the perpendicular from L on the side Y’Z’ of the quadrantal spherical
triangle LY’Z’, and we thence have

D = e = AZ = tan (A~ )

if A has the geometrical signification just assigned to it. But this equation is

g’ cos (H—A)+h'sin (H - A)=0,
that is
g’ cos H +h'sin H

tanA:—g’sinH+ h" cos H’

or substituting for g/, h’ their values, the numerator is

f(« cos H+a"sin H)+g (B cos H+ B”sin H)+ h(y cos H +«"sin H),

which is
=—fsinG+gcos G, =W,

and the denominator is
f(—a'sinH+a’cos H)+ g(— B sin H+ " cos H)+ h (— o' sin H + " cos H),

which is

=(fcos G+ gsin G)sin N +hcos N, = W,,

so that the formula becomes

|3

8§

tan A =

)

5

which is the original expression of tan A,
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52. We might in the equations
#:y :1=(,b, cld, B, v): —(a, b, cYa, B, v) : (f g, h{a", B, v")

consider for instance G or N as alone variable, and then eliminate the variable
parameter so as to obtain a locus; but the results would be complicated and the
geometrical interpretations not very obvious.

53. I assume (as was done before) N=0, G=0>b—-90°, H =c, that is, the position
of the orbit-pole Z’ is longitude b, colatitude- ¢, and the axis SX’ is the line of nodes
or intersection of the orbit-plane with the ecliptic, viz., the longitude of this line is
=b-90°.

The formule become

&yl (acosb +bsinbd) cosc —csinc
: — asinb+bcosbd

(f cos b+ gsin b)sinc + hcosc.
or if these are

, X,cosc+ X, sinc
Wscosc+ Wysine’

plgo. of - il
W.cosc+ Wgsine’

4

<
|

the values now are

X,= acosb+Dbsinb,
X, =—c,
Y, =—asinb+bcosb,
W= hs
Ws= fcosb+gsinb,

and thence forming as before the values of tan A, I, m, cot§, and putting for shortness

NWe+ W =~h?+ (fcos b+ gsin by, =Q

we find after some easy reductions

i LS
tanA:Hcosb+Esmb,

1 ‘
7n=ﬁ(—abmb+bcosb),

U= g [(@h—cf) cos b+ (bh — cg) sin 8],

1

Q’YO(—a,sinb+bcosb)(—fsinb+gcosb),

cot & =

=-(1i(—fsinb+gcosb),
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and with these values
& =l+mcotd tan(c—A),

’

ol= m sec (¢ —A),
and thence
y? — (2 —1)*tan® & = m?,

viz., this is the hyperbola obtained by rotating the orbit-plane about the line of nodes,
longitude b— 90°.

54. Imagine the orbit-plane (having upon it the hyperbola) brought by such
rotation into the plane z=0, or plane of the ecliptic, so that the hyperbola will be
a curve in this plane, the inclination to Sz, or longitude of the axis S/, being of
course =b—90°. Transforming the equation to axes Sz, Sy, we must write in the
equation

& =xsinb—ycosb,
y =wxcosb+ysinb,
and the equation thus becomes

(2 cos b+ ysin b)*— (#sin b — y cos b — [)* tan® 6 = m?2.
55. It will be recollected that the equations of the ray were

e—~4 y=B . g=C

'y g il
writing herein z=0 we find
f b
z=4— H oy, = }—1 )
f a
y = B —'é O, = - E )
and it is clear that this point (E’ - E) should lie on the hyperbola.

Substituting for (#, y) the values in question, we have first

bsinb + a cos b —hl

\ é{(hz +(fcosb+gsin b)) (b sin b+ a cos b) — h (ah — cf) (cos b + (bh — cg) sin b)}
=%2 {(fcosb+gsinb)*(bsin b+acos b) + (f cos b + g sin b) ch}
" (l) (f cos b+ gsinb) {(fcos b + g sin b) (bsin b+ a cos b) + ch (cos? b + sin? b)}

=(%(fcosb+gsinb)(—asinb+bcosb)(fsinb—gcosb);
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or observing that
-0

tan3=fsinb—gcosb’

we have

(bsin b+a.cos b —hl)tan8=—&1—)(fcosb+gsinb)(—asinb+bcos b):;
and hence the result of the substitution is at once found to be

(—asinb + bcosb o —asinb+ bcos by (g sin b + f cos b)?
0z g

-— 1 2
— mhe =h2( a sin b+ b cos b) :

Q2

viz.,, the factor (—asinbd+ b cos b)* divides out, and the equation then becomes

1 ) .. i
l—m(gs1nb+fcosb) =
that is

Q2=h?+ (gsin b + fcos b)?,

which is in fact the value of Q2

56. I seek for the direction of the hyperbola at the point (E, —%) in question.

We have
do s dy= (b cos b — a sin b) sin b + cos b tan® & (b sin b + a cos b — hl)

: —(bcos b —asinb)cos b+ sin b tan* 8 (b sin b + a cos b — hi),
and from the above values of (bsinbd+ acosb—hl) and tand, we have

gsinb+fcosb

ta.n28(bsinb+acosb—hl)=fs—inb_gCOSb

(—asinb+Dbcosb);

whence

dz : dy=  (bcosb—asinb)sin b(fsinb— gcosd)+ (gsinb+fcosbd)cosb(—asinb+bcosb)
: —(bcosb—asinbd)cosb(fsinb—gcosb)+(gsinb+fcosd)sinb(—asinb+ b cos b),

which, multiplying out and reducing by means of the relation af+bg+ ch =0, becomes

dz : dy=(—asinb +bcosb) (sin*b+cos*b)f : (—asinb+ bcosb)(sin®b + cos*b) g;
that is

which shows that the hyperbola, at the point (E, _a}) where it meets the ray, touches
the projection
dad At
§t 3 ™ el
of the ray on the plane of xy, which contains the hyperbola.
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57. We may consider various particular forms of the hyperbola y* — (2/ — I)? tan® 8 = m".
1°. If tan8=0, the hyperbola is the pair of parallel lines y*=m?

This can only happen if h=0, fcosb+ gsinb=0. The first equation gives af+bg=0,

—asinb+bcosb 0
Q S

m finite. The equations show that the ray is parallel to the line of nodes.

which is consistent with

whence tanb=— é = 2 ; we have thus m=

2, If tan8=oo, the hyperbola is (z'—0)*=0, viz, the line a’=1! twice: the
condition is —fsinb+gcosb=0; viz, the ray (not in general cutting the line of
nodes) is at right angles to the line of nodes.

3°. If m =0, the hyperbola is the pair of intersecting lines y?=(2"—[l)*tan?8. The
condition is —asinb+bcosb =0, signifying that the ray cuts the line of nodes.

4. We may have simultaneously tand=o, m=0. The hyperbola (as in 2°) is
(# —1»=0. The conditions are —fsinb+4 gcosb=0, —asinb+bcosb=0, whence
tan b= % = 15),’ and therefore also ag—bf=0; these signify that the ray cuts at right

angles the line of nodes.

b’ —%), that is, we ought to have
h*l?=a?+b%. The value of / is in the first instance given in the form

The line &’=! passes through the point (l—)

l=&%2{(ah—cf) cos b + (bh — cg) sin b},
where
Q2=h*+(fcosb+gsinby=h*+ {2+ g*—(—fsinb+gcos by =1>+g*+ h%

But observe that the equations

ag —bf =0,
bg + af = — ch,
give
& W
_az+b2 ? g—a2+b2 )
and thence
¢ h? (a? + b? + ¢?)
a_ {2 2 qhis e o
=prgiht =h(1+ ) pee,
a’4+b’+c? a
ah —cf =ah o TS =l_19’
S bR gty
consequently

th(acosb+bsmb)ﬂ2 h(a.cosb+bsr,1nb)— N/a?+b’

which is right.
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58. I return to the equation of the hyperbola written in the form

(z cosh +ysinb)*— (2sinb—y cos b — 1)* tan® § = m?;
Y Y

being (as was shown) a hyperbola passing through the point (E, —%) where its plane

is met by the ray, and touching at this point the projection L_f—A =y‘;—]~g
If in the equation we consider b as variable, we have a series of hyperbolas, viz.,
these are the intersections of the plane of ay with the hyperboloids of revolution

obtained by making the ray rotate successively round the several lines zcosb +ysinb=0

through the focus S. And, as just seen, these hyperbolas all of them touch at (E, —%>
the projection of the ray.

59. The hyperbola to any particular angle b is the hyperbola belonging to the
ray, in the planogram for an orbit-plane rotating about the axis zcosb+ysinb=0;
so that the system of hyperbolas would be useful for the construction of any such
planogram. And there is another series of curves which, if they could be constructed
with moderate facility, would be very useful for the same purpose; viz, reverting to
the equations

 :y 1= (acosb+bsind)cosc—csine
: — asinb+Dbcosbd

(fcosb + gsinb)sin ¢+ h cose,

which determine in the orbit-plane the coordinates &', y* of the intersection thereof with
the ray: imagine as before that the point is marked on the orbit-plane, and let it by a
rotation of the orbit-plane be brought into the plane of ay; so that 2/, y, will be
the coordinates in the direction of and perpendicular to the line of nodes of a point on
the hyperbola y”—(«"—1[)*tan®8=m? or (xcosb+ ysinb)*— (zsinb—ycosb— 1) tan® § =m?,
viz., of the point corresponding to an orbit-pole, colatitude ¢. Suppose that z, y, are
the coordinates of this same point referred to the fixed axes, we have

z= &' sinb+y cosb,
x=—2a"cosb+ y sinb,
and thence
@i b (acosb+bsinbd)sinbcosc—csinbsinc+ (—asin b+ b cos b) cos b

: —(acosb+bsinb)cosbcosc+ccosbsine+ (—asinb+bcosd)sind

(f cos b+ g sin b) sin ¢ + h cos e,

the coordinates of the point just referred to. Now, if from these equations we could
eliminate b, we should have a series of curves containing the variable parameter ¢,
intersecting the series of hyperbolas; and thus marking out on each of these hyperbolas
the points which belong to the successive values of the parameter ¢; we should thus
have in the plane of ay the point corresponding to an orbit-pole longitude b and

0 54
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colatitude ¢. The series of curves in question may be called “graduation curves,” viz.,
they would serve for the graduation of the hyperbola in the planogram for an orbit-
plane rotating round any line #cosb+ysinb=0 in the plane of zy. But the elimination
cannot be easily effected, and I am not in possession of any method of tracing the
series of curves.

60. I remark that from the equations

Dl Y ahlE= (acosb+bsinb)cosc—csinc
: — asinb+becosbd
(fcos b+ gsinb) sin ¢ + hcos e,

we may without difficulty eliminate b; the result is, in fact,
[#" (— ah cos ¢) + i’ (— bh cos® ¢ — cg sin? ¢) — ac sin ¢
+ [2' ( bhecosc)+ y (—ah cos? ¢ + cf sin?¢) + be sin ¢]?
= [2/( chsine)+y ( ag—bf)sinccosc+ (a?—b?) cosc],

a conic; but the geometrical signification of this result is not obvious, and I do not
make any use of it.

Article Nos. 61 to 63. The Trivector and the Orbit.

61. Considering now the three rays, these are determined by their six coordinates,
(a’:l) bl) cl> fl) gl; hl);
(a"h. b21 CE: f2: g:b h2)5
(as, by, ¢, f5, g3, hs),

respectively ; and the intel'sect{(}ns with the orbit-plane are given by

wl/ H .?/1' : 1 e (ah b]) cl}ia: B: 'Y) o (a‘l’ bl’ c1§a17 ﬁlz ')/) . (fl > gl’ hliaﬂ) B”x 'Y”))
.i(/':_;, : yﬁ, : 1 = (a'2; b2; C‘_’I ”» ) PR ¢ (a“.‘) bz, CEI ”» ) : (fﬁy g?: h?ﬁ » ))
'Zl;f, : 3/3, : 1 = (3.3, b3; c;;;i 2 ) DN (a‘sx b:); cs}i » ) : (f:h g:h hsi » )»

where the axes Sz, Sy, are an arbitrary set of rectangular axes in the orbit-plane;
or where, as before, the axis Sz’ may be taken to be the line of nodes.

There is no difficulty in finding the equation of the orbit. Writing r, = Va2 + y?,
we have
Uy

& & B, B )’

7=

=1 \/[(al; by, clﬁa/: g, 'Y’)]z"' [(al) by, clﬁa, B, ‘—';’)]E»
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the sign being taken in such manner that 7, shall be positive; viz, the sign must
be the same as that of (f,, g, h¥a”, B”, v”). And we have the like formule for
7, and 7;. Substituting these values, the equation of the orbit becomes

2% a ; y K 1 =0.
w, (a1, by, e, 0a, B, ), —(a, by, e.¥a, B, v), (£, g, h¥"’, B”, )
U, (8, by, G 2 ) —(as, by, . ,, ) (fs, 8 hol » )
us, (25, by, ¢ s b=\ by ol -, ) (B g Dl » )

62. Considering the minor determinants formed with the terms under the &' and 7/,
for instance

(2, by, &, B, 7). — (2, by, cla, B, )
+ (a1, by, e,§a, B, v). (, by, &}, B, %)
this is
= (bic; — biey) (B — B'y) + (122 — caay) (v2' — 2 ) + (b, — ashy) (a8 — &'B)
=a” (b,c, — buc)) + B” (c,8, — caay) + " (3, b, — a3 by),

or, what is the same thing,
= (blc2 = b2ch C Ay — Coay, a’lb2 = | a2b1§a1/y :8”; 'Y”) 5

with the like expressions for the other two minors. And we thus obtain the following
developed form of the equation, viz.

{o’ (a1, b, Qe B, ¥v)+y (a1, by, e, B, ¥ —w(f, g, hla’, B v")

+ uy (s, 8o hi‘la": /8”: ')'/L)]
+ (@' (s, by 6 0 )+ (8, by, &, ) [—ws(h, g MY » )

+u, (5, g5, hsQ 1 )]
+ (@@ by, X 5 )+Y (8, by, 6T, N[l g, b » )

+ Uy (f“ 81, h1§ » )]
+ (byc; — byc,, Cy85 — c3a,, aby—azb,Ja”, B, ") [» (fy, g, h¥a", B, ¥") —w])
+ (bse, — bycy, cza, — cya;, azb, —a, by . )r (£, gs h.g % ) — )
+ (byc; — byey, €2, — coay, a;by—ayb, J 5 Y[ (£, g5, hyl X ) —u] =0,

being an equation of the form Qr=Aa'+ By + C.

63. The coefficient of » is a quadric function of («, 8", ¥”), and if this vanish
the orbit is a right line. It thus appears that the orbit will be a right line provided
only the orbit-axis be situate in a certain quadric cone, or (what is the same thing)
the orbit-pole be situate in a certain spherical conic: agreeing with a preceding result,
viz. the cone is that reciprocal to the cone, vertex &S, circumscribed about the hyper-

54—2
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boloid which contains the three rays. And we see that the equation of this reciprocal
cone is

a’, B, o |=0.
(6, o, Ble B 0Y i

(fo g haf » AR P . 1

B R S W e

Article Nos. 64 and 65. The Special Symmetrical System of three Rays.

64. In what follows I consider the three rays forming a symmetrical system as
already referred to: viz. the three rays intersect the plane of the ecliptic at points
equidistant from S at longitudes 0°, 120°, 240°; each of them is at right angles to

Fig. 6.

the line joining S with the intersection with the plane of the ecliptic, and at an
inclination =60° to this plane: the figure shows the projection on the plane of the
ecliptic of the portions which lie above this plane of the three rays respectively.

The three rays lie on a hyperboloid of revolution having the line Sz for its axis;
the circumscribed or asymptotic cone vertex S, is a right cone of the semi-aperture
=30°; the reciprocal cone is therefore a right cone semi-aperture 60°, or (what is the
same thing) the regulator is a small circle, angular radius 60°, and the regulator and
separators have the positions shown in fig. 1, see No. 8.

Taking S1=82=83=1, and writing down the equations of the three rays in the
forms

z—1 e Y N z
0 a i " tan 60°°’
z+00860° y—-sm60° 2
—sin 60° —cos 60°  tan 60°’

z+cos 60° y4+sin60° 2
sin 60° = —cos60°  tan 60°’
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we obtain the six coordinates of the three rays respectively
' (@, b, e, £, g, h)=( 0, +38 -1, - Tghigieh V3),
(0 B s o D) == & 4B, 2, W83 L. 2N 8),
(8, by, ¢, £, gy, h)=(—3, V3, 2, —#3 1, -—24V3)

whence the intersections with the orbit-plane are given by

ot S BV3— & :  —BV3+ y: B+ V3,

@ty 1= S +BV3+2% : —B3a—BV3-2y: a’'N34+B"—2 V3,

@ty 1=—8d+BV3+2' : 3a—BV3-2y: -—a"V348 -2 V3y,

where if (as before) the position of the orbit-plane be determined by means of the
longitude b and colatitude ¢ of the orbit-pole, we have

&, By d=i8n b , —cosb , Ont ,
a, B, =cosbcosc, sin b cose, — sin ¢,
a’, B”, " =cosbsinc, sinbsine, cosc,

and the passage from the coordinates 2/, ¥/, to «, y, is given by

’

2= asinb—y cosb,

’

y'= @ cosb+ y sinb,
or conversely
z = a'sinb+ y cosb,

y=—acosb+y sinb.

65. To develope the results, I consider the orbit-pole as passing through certain
series of positions. The locus may be a meridian circle: by reason of the symmetry
of the system, the results are not altered by a change of 120° in the longitude of
the meridian; so that, by considering the two meridians 0°—180° and 90°—270°, we,
in fact, consider twelve half meridians at the intervals of 30°. An illustration is
afforded by Plate I.; the orbit-pole describes successively the meridians 0°, 30°, 60°, 90°,
and the line 1, by its intersection with the orbit-plane, traces out on this plane a
series of hyperbolas shown in the figure; the hyperbola for the meridian 90° is a
right line, but (except for the position where the orbit-plane passes through the
line 1) the locus is a determinate point on this line. Planogram No. 1 (Plate II.)
refers to the meridian 90°—270°, and Planogram No. 2 (Plate III.) to the meridian
0°—180°. Next, if the orbit-pole be at one of the points A, that is, if the orbit-
plane pass through a ray—though the position of the orbit-pole be here determinate,
yet as there is a series of orbits, this also will give rise to a planogram: I call it
Planogram No. 3. The orbit-pole may pass along a separator circle (viz. the orbit-
plane be parallel to a ray), this is Planogram No. 4. Anund, lastly, the orbit-pole may
pass along the ecliptic (or the orbit-plane may pass through the axis SZ), I call this
Planogram No. 5. But the last three planograms are not considered in the like detail
as the first two, and I have not, in regard to them, tabulated the results, nor given
any Plates.
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Article Nos. 66 to 82. Planogram No. 1, the Meridian 90°—270° (see Plate IL).

66. Supposing that the orbit-plane rotates about the axis S1 (fig. 6, see No. 64)
in the plane of the ecliptic, the orbit-pole will describe the meridian 90°—270°, the
position of the orbit-pole being b=90°, ¢=0° to 90° or else b=270°% ¢=0° to 90°.
But the same analytical formula extends to the two half meridians, viz., we may take
b=90° and extend ¢ over 180° in the final results making ¢ an arc between 0° and
90°, and b=90°, or =270° as the case requires.

67. Assuming then b=90° we have
iyt el b i 0
«, B,y =0, cosc, —sing,

o, B, ¥'=0, sin¢, cosg,

and, moreover, «/, ¥ =, y: so that instead of (2, ), &c, we may write at once
(2, vy,), &c. The formulae become

V3cosc+ sine: 0 :sinc+ ¥3cose,

R |
@t l = N3 cosc—2sine : —3 : sinc — 243 cos ¢,

V3 cosc—2sine : 3 :sinc—2V3cosc,

it L
that is
'7"1=1; y1=0:

(viz. the orbit-plane, as is evident, meets the ray 1 in a fixed point, its intersection
with the plane of zy);
_W8cosc—2sinc e

Prpghosdagtiote TLAad ool kl IR (i
" sinc—2V3cosc .
o s ey
ik sinc—2+3cosc’ e
and writing
2V3 cos A sin 1 ta
=i w, —=— = 81l w, = N w,
V13 V13 243
(whence o =16°6") we find
7S
zy=—F+ g;,; tan (¢ + o),
3
Yo = T (¢ + w),

and we thence have for the hyperbola, the locus of (2, %) and (@5, ¥s)
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viz. the points (2, #.) and (@, ¥,;) are situate on the hyperbola, symmetrically on
opposite sides of the axis of . For ¢=0, we have &,=—14, y,=31 V3, (#2+y2=1), and
the hyperbola at this point touches the circle #*+y*=1; and similarly for a;, ;.
The inclination of the asymptotes to the axis of y is given by tann=+V3;, n=22° 56"

68. The orbits are conics, focus S and vertex 1. It will be convenient to con-
sider ¢ as passing from 0° to 90°—w, and from 0° to —(90°+w); that is, from
0° to 73°54'—¢, and from 0° to —116° 6 +e¢, if e be indefinitely small: the point
2 will thus traverse the upper branch (alone shown in the Plate) of the guide-
hyperbola, viz., for ¢=0° it will be at the point of contact with the circle; for
¢c=173°54"—¢ it will be at o, and for ¢c=—106"6"+¢ at ®©’. For ¢=0° the orbit
is the circle; as ¢ increases positively, it becomes an ellipse of increasing eccentricity
and major axis, until for a certain value (c=46°48" as will appear) it becomes a
parabola ; it then becomes a hyperbola (concave branch); for ¢=52°45" it becomes the
hyperbola 3’ subsequently referred to; and for ¢=60° (the point 2 being then on the
line shown in the figure) the orbit becomes this right line. As ¢ continues to increase,
the orbit becomes a hyperbola (convex branch); and ultimately for ¢="73°54"—¢, the
point 2 goes to o, and the orbit becomes a hyperbola (convex) =, having an asymptote
parallel to that of the guide-hyperbola: the inclination to the axis of « being thus
90° — 22° 56', = 67° 4'.

69. Next as ¢ increases negatively, the point 2 moves from the point of contact
in the other direction to «’: for ¢=0° the orbit is of course the circle, and as ¢
increases negatively the orbits are at first the very same series of orbits as those
belonging to the positive values (?), viz., they are first ellipses, of increasing eccentricity
and major axis; then for c¢=—92°54" the orbit is the parabola; the orbits are then
hyperbolas (concave), and finally for ¢=—106"6"+¢ when 2 is at «’, the orbit is a
hyperbola X', the asymptote of which is parallel to that of the guide-hyperbola, viz.,
the inclination to the axis of z is =67° 4.

70. It will be observed that the orbits from the circle to the hyperbola 3’ each
intersect the guide-hyperbola (that is, the branch shown in the figure) in two points,
the one corresponding to a positive, the other to a negative value of ¢; in the positive
series, the remaining orbits from the hyperbola X/, through the right line to the convex
hyperbola =, each intersect the guide-hyperbola (same branch) in a single point only,
for which ¢ is positive.

71. There is, in the passage of the orbit-pole from ¢=—106"6"+¢ to ¢c="73"54'—¢,
say at ¢=173"54', a discontinuity of orbit, viz, an abrupt change from the concave
hyperbola 3’ to the concave hyperbola X ; observe that the direction of the asymptotes
being the same in each, the eccentricity e has the same value.

1 Of course, as corresponding to different values of ¢, they ave not the same orbits in space, but they
are only the same curves in the planogram.
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The point in question (b=90°, ¢="73°54") is one of the points B of the spherogram,
and the hyperbolas 3, 3 are two of the four orbits belonging to this point. And, by
what precedes, it appears that as the orbit-pole passes through this point along a
meridian downwards to the ecliptic the change is from a concave to a convex orbit.

72. On account of the symmetly in legard to the axis of @, the equation of the
orbit will be of the form r=A4x + B; , the equation is at once found to be

7-—1— (m—l)

ymg |
73. The eccentricity is the coefficient A taken positively (¢e=+4): it is in the
present case proper to attend to the value of the coefficient itself,

el
i z,—1’

the sign of A will then indicate the position of the centre of the orbit, viz, according
as A 1is positive or negative the centre will be on the negative or the positive side
of the focus S. To investigate the variation of A, we may express it as a function of
tanc, =\ suppose. We have

x_«/3—27§ s <
Wiligges N-2%3’
and thence
okt i RURCU R R R DT
—-243

viz., r, must be positive, that is, R, is positive or negative according to the sign of
X —243; negative if A< 243 or ¢< 73" 54, positive if A >2V3 or ¢>73°54. And we
have then

But a more convenient formula is obtained by writing

0 =—cote+ — «/3

we then have
V1 + 6 = ér,,

which determines the sign of the radical, viz, this must have the same sign as 6;
and then for the coefficient

s J(H+a)( VIt +0)
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74. For ¢ a small arc =e¢, 0 is large and negative, and V1 + ¢, having the same
1

sign as 0, is = 0+§?) nearly ; we have therefore
2 -1 1 ,
A= 3030 = "3 approximately.

For ¢ nearly =60°, say ¢=160° £ ¢,

cot ¢ = cot 60° + € cosec? 60° = —1: + e 2
V3
Wi thd o il «/1+02——@
2/3~ 3 i b 2v3’
and thence
PR CS ST PRV )
243 3 8 €
viz., this is — o for ¢=60°—¢, and + o for ¢=60°+e.
For ¢ nearly =90° — o, say first ¢="73°54' —¢, we have
cotc=L_+¥e, =—13¢, 6+a=—1—_, Vitr=—1
2 ; t 2V3 ’
whence
-
A= —=. 230940;
V3

but if ¢="73"54'+ ¢ then O=1}¢, 0+a=-2—lﬁ, APt L. s

4
A e e~ 2'30940,
V3

viz,, there is an abrupt change from 4 =+ ,\% to A= —%; corresponding to the dis-

continuity of orbit already referred to. We may diminish ¢ by 180°, and consider the

last-mentioned value, 4 =— ——, as belonging to ¢=—90°— @ + e = — (106° 6’ —¢).

4
V3
75. Consider next that ¢ passes from 0 to —(106°6"—¢). First if ¢ is a small
negative quantity ¢c=—e¢, 6 is large and positive, and V14 6 having the same sign as
0 (positive) is =9+210 nearly, we have therefore A =%.;—6}=—3—22
¢c=+¢). And it is easy to see that as ¢ increases negatively, 4 is always increasing
1-+V13
3
being = — 230940 as above. We have a diagram of A (see next page).
0. VL 29

(same as for

-negatively, its value for ¢=—90° being 4= =—-8685, and for ¢=—106°6"+¢
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76. It thus appears that from A=0 to 4=-— ;g, there are always to any given

value of A two values of ¢, or positions of the orbit-pole. In particular if 4 be
=—1, the curve will be a parabola; the values of ¢ lying between 0°, 60° and
between 73° 54/, 90° respectively.

Fig. 7.

106°6" | 90- .

To find them, writing 4 =—1, we have
—30—38a=20—2V1 + @, that is, 50+ 3a=2V1 + &,
or
2162+ 3000 + 902 — 4 =0,
L1 '
23’
2160+ 5N30—12=0, (140V3+5) =116,

that is, snbstituting for @ its value =

or g s
_—5£4116
1443
that 1s
0 =— 65034, 6= "+23797;
giving
cot ¢ = + ‘93902, cot ¢ =+ 05071,
or
c= 46°48, c= 87°6.
77. It has been seen that ¢=73°54"+¢ gives 4 =— ,\% =—230940; there will

]

be between 0° and 60° another value of ¢, giving for 4 this same value; to find

this value write 4 =— -, then we have

4
V3
_4v3 <0+ Ji) —20—241 + 6",

243
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that is #
(1+2V3)0+1=vV1+6,
or
(12+4¥3) 6+ (2+4V3)0=0,
satistied as it should be by 6=0, and also by

RO .t h ) = — 47170,
2 (3 +V3)

giving
cotc = 76038 or ¢=52°45".

78. Representing the equation of the orbit by

r=Az + a(l — 42,
we have for the point 1,
1=4 ta(-4°,

that is
+1

B A

where the sign is to be taken so that @ shall be positive.

79. With a view to the calculation of the times of passage, I calculate a series
of values of @, ¥, 7, 4, a, for values of ¢ at the intervals of 5° and for a few
intermediate values; we have &, ys, 75=as, ¥, 75, S0 that these are known; so long
as the orbit is an ellipse, the time of passage between the points 2 and 3, say T,
may be calculated by Lambert’s equation, the length of the chord y,—;, =2y. being
known without any fresh calculation. And then the times 7, and 7% being equal,
and the sum 7y, + Ty + 7', being equal to the whole periodic time (reckoned as =3a3‘)
the times 7, and 7% are also known. But when the orbit is a concave hyperbola
there is no time 7%;, and the other two times 7%,,=17, must be calculated. For the
reason referred to (ante, No. 39) I did not use Lambert’s equation,—and it was less
necessary to do so, by reason that, the transverse axis coinciding with the axis of z,
the other formula could be employed without difficulty.

80. The formule for z,, y, adapted to logarithmic calculation are
log (a, + *61539) = 11:60174 + log tan (¢ + 16° 6"),
log ¥, =11'92015 + log sec (¢ + 16° 6),

where v, is always positive, but the sign of @, must be attended to. The values of 7
and its inclination ¢, to the axis of # are then to be calculated from

tan ¢, = % ;  Te=®,5€c ¢, Or = y,cosec ¢,

(viz. for r, it is proper to use the first or the second value, according as @, is greater

or less than ).

55—2
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We have then e=(+ 4) and ¢ from the foregoing formule

where @, e are each of them positive.

And then for the Times

where

3 A s S
L= o (x — x —siny +sin x); <log g 1'67894),

@ COS %, = @ — T — Ya,

acosy =a—1r+ Y.,

[476

and attention is necessary in order to the selection of the proper values of the angles

’

X X-
And finally

S

actual calculations) omitted.

b=90°

e 167 6f

log sec 09259
92015

01274
Y. = 1:0297

01274
51044

50230
b =1T72°3%

e=20"
=36°6’

T12= T31=% (3&3 —T._;3).

log tan 86285
60174

46459

61539
29147

7, = — ‘32392
log = 51044
02046

01274

03320
ry= 10794

0794 log = 89982
13239 log = 12185

17797

'94003 log = 97314

comp = 02686

I subjoin a specimen; the characteristics of the logarithms are (as in the
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A =—-059975 a=10638
10638
10794
A—r,=— 0156
yo=+ 10297

10141 = @ cos x'
— 10453 = a cos i

00608 01924
02686 02686
97922 99238
x =17°35 x (=Supp. 10°42)=169° 18 x—x =151°43

151° 2:63544

43 01230
—siny — 18566
siny 30209 02686
2:95003 it
18588 47712
51741
276437  log = 44160
02686 3a} = 32916
01343 14482
67894
1:8434
T, = 14482 16083 To=To= 9217

82. For the Time in a hyperbola, we have

e == %r at {etan u,— A . 1. tan (45° + )},

where
IR . g
ave—1

"VW\."\/]‘(CF(’.(]?’g.fl)!
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Taking as a specimen the case ¢="75°, we have here

a= 9004 e= 21106 Y. = 43341
log= 95444 log= ‘32441 log= 163690
a(e—1) = 31106
log , = -49284

=]

and then the calculation is

log @ = 95444
» a(e—1)= 49284
44728
» aVNe—1= 22364
log . = 63690
logtanuw = 41326 u=87° 47
32441 h.ltan (45° + % w) = 395140
73767 etanu = 54:660
3951
50°709
log = 70508
05444
47722
67894
31568

Pa=dei— 201686

83. In the case of the parabola p=1, and the expression for the Times is

7] 7] 1 ’ /i g
Tu=Tu=, {(p+p' +D=(p+p' -2,

where for
c=46°48
G=81 O
we have
Tl‘l i Tzﬂ B 787,

14§ =1T5—=2:5588,
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Planogram No. 1, first part, b= 90°.
c T A b, 7y 4 a Gies Vit iy
Circle 0° - 500 |+ 866 | 60° 1-:000 0 1:000 | 1-000 | 1000 | 1-000
(1 5 461 892 | 62° 39'| 1004 {003 | 1:003
10 420 927 | 65 38| 1-017 012 | 1012 | 960 | 1:135 [ 960
15 374 972 | 68 56| 1041 030 | 1-031
20 324 1:030| 72 33| 1-079 060 | 1-064 | 922 | 1448 | 922
25 267 | 1104 | .76 26| 1136 ‘107 | 1120
Ellipses -
30 200 | 1-200| 80 32| 1-216 ‘180 | 1220 | -887 | 2:275 | 887
35 120 1:325| 84 49| 1-330 295 | 1418 ;
40 - 021 | 1-492| 90 48| 1-492 482 | 1-931 | 838 | 6371 ‘838
40° 54’ 000 | 1-515| 90 1515 515 | 2:061
45 + <109| 1-722| .93 37| 1725 ‘814 | 5-362
Parab. 46° 48’ ‘166 | 1826 | 95 11| 1834 1000 | o 87| 787
(150 287 | 2:054 | 97 57| 2074 14505 | 1981 | 750 | ~ “750
Hyperbs.} 52° 45 418 2:306 | 100 16 | 2-344 2309 | ‘764 ~
L| 95 552 | 2:569 | 102 8| 2627 | - 3:632| -380| -628| ~ 628
Line 60 1:000 | 3-464 | 196 6| 3605 : 000 | 000 | ~ -000
| 65 14937 | 5378|109 48| 5716 | + 5032 | -166
b { 70 |+ 5248| 12933 |113 13[13:311 | 2:898| -257 Convex orbit.
R w© 115 39 1 302
TN w & 8y qihed® Zggg 324 w ~ ©
{ 75 |-21432| 42:341| 63 4248346 2111 | -900 | 2068 ~ 12068
 Hyperbs. { | 80 4356 | 7:830| 60 55| 8:960 1486 | 2:056 | 3:856 | ~ 3-856
‘ 1 85 2:653 | > 4-322 | 58 .27 | 5072 1115 | 8-718 | 2912 | ~ 2-912
Parab. 87° 6| 2320 3644 | 57 31| 4320 1000 | = 2588 | 2:588
Ellipse 90 — 2:000| 3-000| 56 18| 3606  — 869 |7-622| 2-255 | 5862 | 2:255

The mark ~ in the 7%, column shows that there is no Time 7%;.
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ON THE DETERMINATION OF THE

Planogram No. 1, second part, b= 270°.

[476

c X, Yo b 7y a
Gire. | 0°|- 500 |+ -866 | 60° *| 1000 | 0 | 1:000
5. 537 | 848 | 57 39 | 1003 |- -002 | 1:002
10| 573 | 837 | 5537|1014 | -009 | 1009
15| 608 | 83253521030 | -019 | 1019
20| -643| 83452 23| 1053 | -032 | 1033
95| -678| 842 |51 10 | 1081 | -048 | 1051
30| -714| 857 | 5011|1116 | -068 | 1-073
35| 52| 879 |49 27 | 1157 | 090 | 1-098
2 40| 793 -910 |48 51 | 1207 | 115 | 1-130
= | 45| -836| -950 | 48 40 | 1-266 | -145 | 1-169
= |50| 84| 100248 36| 1336 | 179 | 1017
S 55| 038 | 1069 | 48 45 | 1442 | 218 | 1978
60 | 1-000 | 1154 | 49 7| 1527 | -2647| 1-358
65 | 1074 | 1-266 | 49 42 | 1660 | -318 | 1-466
70 | 1164 | 1412 | 50 31 | 1830 | 383 | 1-622
75 | 1980 | 1-611 | 51 35 | 2056 | -464 | 1-864
80 | 1431 | 1891 | 52 53 | 2:372 | 564 | 2295
85| 1651 | 2:311 | 54 28 | 2:840 | 694 | 3269
90 |~2:000 |+3:000 | 56 18 | 3-606 | -869 | 7-622

1-:091

1-145

1-207

1-283

1-377

1-506

1-771

2255

‘969

1:043

1192

1-464

1-983

3036

6-888

5862

1-000

1-044

1-:091

1-145

1-207

1-283

1-377

1-506

1771

2255
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476] ORBIT OF A PLANET FROM THREE OBSERVATIONS. 441

Article Nos. 84 to 94. Planogram No. 2, the Meridian 0°—180° (see Plate IIL).

84. The orbit-plane here rotates about an axis in the plane of the ecliptic at
right angles to 81 (Fig. 6). The entire meridian is given by b=0° ¢=0° to 90°,
and b=180° ¢=0° to 90°, but it is sufficient to consider one of these half meridians,
say the latter of them, as the series of values is the same for each of them, with
only an interchange of the points 2, 3. I write therefore, b= 180° so that we have

@i, Py s 0 il 08
@, B,y =—cosc 0; —sing,
a’, BY, o =—8ine, 0, cose,
consequently
oyl 1= sinc: —~3: ‘\/gcosp,
@ iy :1=—8cosc—2sinc: —43: —+8sinc—2V3cose,
@ iy, :1= 8cosc—2sinc: —V3: V3 sinc—2 V3 cosc,
and moreover &' =y, y'=—x; so that, introducing into the formule (a;l, 1), &e., in

place of the (2, %), &c., we have
&x; = 8ec ¢, %= «/— tan c,

1 _ 1 2sinc+3cose
sinc+2cosc’ 2T ./3 sinc+ 2cosc’

Xy =

-1 _ 1 2sinc—3cosc

w=_-"‘——__ el T T ——
*=snc—2cosc’ 7 A3 sinc—2cosc’

which, putting
2 ; il
cos8=——, sin8=-—, tan8=4%, 8=26°34,
V5 V5 3
become

&, = sec ¢, y1=71:_3—tanc,
B==Tesee(0=8), p=z( §+itan (-9,

ws=—%sec(c+8), y3=;/1§{—%+%tan(c+8)};

so that the guide-hyperbolas are
22— 3y=1, 3 angle of asymptotes = 30°

a2 =15y —16 V3 y, +13, . o tan—? V,i_; =14° 28’
5

x32 = 15:(/32 + 16 ’\/g 3/‘.' + 13) 2 » » »
C. VIL 56



442 ON THE DETERMINATION OF THE (476

It is easy to verify that

Hyperbola 2 passes through #,=—14%, y.= }+¥3, and touches there circle #*+y*=1,
3 » w3=_%) 3/3=—%\/§ » ”» ”»

»

and we thus have the figure in the Plate.

85. The figure shows the motion of the points 1, 2, 3, along their respective
hyperbolas, viz. ¢=0° to 90°, the point 1 moves from contact with the circle, along a
half branch to infinity: 2 moves from contact along a small portion of the half
branch; 3 moves from contact, along the half branch to infinity for ¢=tan™ 2= 63°26’,
and then reappearing at the opposite infinity, as ¢ increases to 90° describes a portion
of the opposite half branch.

86. For ¢=0, the orbit is the circle; as ¢ increases the orbit becomes elliptic;
then parabolic, c=51° and afterwards hyperbolic (concave); until for ¢=60° the three
points are on the horizontal line of the figure, and the orbit is this right line; it
is to be noticed that the arrangement of the points on these orbits is 1, 2, 3; so
that for the parabola, 7% is =, and for the hyperbolas and right line 7% does not
exist.

87. For ¢< 60° until ¢=63°26" the orbit is a convex hyperbola, the arrangement
of the points being still 1, 2, 3: say for ¢=63°26"—¢, the orbit is the convex
hyperbola Q. At ¢=63°26" there is an abrupt change of orbit; say for ¢ =63°26"+ e
the orbit is a concave hyperbola Q,; and for ¢ = 65°52" the orbit is a parabola;
the arrangement of the points on these orbits is 2, 1, 3; so that for the hyperbolas
T,, does mnot exist, and 7, is =o for the parabola. 'Observe also that for the
hyperbola ,, the point 3 is at infinity, or we -have 7;=o. As ¢ continues to
increase, the orbit becomes an ellipse, the eccentricity having a minimum value =628
(about), for ¢=69° (about). For ¢=89°20" the orbit is again a parabola, and then
until ¢=90° it is a hyperbola; the order of the points on the last-mentioned
parabola and hyperbolas being 1, 3, 2; so that for the parabola 7}, is =, and for
the hyperbolas 7%, does not exist. In the hyperbola for ¢=90°, say the hyperbola ',
the point 1 is at infinity, or we have 7),=w. The foregoing results, obtained (except
as to the numerical values) by consideration of the figure, will be confirmed by means
of the calculated values of e.

88. The equation of the orbit may be written

r x 1 =0
V3 e s 4 W3

7, COS C : 1. sin ¢ ;i -COBC
ry(sinec+2cosc), — 1, 2sinc+3cosc, sinc+ 2cosc

75 (sin ¢ — 2 cos ¢), 1, —2sin¢c+3cos¢, sinc—2cosc
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476] ORBIT OF A PLANET FROM THREE OBSERVATIONS. 443

or developing, this is

:% 6 (sin® ¢ — 3 cos?¢),

- ;/% { 4o, (sin®>c— 3 cos®c) cos ¢
— 7,(sin ¢+ 2 cos ¢) (sin? ¢ — 3 cos? ¢)

+ 7;(sin ¢ — 2 cos c¢) (sin® ¢ — 3 cos? ¢)}

+y {— 2rsinccosc
+ 7,(— sin®c¢ + sin ¢ cos ¢ + 6 cos? ¢)
+ 7;( sin®c + sin ¢ cos ¢ — 6 cos?c)}

'Vlg{ r,.— 6 cos®c
+ 37, (sin? ¢ + sin ¢ cos ¢ — 2 cos® ¢)

+ 87, (sin®c —sin ¢ cos ¢ — 2 cos?¢)} = 0;

(observe that the orbit will be a right line if sin®c-—3cos’c=0, that is if ¢ = 60°,
which is right, since 60° is the angular radius of the regulator circle).

89. Putting in the equation tanc=2X, and therefore cosc= ;/1“1_{2, the equation
’ +
becomes 3
r= e e (A =N+ 2) e+ (M —2 r.)x
6~/1+x2(‘( bt )7
1
+ - — (27\7‘ +A+2)A=3)r,—A+3)(A-2 )
2V3 (A2 —3) it )( ) 72— ( YA=2)rs)y
it
+ 3o (CMHOSDAFDREOFD (-2)r).
We have
fe V14N S
-T1=’\/1 +>\., xl:AX+27 G ke K_727 i

1 1N 1. o3

?/1=l\/§?\. ,‘v y‘z_,\/g x+2 > ]/s _)\/g —x_"_’_'2 ’

and thence, writing for shortness
R= WNI+#n,
Ri= L VTR+12F 12,
V3
A AN AR
Ry=-——=NTA* =12\ + 12,
V3
56—2
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we have
n =R,
7y (X +2)= R,,
rs(N — 2) =Ry,

where 7y, 7., 75 are positive, and the signs of R,, R,, R, must be determined accordingly ;
viz., R, is always positive, and (¢c=0° to ¢=90° as here supposed) R, is also positive;
but R; has the same sign as A—2; viz, ¢=0° to ¢=63°26, R, is negative; and
¢c=63°26" to ¢=90° R, is positive. It is to be observed that this position,
c=tan™2=63°26", of the pole is the intersection of the meridian b=180° by a
separator circle, and corresponds to an intersection at infinity on the ray 3.

90. Substituting the foregoing values of r,, r,, r;, the equation of the orbit becomes

1
Te g Emal Bt
1
+ ~(M2R,+R.,—R)-3(R.,+R)}y

2V3 (A2 —3)

1
t 3pu—g MEa+E)-2R, R+ Ry,

where A=tanc; and the equation of the orbit may thence be calculated for any given
value of c.

91. The analytical expression for the eccentricity is

e=VNA*+ B,

Fig. 8. ) \

where, as above,

1
A= s e 4‘R1— 2 3)»
e v ( R, + R;)
= — A. 2R1 oy 3 _: 2 ;
2«/30\2_3){ Wb G
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but this expression is too complicated to allow of an analytical discussion of the
series of values of e (such as was given for A, =+e, in planogram No. 1). The
numerical calculation gives the results mentioned ante No. 87, viz, ¢=0, e=0; ¢=51",
e=1; ¢=60°, e=w; ¢c=63°26"—¢, e=4912; ¢c=63°26"+¢, e=1853; ¢c=69° ¢="628
(min.); ¢=89°20, (viz. A=86'176), e=1; ¢=90°, e=1018; values which are ex-
hibited in the diagram in the preceding page.

92. It may be further remarked, in reference to the formula
r=Az+ By+C,

that for ¢=60°, that is A=+43, we have A finite, B and C each infinite, but equal
and of opposite signs; viz, the equation becomes r='22422 + w0 (y—1), that is y=1,
orbit a right line as above.

The abrupt change at ¢ =63°26", A=2, arises from the change of sign of R;;

viz.,, c=63°26"—¢, R,=— . 5 =—2'309, but ¢=63°26"+¢, $ =+ 2309; the two

V3 ~ V3
orbits are '
c=63° 26" —¢, r="234z+ 4906 y — 3671, e=4912, a= '159,

c=63"26" + ¢, r="578x— 1761y + 3257, e= 1853, a=1338

For ¢=90° the equation is
4
Mgl et T Vi
=770 z + 666 y + 1'527
and therefore e = \/%—§ =1018 as above; a =921 =41243,

It is to be added that for ¢ nearly =90° or A very large, we have

_R1=%7\., .R2=‘\/%X+2'\/§; R3=‘\/%7\.—2‘\/§,

v
and thence

B 9 il 1
A=——--" —= 170 - 430 -,
343 W21 A A
A A 200 1
- 1 .2 ; 1
C= '\/% a— 7::), X=1527_1555i'

It was, in fact, by means of these expressions that the value A =86176 (c=89°20")
corresponding to the last-mentioned parabolic orbit was obtained.
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93. For the calculation of the table we have

log z, =10 + log secec,
log 4, = 10°76144 + log tan c,
log , = 10-65052 + log sec (¢ — 26° 34°),
log (. — *92376) = 1006247 + log tan (¢ — 26° 34'),
log @, = 1065052 + log sec (¢ + 26° 34"),
log (s + *92876) = 10-06247 + log sec (¢ + 26° 34'),
the values of 7, 7, r;, are then calculated from

& =7,C08¢;, ‘Yyp=rysin ¢,

or say

%: tan ¢, r =&, sec ¢, &c.
1

and those of the chords vy, s, s, from

&y — Ty = 12 CO8 Uz, Y1 — Y2 = Y12 SIN 012;
or say

@
tan 6, = — ! = (z, — x,) sec O,,.
12 Yi— s Y12 (1 2) 12

We have then to find the equation of the orbit »=Az+By+ C; this might be done
by substituting in the determinant expression the numerical values of @, v, ry, @, ¥, 7,
3, Ys, 73, and so calculating the result, but I have preferred to employ the formula of
No. 90, using only the calculated values of 7y, 7, 73; viz. we have

r=R,,
r(A+2)=R,,
ry(A=2)=R,,

which gives the values of R,, R,, R;, And then we have e, @, a, from the equations

+ 0

A=c¢cosw, B=¢esnw, 6=

e and @ being each regarded as positive. The times in the elliptic, and parabolic
orbits are then calculated from Lambert’s equation, as explained in regard to Planogram
No. 1, but for the hyperbolic orbits, the other formule were made use of.
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ORBIT OF A PLANET FROM THREE OBSERVATIONS.

94. I annex a specimen; the characteristics of the logarithms are omitted.

c=20°

20° —6° 34’
02701 56107 00286 06113
76144 65052 06247
32251 65338 12360
z, = 106418 ¥ = 21014 z,=— 45017 92367
32251l 02701 ‘01329
02701 00830 Ja— + 1088
29950 03531 log= 95922
¢, = 12510/ r, = 10847 95922 95922
65338 04752
30584 00674

b (=63°41) =116° 19, r,=1-0157 ¢, (=50° 57') = 230° 57, r, = 10323,

The calculation of the equation of the orbit is then as follows:

A= 36397
log= 56107
12214
A= 13248

A —3 =— 286752
log= 45750

log V1 +22 = 02701
77815

log 6 V1 + A? = 80516 (a)
45750
30103

log 2 (A2 —3) = 75853 (c)
23856

log 2 V3 (A2 — 8) = 99709 (b)

www.rcin.org.pl

log R, = 03531
R, =1-0847
A+ 2=236397

37364
00674

log =

log r,=

38038

R, = + 2:4010

A—2=-163603

log = 21378
log 7y = 01382
22760

R, =—1-6889

i 4‘60 34/
16272 02376
65052 06247
81324 08623

z;=—'65049 ‘92367

‘12196

7y, = 80171

log ; = 90402
90402 90402
81324 10980
09078 01382
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4R, = 43388 2R, = 21694
— R, — 24010 + R, 24010
+ R, — 16889 — R, 16889
40899 6:2593*%
‘2489 log = 79653
log = 39602 A paLoy
(@) = 80516 35760
4 4 — 3R, — 72082
S i — 3R, 50667
7:3449
— 7-2032
01417
log = 15137
(®) = 99709
‘15428
B =—-014265
log B =15428 02729
log 4 = 59086 59086
56342 61815
= (= 20° 6") = 160° 52 e="04151
23630
e¢*='001723
1 —e*=-998277

a = 10481

Ry=
R,=— 16889
U020
log = 85254
N 56107
41361
+ 25919
— 62593*
— 600011
log = 77818
(c) = 75853
‘01965
C=+ 10464
log C=01965
log =99925

02040

24010

[476
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The calculation of the Times is similar to that for the first planogram, and
requires no further illustration.

The Table for Planogram No. 2 is as follows:

¢ VIL 5T
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Planogram No. 2,
. al?+ aI?{1+ alfz— a1?1/2+ i Ys i 1 2 s o s

Circle 0° 1000| -000| -500| +866|- 500 |- -866| 1-000| 0° 0’| 1000|120° 0’| 1-000 240° o'
5 1004 | -051| -481| -878 525 853 | 1005 | 2 52(1-001 | 118 42| 1-001 | 238 23
10 1015 -102| -467 | 889 557 ‘838 | 1020 | 5 44 |1:004 | 117 41| 1:006 | 236 34
15 1035 | -155| 456 | -900 598 821 | 1047 | 8 30(1-009 | 116 54 | 1-016 | 233 58
20 1064 | -210| -450| -910 650 802 | 1085 | 11 10 |1-016 | 116 19| 1032 | 230 57
; J 25 1103 | 269 | -447| 921 719 778 | 1:136 | 13 43 | 1-024 | 115 55| 1-060 | 227 15
Bllipses 1 | g, 1155 | -333| -448| -031| -812| -749| 1:202|16 6|1-033 | 115 42| 1104 222 42
35 1221 | 404 | -452 | -941 939 710 | 1286 | 18 19 | 1:044 115 40| 1178|217 6
40 1305 | -484 | -460| -951| 1125 657 | 1392 |20 21| 1:056 | 115 48 | 1-302 | 210 19
45 1414 | -577| -471| 962| 1-414 577 | 1527 |22 12 (1071|116 6| 1528 202 12
50 1556 | -688 | -487| -974| 1-925 440 | 1701 (23 51 | 1-088 | 116 35| 1975 | 192 53 |
Parab. 51° 0 1589 | 713 | 491 | -976| 2:077 400 | 1741 |24 9|1-093|116 43| 2115 190 54
52 1624 | 739 | -495| ‘978 | 2:256 353 | 1787 |24 28 |1-097 | 116 51| 2283 | 188 53
Hyporbs. | 54 1701|795 504 | 984 | 2729 229 | 187825 2|1-105|117 7| 2738 | 184 48;
55 1743 | 824 | 509 | -986| 3:049 - -145| 192825 18|1-109 [ 117 16| 3053 | 182 43|
56° 18’ 1802 | 866 | 515| -990| 3601 ‘000 | 1-999 |25 39 |1-116 | 117 30| 3:601 | 180 O
59 1-942 | 961 | -530| -997 | o786 |+ -566| 2166 |26 20|1-129 |118 59| 5813 | 174 25
Line 60 2:000 | 1-000 | +536|1-000| 7-468| 1-000 | 2236 |26 34|1-134 (118 11| 7-534 | 172 23
61 2:063 | 1042 | 5421003 |-10-53 |+ 1793 | 2-311 |26 48 |1-140 [ 118 24 | 1068 | 170 20 |
Oonvex 1 1630 26/ — PIBARRE h 165 31
63° 26'4¢| 2236| 1155| 6591010 [T 7 2517 |27 19 | 1155 | 118 57| oo | o
Hyperb&{ 64 2281 | 1°184| 5631012 |+45-22 [—12:60 + 2-570 |27 26 | 1:157 | 119 6 | 46:94 | 344 26
65 2:366 | 1:238| -571|1:015| 1636 5146 | 2-670 | 27 37 1165|119 21 [17-15 | 342 37
Parab. 65° 52' 2446 | 1-289 | -578|1-019| 1012 3552 | 2765 |27 47 |1-171 119 35| 1080 | 340 56
66 2459 | 1297 | 579 |1-019| 9987 | 3:500| 2-779 |27 48 (1172|119 37 [10-59 | 340 41
68 2:669 | 1429 | 596 |1:026 | 5-617 | 2:369| 3:028 |28 10| 1186|120 11| 6:090 | 337 8
70 2:924 | 1-586| +616|1:033 | 3-912| 1-927 | 3326 |28 29 | 1202 | 120 48 | 4-360 | 333 46
Ellipses 1 |72 3:237 | 1.777| +638|1-041| 3:008| 1:694 | 3-693 |28 47|1-221 [121 29| 3-455 | 330 38
75 3:864 | 2155 | 674 |1054| 2:230| 1488 | 4424|929 91251 [122 36| 2681 | 326 17
80 5759 | 3274 | <751 |1079| 1568 | 1-312| 6624 |29 37 [ 1315|124 49| 2:045| 320 5
85 1147 | 6599 | -854|1-112| 1-217| 1-216|13:25 |29 54 |1-402 127 32| 14720 315 1
Parab. 89° 20° [86+41 | 4979 | -979|1-148 | 1024 1-161|995 |29 56|1-508 | 130 24 | 1-548 | 311 24
Hyperbs., |90—¢ © w [1:000]1-155 |+ 1000 |- 1-155| o« |30 01527 130 54| 1-527| 310 54
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b=180° ¢=0° to 90°,

ORBIT OF A PLANET FROM THREE OBSERVATIONS.

451

www.rcin.org.pl

o AfQuah:u Bo; Orbl:.- 5 3 h . . - v 7, 7, 7,
*000 000 |+ 1:000| -000 |ind.® 1-000 | 1732 | 1-732| 1:732|1-000| 1-000|1-000| 0°
' 5
+:0101 - -0015| 1-0104| -010|171 19| 1-:010| 1-729 | 1-832| 1-678| -987| 1-106| 953 |10
15
039 ‘014 10046 | 041|160 52 | 1:048| 1724 1-991 1:668 | 956 | 1:316| 946 | 20
' 25
‘083 061 1126 103 | 143 48| 1-138 | 1-718 | 2:244| 1-710| -924| 1:777| 962 |30
35
‘135 *209 ¥317 | 248|122 54| 1404| 1-740| 2684 | 1-826| -878| 3:238| <966 | 40
‘161 395 1:527 426 | 112 12| 1-867 | 1-805| 3:055| 1925 45
*186 815 1-972 ‘836 | 102 50 | 6554 | 2:016 | 3:659 | 2063 | -878| 48:60 | 849 |50
19 ‘982 2140 | 1000 | 101 14| oo 2:100 | 3-831 2:097 | -879 @ ‘820 | 51° O’
‘196 1:150 2:319 | 1166 | 99 39| 6434 52
203 1-719 2898 | 1:720| 96 44 | 1-481 54
207 2-182 3:366 | 2192 | 95 25| -885| 2-781 | 4'890 | 2258 | -895 ~ ‘665 | 55
212 3:074 4:227 | 3081 | 93 56| -498 56° 18’
221 |-14-15 |+1542 | 1415 | 90 30| 077 59
224 1+ o (y-1) ® 90 0| 000 6932 9468 2:536| -000 ~ *000 | 60
Convex Orbits. e
234 |+ 4906 |— 3671 | 4-912| 87 17| -159 63° 26" — €
578 |- 1-761 |+ 3-257 | 1853 108 11| 1338 | o ® 2099 |4 1~ © *909 | 63° 26’+¢}
64
587 ‘979 2-494 | 1-134 120 21| 8666 | 18:014 | 15-380 | 2945 65
591 ‘805 2:257- 1000|126 18| o 11633 | 9:072| 3036 | 7-746 | 1-386 | 65° 52’
593 779 2:221 979 | 127 15 53-83 66
606 *338 1894 | -693|150 53| 3645 68
619 |- -120 1-708 | 630|169 0| 2:834| 5409 | 3649 | 3584|5735 | 6343|2685 |70
635 |+ 027 1599 | 636|182 25| 2674 72
654 ‘185 1-497 | 680|195 47| 2783 | 3859 | 3:981 | 4:644 | 262 668 | 464 |75
692 366 14439 | 783|207 52| 3716 | 3:327| 6-212| 6-870 (197 | 1021 |9-343 80
‘740 514 1455 892 214 47| 7-721} 3:115|12-895 | 13-480 85
764 645 1:505 | 1-000:| 219 51| oo 3:055 | 99-43 | 102-7 1-200 | 2254 o |89° 20
+ 770 [+ 666 |+ 1527 | 1:018|220 6|41-000| 3:055| oo 0 1-148 © ~ |90—¢
The mark ~ in any of the 7' columns shows that the Time does not exist. it
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Article Nos. 95 to 98. Planogram No. 3, the Orbit-pole at one of the points A.

95. When the orbit-pole is at one of the points A, the orbit-plane passes through
one of the rays, and as there is no longer on this ray any determinate point of
intersection, the orbit (as was seen) becomes indeterminate. Thus consider the point
A for which b=270° ¢=60°: we have

a, /8 PR =_1) O ) 0 )
a:B,»'Y TF 0) _% ) —%’\/g,
o, B, o= 0, —}v8, &1
Fig. 9
1
2
S
3
and consequently the formula gives
&y ikl = 0 : VR0 ;
N = —3}V3-¥3: 3:—7}‘\/5—\/?_,,

C R B —%‘\/3'—\/33 1 — 3 —?}’\/3_——'\/5,

and, moreover, z=—2a/, y=—y. From the formula the value of @ or x is given as
9, but the true value is obviously #,=1; the value of %, is actually indeterminate.
The formule give the values of (., 1.), (2, ), viz. the system is

&= 11, 7, =ind.
z=—1 o Rk whence 7, =r, =V,
2 ) ,_/'.2 \/g) 2 - R

.Z‘3=—1, ‘7/3=_ﬁ’
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so that the orbits in the planogram are the whole series of conies having a given
focus, S, and passing through two fixed points, 2, 3, having the common abscissa

#=-—1, and at equal distances (=115470) on opposite sides of the axis. The axis

2
V3
of & is obviously the common transverse axis for all the orbits; that is, the equation of
the orbit will be of the form »=Az+ B; and writing #=—1, we have ¥I=— 4+ B,
viz. the equation is r—Vi=A (z+1); the value of A will be determined if we
assume for the point 1 a determinate position on the line #=1, say its ordinate is =y,;
for then if 7, = ~1 + ,® we have r, — V] =24, and the equation is » — Vi =1} (1, = VI)(z+ 1).
In particular if y,—0, we have »,— 1, and the equation of the orbit is »—vT =} (1-V1) (z4+1):
this is the orbit, eccentricity } (V] —1), =264, belonging to the point A as a point
in planogram No. 1: for the value of , being in that planogram originally assumed
=0, is of course =0 when the orbit-pole comes to be the point A.

96. We may conversely take the equation of the orbit, or say the value of
A(=+e) in the equation »—~i=4 (z+1), to be given; and then writing z=a =1,
we have

rn=vI424, that is y2— (Vi + 243 —1;
for
ry =1 ortyy =0, A=}(]-—'\f’§)=—'264,

A diminishes from — 264 to 0; viz.,

’ - \ 2
and as », increases to 7, =VI, or 9, increases to + T
\

for rl=v'§, or i =+-,-, the orbit is a circle; as », increases from VI or y, from +

vf
A increases from 0 positively; for -1',=V{§+2, =3527, or ¥, = i\/

\; H
16 +2 V21

e
A becomes =1; that is, the orbit is a parabola; and for larger positive values of 7,
or positive or negative values of #,, the orbit is a hyperbola (concave); and ultimately
for =0 or =4 », the orbit is the right line #+1=0. Thus 4 extends from
—264 to 0, and thence from 0 positively to + .

97. In further illustration, suppose that the orbit-pole, instead of being at 4, is
a point in the immediate neighbourhood of A, say that the rectangular spherical
coordinates, measured from A in the direction of the meridian and perpendicular
thereto, are £ and #; the colatitude and longitude of the orbit-pole being thus

c=60°+§ and b=270"+ ’\/25 n; we have then, & 7 being indcfinitely small,
a, B S Mg 0
] 2 7 H 'Vfg 7?’ »
i Bt 1 V3, W3
a ] |B E] FY - N}-:;"?’ —%J‘- 2 E} _2 "‘%E,
2 17 VJE 'V;ﬁ .
Q” = IR L 2 - & E, ii - -Tz— n.

www.rcin.org.pl



454 ON THE DETERMINATION OF THE [476

and thence /3 ¥
: B N8
ai= (~h+SE)VB+ T rhE= 2%
7 2
: Yl TG V3 =29
V3 V3
B ot 1 2d (RS LR
that is, #/'=-—1, yl’=§, or what is the same thing, 2, =-1, y1=g; the values of

%y, Yy, and @, ¥y, differ from their former values only by terms in & 7, which may
be neglected; that is, we have as before z,=-1, gﬁ:;% and @y=—1, y;=— fg; and

we thus see that the foregoing determination of the orbit for an arbitrary value

of #,, writing therein g/l=—1§7 (or what would be the same thing y1=g) gives the
orbit for the neighbouring position ¢=060°+ £ and b=270°+~2—n of the orbit-pole.

V3
Writing for greater convenience £=pcos+, n=psinvyr, the indefinitely small quantity
p will denote the distance of the orbit-pole from A, and its azimuth measured from

the meridian will be =+ We then heve 7, =—tan, and 7 =V1+ y?= +secy, or,
if to fix the ideas, 4 be considered as < +90°, then » =secy: we have thus

(A=+e as before) A4 =} (—~I+secy); viz, observing that VI =1527, we obtain

¥ =0, A=—-3(WE-1)=—264
Y =sec? Vi =+49° 6, A= 0
Y=sec?(2VI —1)=+60°52, A= }(WI-1)=+264
Yy=sec?( Vi+2)=+73832, 4 |

¥ +(90° —¢), 4 =+ .

98. These results will have to be further considered in reference to the course
of the iseccentric curves through the point A. I remark here that, although it
appears that although for eccentricities less than ‘264, and in particular for the
eccentricity =0, there are real directions of passage from A to a neighbouring point,
yet there are not through A any real branches of the corresponding iseccentric curves;
viz, A is in regard to these curves, an isolated point with real tangents; that is a
point in the nature of an evanescent lemniscate. As regards the eccentricity =0, it
is obvious that this must be so; viz, there can be no real branch through 4. In
fact, the orbit can only be a circle when the intersection by the orbit-plane of the
hyperboloid which contains the three rays is also a circle; that is, the orbit is a circle
only when the orbit-plane coincides with the plane of the ecliptic.

www.rcin.org.pl



476] ORBIT OF A PLANET FROM THREE OBSERVATIONS. 455

Article Nos. 99 to 103. Planogram No. 4, the Orbit-pole in the Ecliptic.

99. When the orbit-pole describes the circle of the ecliptic, the orbit-plane passes
through the axis of z, or polar axis. We have ¢=90° and consequently
a,B,y =sinb, —cosb, 0,
a,: B,: ')” - O ) 0 ) vill 1)

af By ‘= cosh, | sl 0.

Reverting for a moment to the general case where the six coordinates of the ray are
(a, b, ¢, f, g, h), the formule for the intersection by the orbit-plane are

&:y:1= ,.(a, b, e, 8, 9)=—a
:—(a, b,cla,B,y): —asinb+bcosd
(f, g, hja”, B”, v") : f cosb+ gsind,

that is
l,+fcosb+gsinb=0,
e c
:Z,+l—)cosb—§sinb=0;
¢ c
and thence :
€ :ucosib - sinb=—af_bg .8y +a b1y
; 3 c? T A el
= b :gy+a:—fy+b;
consequently

ha* = (gy’ +a) + (fy’ — b)’,
or, what is the same thing,
ha?=(f*+g% y*+ 2 (ag — bf) y' + a2+ b?
or, in particular, if (as in the special symmetrical case) ag—bf=0, then
ha?=(f*+ g0y + a2 + b*
100. For the symmetrical system of rays we have as before
by 0 6, g Bus 0 VRICERT e T V3,
8y, by, o, fi, @, hy= 8, 8, 2, N3 1, —2v3

ag, bs, ¢, fi, g, hy=-3, */g, 2, ‘\/:3), 1, - 2‘\/§,

and thence s
R T e T V3cosb : sinb

Dokt lah aili== — P e —3sinb+V3cosh : sinb+ V3 cosb,
@ by v I==2 8sinb+V3cosb : sinb— V3 cosb,
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or, what is the same thing,

z’ = cosec b ) y1’=~/ 3 cot b,

o =1 ,_\/g(cosb—'\/ﬁsinb)
* " sinb++V3cosb’ Y2 sinb+V3cosb
G -2 , N3(cosb+V3sind)
3 -

" sinb—~3cosb’ sinb—+V3cosb ’
or as these may also be written

z/ =" cosec b ; O i= V3 cot b :

z, = — cosec (b + 60°), hn= V3 cot (b +60°),

;' = — cosec (b — 60°), s =3 cot (b—60°),
so that for each of these sets we have

S L8 LoplRane
a?—3y2=1

(The curve is in fact a section of the hyperboloid of revolution, &*+y*—32*=1,
which passes through the three rays.)

101. As regards the equation of the orbit I will first consider the particular
cases b=90° b=0° which should agree with the orbits for ¢=90° in the planograms
1 and 2 respectively.

For b=90° we have «' =z, y'=y and

and the orbit is at once found to be
r=3%(1-V13) (@ -1),
the eccentricity (regarded as positive) being thus } (V13 —1), ="7685 as before. For

b=0° there is a discontinuity, and I write successively b=+¢ and b=—e. For b=+e¢
we have 2’ =—y, 9=, and
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and the orbit is found to be

r= = i 6662+ T70y + 1'527 ;
3 3 ~/3 ¥ + @+ 770y + 1'527;

and similarly for b= — e the equation is
r=—2a+ il' y %=—‘666x+‘770y+1'527;

hence the eccentricity is :
e=~3, =1018, as before,

102. Considering now the general case where b has any value whatever, the
equation of the orbit is

r 2 x, y iy ! =0,
7, sinb . g V3 cos b , sinb
ry(sinb++~3cosb), —2, —3sinb++3cosb, sinb++V3cosbh
7'3(sinb-'\/§cos b), -2, 3sinb+V3cosb, sinb—+~3cosb

(& =zsinb—ycosb, ¥ =acosb+ysinb, as before). :

The coefficient of 7 is readily found to be —6+3 (sin?b + cos*b), =—643; hence
completing the development, dividing by 643, and transposing, the equation of the
orbit is

r= % [2rsinbd — 7, (sin b + V'3 cos b) — 75 (sin b — V3 cos b)] &’

<+ gbg [47, sin b cos b + 7, (— 2 sin b cos b + V3 (cos? b — sin® b)) _
+ 75 (— 2 sinbcos b — V3 (cos*b — sin?b))] y

+ & [4rsind + 7, (sin? b+ 3 cos? b + 2 /3 sin b cos b)
+ 75 ( sin?b + 3 cos?b— 2 V3 sin b cos b)]

where

Nsin® b + 4 cos® b

B e,
sin b

. __\/13sin2b+7cos2b—6\/§sinbcosb
! sin b + V8 cos b )
; _\/13sin“’b+7cos2?)+6\/§sinbcosb.
w sinb —~3cosb 5

in which expressions the signs of the radicals must be such that 7, 75, 7; shall be
positive. Hence writing tan b = #, (sec b=~1 + 22, which determines the sign of ¥1+%?),
also

R=Vp+4, R,=v18p—6~39+7, R,=v137+6437+7,
Qi VIL, 58
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and therefore 7 3
=Ry, (n+ '\/3) ry= R, (q]—N/S) ry=Ry

which last equations determine the signs of R,, R,, R, respectively, the equation of
the orbit is

r= GT—__*_;)“J (2R1 = R2 e R3) z
1
6{1,;;72)v3( R+ R,(1-n¥3)+ R,(1+9V3))y
i 6*(1—152) (4R1 n+ R, (n+ '\/?_’) + Ry (n— 4/5))

Thus if b=+¢, then also p=+¢,

‘\/r+»,)2=l, R1=2, R2=‘\/7’ R3=__I\/—7_,
and the equation is

r=3%42" + »v_Sy +312VTWN8, =3a +3»f/3y +z; =666 2"+ 770 y'+ 1'527,
as before; and similarly if b= 90°.
And moreover, if b=30° then
e I s/l _4 __2V13
”)—vg, Rl—l\/“a_" -R2—7§) -RS_ 3 ’

whence the equation of the orbit is
r=3(WI3-1)2 + 0y + (V13 + 2),
= 8684’ + 0y + 1868
103. The equation of the orbit should be tabulated from b=0 to b=30° the
equations for the remainder of the circumference will be then found by successive
repetition of this interval in direct and reverse order, with however a change of sign,
in the manner about to be explained,
hi=re} r=+666 2+ 770y + 1'527,
b= 300, r=+'868z"+ 0 y' + 1'868,
b=60"-¢ r=4'6662"—"T70y"+ 1527,
b=60°+¢ 1r=—"6662"+T70y + 1527,
b =90°, r=—'86824+ 0 y +1868,
b=120°—¢, r=-—"6662—T70y" +1'527,
30°+ B same as 30°— 3, reversing sign of the y’ coefficient.
90°+ B same as 90°— B, reversing sign of the gy’ coefficient, and whole interval
60° to 120° same as interval 0° to 60°, except that the signs of the &’ coefficient

are reversed, and the remaining two intervals, 120° to 240° and 240° to 360°, are
merely repetitions of the interval 0° to 120°
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As regards the interval 0° to 30° the only intermediate value that I have
calculated is b=15° viz.,, we then have

b=15°, r=-8112"+ 403y +1787.

Calculating for the foregoing values b=0°, b=15° b=30° the values of ¢ @, a,
theze are found to be

U= e=1018 o =220° 6’ a = 4124
b =58 e= 906 o = 206° 27’ a =10008
b=30°, e= ‘868 = =180° a= 7604

Article Nos. 104 to 113. Planogram No. 5. The Orbit-pole on a Separator.

104. If the orbit-plane rotate round a line parallel to one of the rays, the
orbit-pole will describe a separator circle, and conversely. I consider the general case
of a ray the six coordinates of which are (a, b, ¢, f, g, h), and for which the inter-
sections with the orbit-plane are given by

iy :1=(, b, cid, B, ) : —(a b, cYa, B v) : (£ g h{a", B, 4").

The axis of « is parallel to the ray

that is, we have

whence, putting for shortness

Q=Vfr+ g +h and I =Vf+g3,
we have

| s

bl il 'l . : s Fev:
a= cos Ncos G, B= q = c0s NsinG, v a sin NV,
and thence

11
tanG=8, sinG=25 cosG:i cosN=—Q—,

T I’ I

and we thus obtain the values of «, B, v'; a’, 87, ¢ in terms of f, g h and the
variable angle H, viz., these are

W Bk cos H hf sin H o —gsin H hf cos H

i i e

fcos H ghsin H fsin H _hgcos H

e R B v Tor L Ll T S ¢ G
, II*sin H ;. I1* cos H
3 Lavg 2 IO o § A e .-’

www.rcin.org.pl



460 ON THE DETERMINATION OF THE [476

where H is the angular distance of ‘the orbit-pole, along the separator, from the
point A. The foregoing values give

(a; b; CI“ ) B ) 'Y )=O:

(a, b, cja’, B, ry’)=—1_lI {(ag —bf) cos H + cQ sin H},

(f, g, h}{a” BU: 'Y”) oy 0,

so that the coordinates «’, ¥ of the intersection with the ray are given in the form
& :y:1=M:0:0,

that is

wl g y = o0 4 ks 9
i O s B y = O >
but the value of %' is determinate, viz, this is equal to the perpendicular distance of

the ray from the point S.
105. In particular when the rays are the special symmetrical system before

considered, then if (a, b, ¢, f, g, h) refer to the ray 1, we have f=0, g=1, h=V3,
=1, =2, and thence

a, B P M O ) % ) %N/g )
@, B, =—cos H 3~3sinH, —}sinH,
a’, B, ' =—sin H, }N3cosH, }cosH.

For the intersection with the ray 1 we have

2 = hited | 3/1,':1:
and for the intersections with the other two lines

—3sin H) =—3cos H +4sin H
: %V§
: — V3 sin H— 33 cos H,

@ sy 1=
(8 N3 2  )(—cos H, 13 sin H,
> S 8] g IeNERE SEY, Y 9N
(W3, 1, —2#3)(—sin H, —}V3cosH, }cosH)
and

& ys k=
(~ 8,«N3, BT Y (= conll, IN3sinH, —}sinH)= 3cos H+4sin H
: 33

r=(- 8, V8,2 (0 } 1V9)
(-~3, 1, —2¥3)(—sin H, —}V3cosH, Ycos H) : ~38sin H-3V3cosH,
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that is, we have

504 1 @eod I — s w’——l 6cos H+ sin H
5= /3 3cos H+2sin H’ * T N3 3cosH—2sinH’
P S e il bron cd il b
Y%= 3csH+2smH' $T 3cos H—2sinH"

106. Writing herein

cos«o=—§:, sinw:%, tanw =%, o=33"41

V13
the formul® are readily converted into
1 7 1 "
z = T {16 — 15 tan (H — o)}, x = s {=16 — 15 tan (H + o)},
R0 g2
yﬁ =V—ﬁ sec (H-‘—'(O), ?/3 = Vﬁsec (H-'.-w)’

where, in regard to this angle w, it is to be observed that it represents the angular
distance from the ecliptic along the separator to a point B, or what is the same
thing, the complement of the angular distance on the separator, of the points
A and B. We have, in fact, a right-angled spherical triangle ZAB, 2£Z = 60°,
£ A =90° ZA =60° whence sin 60° = tan 4B cot 60°, that is, tan AB = sin 60° tan 60° =3,
or AB=90° — w.

Hence, H=+90°, the orbit-pole is on the ecliptic, H =4 (90°—w), it is at a
point B (the intersection of the separator by one of the other two separators), and
H =0, it is at the point A on the separator.

The foregoing values of (a,, v,) satisfy the equation
25y% = 892* — 32z V/3 + 37,
and similarly the values of (z, ;) satisfy
25y% = 392* + 324 V3 + 37,
results which would be useful for the delineation of the planogram.

107. As regards the equation of the orbit we have =+ o, and consequently
@' =+ 7 =0r, if for convenience 6 be written to stand for +1. The equation of the
orbit then is

/ 7

0= » ¥ @ Sy 1 -
4 ol 0

b

7y (3 cos H + 2 sin H), ,\713( 6 cos H—sin H), 3, 3cosH+2sin H

1
V3

ry (3 cos H — 2 sin H), (—6cos H—sin H), 8, 3cosH-—2sin H
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that is
—(r0—2)12sin H =

y {l\% (36 cos* H + 4 sin® H) — 6r, (9 cos® H — 4 sin? H) + 0r; (9 sin® H — 4 cos® H)}

— 123 cos H + 360 (3 cos H + 2sin H)r, — 30 (3 cos H — 2 sin H) ry,
where

3 N2l cos* H—4cos H sin H + 28 sin* H
o 3cos H + 2sin H :

i _ V21 cos? H + 4cos H sin H + 28 sin® H
i 3cos H—2sin H I

Hence, writing tan H =2, and therefore sec H=4'1+ A% which determines the sign
of ¥1+ A%, and moreover
R,=V21—dn+ 280, R,=V21+4n+ 22N,

and thence also
(3 + 2)\.) ry= .Rg, (3 = 2)\-) ry= Ry

which last equations, since 7,, 7, must be positive, determine the signs of the radicals

R,, R,; the equation of the orbit is

—40V3+ R, — R,
4N 4

’ 3/, 0 : }
= i P R0 - AE) = (3 —aZN) B (S 2N R
r=0z 127\\/1 ;2{1\/3( ) ( ) 2 ( ) R,

where 6 it will be recollected denotes +1 or —1 at pleasure.

108. I remark that #=+1 and #=-—1 may be considered as belonging to
positions of the orbit-pole indefinitely near the separator on the opposite sides thereof
Fig. 10.

C/

Cll

A/l

respectively; the annexed figure represents a portion of the blank spherogram, and
the two sides of the half-separator A'C" will be traversed by the orbit-pole, if H
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extend from 0° to 90°—ew (=56°19, value at B’) and thence to 90°, 8=+ 1 belonging
to the side marked + in the figure, and §=—1 to the opposite side. But the same
result may be stated, more conveniently, in reference to the blank spherogram, as
follows :

H= 0° to H= 5619, 6=+1 belongs to the outside of AB viz. to positions
within the region of convex orbits,

6=—1, to inside of AR,
H=56°1Y to H= 90° , 6=+1 belongs to inside of B'C’,
H=90° to H=123° 41, 6=+ 1 belongs to inside of C’B,

the last-mentioned values being identical with those for H =90° to H=156°19, §=—1
viz. the formula for H =90°+ K, §=+1 is equivalent to that for H=90°—K, 6 =—1.

109. I consider some particular cases.

Orbit-pole at A: here H=0 and therefore A=0, R,=R,=#21; the orbit is
r=0x’+0l\/3 (y' — 1), viz. it is the right line ¥’ —1=0.

Orbit- pole in the neighbourhood of B. Suppose first H=90"—w—¢ A=cotw—e¢
cosec?w =§—12¢, 3— 2\, =1¢ is positive, and therefore R, is positive, and we have

R,=6, R3_4V§; whence the equation is

r=6s'+ y (b0+2®+1—~uw+1x

viz. @ =—1, this is
r=+a +Vy +1,
and 0=+1, it is

r=w’+«/l33y’+1—i_

N3’
and so secondly, if H=90°—w+e A=5+12¢, 3 -2\, =—13¢ is negative, or R; is
also negative, viz. B,=6, R,=—4 v §, and the equation is
r=0s ——2— —(0-1),
3T @D

viz. 8 =+ 1, this is
' r=a -VEy+1,
and 8 =—1, it is

r=—2x —'\/1—3 +14+—
y+1+g

At the point B there are thus four orbits: viz. H=—-90"-w—¢ #=+1, and

H=90°—w+¢ 0=-—1, these are orbits wherein the eccentricity is =\/‘~36~, = 2309,

agreeing with that found for the point B in planogram No. 1, or say for an orbit-

pole near B in the direction of the meridian; whereas for I =90"-w—¢ 6=—1

and H =90° —w+¢, 0=+1 the eccentricity is V1§ =1-10L
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Suppose again that the orbit-pole is on the ecliptic, or say H=90°—¢ A=+,
Ri== 2\/~7\ R3=—2'\/ A, and V1 +A2=2X, and the equation is

r=0(e+ 5+ Vh

and similarly for H=90°+¢, A=—wo, R,=2 '\/%)», R,=-2 '\@7\, N1+ A=, and the
equation still is

7"=0( 4 yl———>+'\/—;
gva) TVE
viz. @ retaining the same sign, there is no discontinuity in the passage through 90°.
The eccentricity, whether § =41 or =—1, is 2§, =1018, agreeing with Plano-

gram No. 2.

110. For the more complete discussion of the eccentricity, we have

1

¢=1+ han +x2)(¢3

(9 +3)—(3—20) R, +(3+2)»)R)

The eccentricity cannot be less than 1, which is evidently right, for the point 3 being
at infinity, the orbit cannot be an ellipse. We may have e=1 (or the orbit a parabola),
viz. this will be the case if

%(9+x2)—(3—2x)R2+(3+2x)R3=0.

Proceeding to rationalize this equation, we have first

(B—=2A R+ (3+ 20 R — 18 (9+ A\ =2(9 - 4\ R, R;,
viz. substituting for R, R; their values V21 — 4 + 282 and V21 44\ + 2 2‘; . this is
found to be

2(9- zw)\/ 2”3_)& —16x2=—54+336x2+zg5-w

or, what is the same thing,

(9 — 472) V3969 + 3384 A2+ 784 A = — 81 + 504 A2 + 104 \¢
whence, squaring and reducing, we have
432 (47 — 248 X6 — 819 M4 + 162 A2+ 729)=0;
or, what is the same thing,
432 (A2 + 1) (408 — 252 At — 567 \* + 729) =0,
or, finally, the condition for a parabola is

4NS — 252 A4 =567 A2 4729 =0.
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111. I stop to remark that this equation may be obtained differently, as follows.
Since the point 1 is at infinity on the axis of =z, this line will be the axis of the
parabola; or the equation of the parabola will be

— 4 +4azx + 4a’>=0,
and we have therefore

— 2+ dax, + 4a* =0,

— ys* + dax; + 4a* = 0,
that is

1:40 :4=2,—2; : ygg;ysz C = YR B+ Y X,
and therefore
(9 — Y)Y =—4 (2 — @) (ys"ws — y5* xy)

as the condition for a parabola.

But the values of @, ¥.; @3, ¥;, ante No. 104, introducing A in the place of H, are

il S o b 5B
TSV 4 LS OB o
_ 3ViEn _ 3yigw
M TR SRR T A
and thence
o 4 9+N
0 S SR
216X (1 +22)
e pgie L Sk ek TN RN
Yo Ys (9_4)\'2)2 %

_ 36 1+
Chptal e R E I

14

© — I the result is

and substituting these values and omitting a factor

UPIA+N) o, :
e o = L0+ KT,

viz, this is
(AN —9) (M —81)— 243N (A2 +1) =0,
that is
4NS — 25204 — 567N+ 729 = 0,
as before.

112. The equation considered as a cubic equation in A* has its three roots real,
but only two of them are positive; viz there is a root not very different from 1, and
which is easily approximated to by writing A*=1— @, this gives

423 + 24022 — 1068z + S6 =0,
C. VIL 59
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or nearly #=86-="08; a second approximation gives #=-0802; or we have A\*="9198,
A="9592, whence H =43°49". Substituting in the equation

%(9+4V)—(3—27\)R2+(3+27\)R3=0,
this will be satisfied by €= —1, viz. the parabola belongs (as it obviously should do)
to a point of AB’ within the triangle BB'B".

To obtain the other positive root we may write the equation in the form

oo gy LTS _15225

the approximate value A*=63, gives more nearly A*= 65 and then

14175 _ 12524
65 4225 °

whence A\*=8073 or H=82°56". Substituting in the equation

A2=63 + =65177,

;‘/%(9+4x2)-(3-2x)R2+(3+2x)R3=o,

we have 6=+1, viz. this parabola belongs to a point of B'C" within the triangle
BB'B".

The two values of e for d=+1 and 6=-—1, are each infinite for A =0, and
they become equal for A= (viz. when the orbit-pole is on the ecliptic), but
not in any other case; in fact they can only do so for 94A*=0, or else for
(3—27\) R, = (3 + 2\) R, that is, A (288 + 128 %) =0, viz, A (9 +4A) =0.

113. In further explanation I give a diagram of the eccentricity.

Fig. 11.

The base AB'C’B is here the broken line AB'C'B’ of figure 10: the ordinates
along the base AC’(=90°) of the two continuous curves cxhibit the values of e, as
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given by €=+1 and @=—1 respectively; the dotted curve on the base C'B(=C'B)
is merely the upper curve on the base C’'B’ transferred to the base C’B; and the
curve composed of the lower curve on the base AC’ and of the dotted curve gives
by its ordinates the value of the eccentricity as the orbit-pole moves along AB'B
within the triangle B'BB”: the upper curve on the base AB’' gives by its ordinates
the value of the eccentricity as the orbit-pole moves along AB on the other side
thereof, that is, within the convex region.

The base of the diagram is graduated not for the value of H, but for that of
the angular distance (or distance in longitude) of the orbit-pole from the point A
(or A’); viz. this is the angle opposite H in a right-angled spherical triangle, the sides
and hypothenuse of which are 60°, H, c¢; writing B3 for the angle in question we have

2 21
cosc=4cos H; tan =—_tanH(=—_),
3 i V3
and any position of the orbit-pole on the separator may be conveniently laid down by
means of this angle B. The values of B corresponding to the before-mentioned values
A ='9592 and A =8073 are B=47° 54’ and 8= 83° 53" respectively.

Article Nos. 114 and 115. The Spherogram and Isoparametric Lines—General
Considerations.

114. We first construct a blank spherogram, as already explained (and see also
Plates IV. and V.), viz, we draw on the stereographic projection a hemisphere—say
the mnorthern hemisphere: the meridians being radii and the parallels of colatitude
circles with the pole as centre; the parallel of 60° is the regulator circle, and the
separators are great circles touching this at the points A, 4, 4, in longitudes 30°, 150°,
270° respectively ; the separators intersect in the points B, B, B, in the northern hemi-
sphere, and they are produced to meet again in the points B, B, B, of the southern
hemisphere ; but instead of taking the whole northern hemisphere, we omit portions
thereof, and take in the opposite portions of the southern hemisphere; the spherogram
being thus bounded by portions of the separator circles, and consisting of the inner
spherical triangle B, B, B, and three surrounding triangles B, B, B. The inner triangle
contains the regulator-circle, touching its sides at the points A4, 4, A respectively, and
dividing it into' an inner circular region and three surrounding regions 4, B, 4 ; these
last are the loci in quibus of the orbit-poles which correspond to convex orbits; and
to mark them off from the other regions, it is proper to shade them in the sphero-
gram. Excluding them from consideration, we have the inner circular region and the
outer triangular regions separated off from each other by the shaded regions, except
at the points A4, where these are thinned away to nothing. The points 4 are positions
of the orbit-pole for which the orbit is indeterminate ; and consequently any parameter
belonging to the orbit is also indeterminate. Hence the isoparametric line for any
given value of the parameter will always pass through the points 4 ; that is, all the
isoparametric lines will pass through these points, which are thus points of connexion

B
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between the inner circular region and the three outer regions, but it must be recol-
lected that for certain given values of the parameter, the points 4 may be isolated
points on the isoparametric line.

115. It is sometimes necessary (more particularly as regards the Time-spherogram
and isochronic lines) to distinguish from each other the several points 4 and B; and
for this purpose I consider the several points, as situated in the spherogram, to be
accented in the following manner:

\BEY B B
A5 4
Bt A e
BY:

so that the inner triangle is B’B”B” and the outer triangles are BB'B”, B'BYB” and
B”BYB” respectively; this distinction has been already partially made in Fig. 10.

Article Nos. 116 to 122. The e-spherogram and Iseccentric Lines. See Plate IV.

116. Constructing a blank spherogram as above, we may from the tables for
planograms Nos. 1 and 2 lay down numerically the values of the eccentricity at the
several points of each meridian for the longitudes 0°, 30°..330° viz

LONGITUDES Planogram No. 2 shows that e increases from 0 at
0°, 60°, 120°, 180°, 240°, 300°.  the centre to o at 60°, then, 60° to 63° 26" (shaded
region), it diminishes from o to 4:912; on passing 63° 26’
it changes abruptly to 1'853; thence diminishes to a
minimum =628 at-59°, and again increases to 1'018 at
90°.
LONGITUDES Planogram No. 1, part 1, shows that e increases
10°, 210°, 330°. from O at the centre to oo at 60° then, 60° to 73° 54/
(shaded region), it diminishes from o to 2:309, this last
value being at a point B, the termination of the sphero-

gram.

LONGITUDES Planogram No. 1, part 2, and for values over 90°

30°, 150°,210°% part 1, shows .that e increases from 0 at the centre to
264 at 60° (point A), ‘869 at 90°, and 2309 at 100° 6/,
point B,

It will be recollected that, although e has the same value, 2:309 at the two
opposite points B, yet there is an abrupt change of orbit, indicated by the change of
sign of 4 (=+e).

117. Planogram No. 3 shows the directions at the points A of the several
iseccentric lines. Planogram No. 4, if the calculations were completed, would give the
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value of the eccentricity at the several points of the ecliptic, but besides the already-
mentioned values 1018 at 0°, 60°, &c., and -868 at 30°, 90°, &c., the only value
calculated is ‘906 at 15°, 45°, &c. It thus appears that the eccentricity =1018 for
longitude 0° diminishes through ‘906 at 15° to ‘868 at 30°, and then again increases
through 906 at 45° to 1'018 at 60°, and so on through successive intervals of 60°.

118. Planogram No. 5, if the calculations were completed, would give the value
of ¢ for the arc AB within the shaded region (but no values have been found except
those given by Planograms 1 and 2, viz. e=o at A, =4912 at longitude 30° from 4,
and =2309 at B); and it would also give the value of e for the whole bounding
arc ABB within the exterior triangular region. We have e=ow at 4, =1853 at
longitude 30° from A4, =1 at distance H =43° 49’ from A, =1'101 at B, and then
proceeding along the arc BB, =1 at distance H =82° 56" from 4, =1018 on the
ecliptic, and, finally, =2:309 at B. The two values ¢=1 are very important, as will
presently appear, with regard to the parabolic curve.

119. It is now easy to trace the form of the iseccentric lines.

e=0, the curve is a point at the centre, and for any value less than 264 it is
a trigonoid form surrounding the centre, the maxima radii being directed towards the
points A. The points A belong as isolated points to all these curves.

e=264, the curve is tricuspidal, having a cusp at each of the points 4. The
numerical values seem to show a singularly blunt form of cusp (the points A are, in
fact, not ordinary cusps, but singular points of a higher order); but the data do not
enable me to draw with certainty the precise forms of the arcs between the three
cusps: the wavy form was drawn purposely, but there is no sufficient evidence for its
correctness.

120. It is convenient to pass at once to the case e=1, or say the parabolic
curve, locus of the orbit-pole when the orbit is a parabola. This is a three-looped
curve cutting itself (having a node) at each of the points A; and it appears from
planogram No. 5 that each loop touches at four points (two points, H =43°49, and
two points, H =82° 56"), the sides of the bounding triangle BBB. The loop thus divides
the triangle BBB into six regions, viz. one within the loop, two subjacent, two lateral,
and one superjacent.

For any value between e= 264 and e=1, the curve is a three-looped curve inter-
secting itself at the points A, and such that the loops lie wholly within those of the
parabolic curve, and the remaining portions between the parabolic and cuspidal curves.

121. For any value of e>1, we must imagine a three-looped curve intersecting
itself at the points A, the loops respectively containing those of the parabolic curve,
and the remaining portions within the regulator-circle lying between the regulator-circle
and the parabolic curve; and we must then obliterate so much of each loop as lies
in the shaded regions, or outside the spherogram; viz. instead of a continuous loop
there will be thus a broken loop with detached portions thereof in the subjacent
regions, the lateral regions, and the superjacent region respectively. More precisely
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this is the form for any value of e¢ from e=1 to ¢=1101, but for this last value the
unobliterated portion for each lateral region evanesces; for any value of e between
e=1101 and e= 2309, the unobliterated portions lie wholly within the subjacent regions
and the superjacent region; for e=2309 the portion within the superjacent region
evanesces ; and for any greater value of e the unobliterated portion lies wholly within
the subjacent regions, the loop being thus a mere fragment.

122. The iseccentric curves within the shaded regions form a distinct system: such
curves belong to the values e=2309 to e=w, and any one of them is a fragment
of a three-looped curve intersecting itself at the points A, obtained by obliterating so
much of the complete curve as lies outside the shaded regions. But it is perhaps
better to disregard these curves altogether, thus in effect excluding the shaded regions
from the spherogram.

Article Nos. 123 to 143. The Tuime-spherogram and Isochronic Lines. See Plate V.

123. We construct a blank spherogram, and lay down wupon it the parabolic
curve ; we may then lay down (as will be explained) the numerical values, say of the
times 7y;, but in order to gain some idea of the form of the 7);-lines I will first
consider the question in a more general manner.

124. When the orbit is a line, parabola, or hyperbola, we may distinguish it by
the letters L, P, H accordingly; and by the numbers 1, 2, 3, written in the proper
order, show the arrangement of the three points on the orbit; observe that if 1 be
the middle point on the orbit, we may write indifferently 213 or 312, and so in other
cases, the fixation of the middle number is alone material. When the orbit is a line
the distances of the points are always finite; and if the orbit be, for example, L 123,
then 7}, and 7 are each =0, but 7); is non-existent. For the parabola and hyperbola
the distances are in general finite; but it is necessary to distinguish for the parabola,
eg. the case P 123 where an extreme point, and for the hyperbola, e.g. the cases
H 123 and H 123 where one or each of the extreme points, is at infinity. We have
in these cases respectively

720 00 T.. finite, T, finite, (=—1C0
P1i23, =" T., finite, Ty=o
and it may be added, as regards P 123, that, by a continuous change of the parabolic

orbit the point 1 may change over to infinity on the other half-branch of the parabola,
or the arrangement become P 231. And, moreover

128, T, finite, T., finite, T, non-existent.
123, Ta=w, T,, finite, T, non-existent.
H 123, T,=w, Ty=w>, T, non-existent.

Thus the proper symbol L 123, P 123, &ec. as the case may be, will always at once
indicate as to each of the times 7, 7%, 7., whether this is =0, finite, infinite, or

non-existent.
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125. We may without difficulty attach to the several portions of the regulator,
the separators and the parabolic curve, to each portion its proper symbol L, P, H
and 123, 123, &c. as the case may be.

First, as to the regulator, it is obvious that this is separated by the points 4
into the three portions L 213, L 321, L 132, respectively. And inside the regulator,
adjacent to these, we have portions of the parabolic curve P 213, P 321, P 132,
respectively.

Again, for one of the separators, say BWB'AB”“BY (see here and in all that follows
the notation-diagram, No. 115); since the point 2 is here at infinity this must be at
every portion thereof either H 132 or else H312. The point BV is H 132 and the
point B’ is H312; consequently, as the orbit-pole passes along the separator from
B to B, the symbol is at first H 132 and at last H 312; the transition takes place
at the point of contact of the parabolic curve which is indifferently P 132 or P 213.
(In further explanation of the transition, consider the orbit-pole as passing from
BY to B, not on the separator, but indefinitely near it; it can only do so by
twice crossing the parabolic curve near the point of contact; the orbit is first H 132,
or say H 132, then P 132, then an ellipse, which when the orbit-pole again arrives
at the parabolic curve changes into P 312; and it finally becomes H 312 or H 312.)

126. Again, since, on the two separators through B, in the portions adjacent to
B, the symbols are H 132 and H 182, it is clear that in the adjacent portion of
the parabolic curve (terminated each way by a point of contact with these separators
respectively) the symbol must be P132; at the point of contact with the first-
mentioned separator BYB'AB’BY, this becomes P 132, =P 213; and beyond the point
of contact it becomes P 213, continuing so until it arrives at the next point of contact
with the separator B’A’B”: there is always in the symbol for the parabolic curve this
change of form as we pass through a point of contact with a separator; and there
is the same change, when ¢ravelling along the loop (that is without going inside the
regulator) we pass through a point 4. The foregoing considerations fully explain how
the proper symbol is to be attached to each portion of the regulator, the separators,
and the parabolic curve: to avoid confusion, I have abstained from attaching them in
the Plate.

127. Imagining the symbols attached as above, it at once appears that, for the
two portions A’A and AA” of the regulator curve, we have T}, =0; while, for the
arc A”A’ of the parabolic curve we have 7T,= . Moreover, T); can only be infinite
on one of the separators through B” and on the parabolic curve; and the symbols
show that the curve 7); is made up, in a peculiar discontinuous manner, of portions
of these two separators and of the parabolic curve, as shown by the strongly marked
line of the figure; we have thus the boundary of certain lightly shaded regions within
which (as well as within the shaded regions) 7); is non-existent; excluding these, the
remaining regions (instead of a trilateral symmetry) have a symmetry about the axis
BB"; there are still four regions which may be distinguished as the inner region, the
axial outer region, and the lateral outer regions; or, more shortly, as the inner, axial,
and lateral regions.
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128. The times 7%, T\, 15 are calculated, Planogram 1, part 1, for the meridian
long. 90°, and ditto part 2 for the meridian long. 270°; and in Planogram 2 for the
meridian long. 180°. As regards these last values, it is easy to see that, in order to
pass to the meridian long. 0°, the numbers 2, 3 must be interchanged; that is,
long. 0°, the T\, Ty, Ty are respectively equal to the values, long. 180°, T%;, 7)., Ts.
Moreover, the numbers 1, 2, 3 may be changed into 2, 3, 1, or into 3, 1, 2, provided
the longitude is increased by 120° and 240° in the two cases respectively; that is,

Ty long. a= T, long. a
=T, long. (a + 120°)
= T; long. (a + 240°).
129. By means of the foregoing two relations, 7%; for the several longitudes
0°, 80° 60°% ... 330°, is given as equal to the T, T4, or 7}, for long. 90°, 270° or
180°% that is, to the 7, Ty, or Ty, of Planogram No. 1, part 1 or 2, or of Planogram

No. 2. For example, Ty long. 240° = T), long. 0° =T, long. 180°, that is, it is equal to
the Ty of Planogram No. 2. We thus find

Long. Ty is=
0ZAG  JUOLs I SREPlan s No. -2
ML e 7y Rt oo i Ve O WER G dEBok il IR
607 sy e T »
PO USRI e 15T R BRI ] RS R T, of Plan. No. 1, pt. 1
1200 s nsrr ot 5
1502 5w ke shpacrisd A e s Miihint £ Y
180l s Lo
b4 K R GOk P VSO A el e, e e e e R vl &
2400 e el »
D707 L v At L S e i
300°  Ledy wpdlly 1
Sa0A el e W A T e A T L RRSRC »

and observing that for Planogram No. 1, part 1 or 2, we have T, =Ty, it hence
appears as above, that the meridian 30°—210° is an axis of symmetry of the
spherogram. In what precedes it has been assumed that the colatitudes only extend
from 0° to 90° but in the spherogram they extend for the meridians 80°, 150°, 270°,
to the colatitude 106°G’, the values for the colatitudes above 90° are those for the
omitted portions 90° to 73° 54’ of the opposite meridian.

N.B. A meridian extends from the pole in one direction only, unless the contrary
is expressed or implied, as in speaking of a meridian 0°—180°.
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130. I attend, in the first instance, to the axis of symmetry or meridian 30°—210°,
Proceeding along the meridian long. 30° or towards the point A, the value of T
decreases from 1 at the centre to a minimum =-950 at colatitude 11° (call this the
point X), and it then increases to 19983 at A, and thence to 5862 at 90° and
at the parabolic boundary of the axial region. In the opposite direction it increases
from 1 at the centre to o at the parabolic boundary of the inner region. The
minimum value ‘950 on the axis of symmetry indicates a node on the isochronic
curve; that is, the point X is a node on the isochronic 7%, =950. This will consist
of two branches, proceeding from A’, A”, respectively, cutting the axis and each other
at X, then again cutting at A, and thence passing on into the axial region, and
respectively terminating on the separator boundary B’AB” thereof.

131. This curve, which I call the nodal isochronic, divides the inner region into
a loop, antiloop, and two side regions. On each of the meridians 0°, 60°, the value
of 7T); diminishes from 1 at the centre to a minimum which is less, and then
increases to a maximum which is greater, than '950; the value then diminishes to 0
on the regulator: on emergence of the meridian from the shaded into the axial
region, the value is =909, and it thence increases to o at the parabolic boundary
of the axial region; these data further determine the form of the nodal isochronic,
viz., each of the two half meridians cuts the loop twice, and again cuts the curve in
the axial region.

The nodal isochronic, at each of the points 4’, A”, continues its course into the
lateral region, returning to the same point A or A’, so as to form in each of the
lateral regions a loop. Considering the loop as formed of two branches, each proceeding
from A’ or A”, the one which is the continuation of the course within the inner
region I call the lower branch; the other, the upper branch; and I say that the
upper branch tfouches the separator at A’ or A”. The two branches and the entire
loop lie on the left-hand side (or side away from A) of the meridians through
A’ or A”. As to the contact of the upper branch of this and other isochronics at
A’ or A” with the separator, see post No. 142.

132. It is convenient at this point to consider the form of the isochronic curves
within the axial region. The parabolic boundary thereof is an isochronic 7%; = o, and
it thence appears that for any large value of 7; the isochronic curve (portion of the
curve) is a curve not meeting the parabolic boundary, and terminated each way in
the separator boundary B'AB”. As the value of 7, diminishes, the curve (which is
of course always symmetrical in regard to the axis) bends inwards towards the point
A and for 7T,,=1983 (value on the axis at A) the curve acquires a cusp at A.
I call this the cuspidal isochronic; I remark that it intersects in the axial region
each of the meridians 0° and 60°.

As T,; further diminishes to any value between 1983 and -950, the -curve,
commencing in the separator boundary, passes through A into the inner region, and,
forming a loop within the loop of the nodal isochronic, emerges through A into the
axial region, terminating again in the separator boundary.

C. VIL 60
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133. On the meridians 90°, 330°, through the points B’, B”, respectively, the value
of T, diminishes from 1 at the centre to O at the regulator, where these meridians
are considered as terminating.

On the meridians 120° 300° (meridian at right angles to the axis of symmetry),
the value of 7, diminishes from 1 at the centre to a minimum less than ‘878, and
then increasing to a maximum of over ‘895 diminishes to 0 at the regulator. On
emergence of the meridian from the shaded and half-shaded region on the parabolic
boundary of the lateral region the value is =o, and it thence diminishes to 1148
on the separator boundary BYWB' or BYB".

On the meridians 150°, 270°, which pass through 4’, A4”, respectively, the value
of T increases from 1 at the centre to 1377 at the regulator, and thence through
2:255 at 90° to w at B or BV,

And finally, on the meridians 180° 240°, the value of 7%; increases from 1 at
the centre to oo at the parabolic inner boundary, and then on emergence from the
half-shaded and shaded region at the separator boundary B”A’ or B”A”, the value
is =, and it thence diminishes to a minimum under 6343, and again increases to
o at the separator boundary B”B'™ or B”BF.

//

134. By what precedes, it appears that on the separator boundary BWB' or BY
of either of the lateral regions, the values of 7); is at each extremity =0, and at an
intermediate point =1-148; there is consequently a minimum value less than 1:148,
and therefore two points at each of which the value is =1983.

Now resuming the consideration of the cuspidal isochronic (7;=1983) as regards
the remaining portions thereof, viz., those in the lateral and inner regions; and con-
sidering first the lateral region B”BYE, there will be from each of the points just
referred to on the boundary BB’ a branch; one (which I call the lower branch) from
the point nearer B’, passes, on the right-hand side of the meridian through 4’, to 4’;
the other (which I call the upper branch) proceeding from the point nearer BY, cuts
the same meridian, and then on the left-hand side thereof arrives at A’, touching
there the separator: at A” in the other lateral region there are in like manner an
upper and a lower branch (situate symmetrically, in regard to the axis, with the upper
and lower branches at A’); and continuous with the two lower branches there is a
branch from A’ to A”, through the antiloop of the inner region.

185. Imagine the given value of T; as continuously increasing from the value
‘950, which belongs to the nodal isochronic; and attend in the first instance to the
form within the lateral regions. There will be a loop of continually increasing
magnitude (viz., the loop for a larger value of T will always wholly include that for
a smaller value); each loop formed by an upper branch, which at A’ touches the
separator, and a lower branch the direction of which from A’ is variable. So long
as Ty is less than 1377 (value at A’ along the meridian) the lower branch, and
consequently the whole loop, will lie on the left hand of the meridian; but when 7%
is =1377, the lower branch touches the meridian, and for any greater value of T,
lies on the right of the meridian; and in either of the last-mentioned cases the loop
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is cut by the meridian, and thus lies partly on the left, and partly on the right
thereof.

136. Now by what precedes there is on the separator boundary B'BY of the
lateral region a point where 7}; has a minimum value less than 1'148, and con-
sequently, for any given value, say for a value between this minimum and 1377, there
are on BB two points where 7); has the given value. These points cannot lie on
the loop of the curve belonging to the given value (for this loop is wholly on the
left hand of the meridian); hence the complete curve for the given value of 7%, will
include (within the lateral region) besides the loop, a branch uniting the two points
in question; say a link branch.

137. It follows that there is between 7},=1377 and 1983, a value (to fix the
ideas, say =180? it being understood that I do not attempt to determine this value)
for which the loop and link branch will unite themselves together, the point of
junction becoming as usual a node; viz, there will be a curve 7;=180? having in
the two lateral regions respectively the nodes Y, Y’; or say the curve has in each
lateral region a self-intersecting loop. For any greater value of 7, (as for example
the value 1'983 belonging to the cuspidal curve) there are two branches inclosing the
self-intersecting loop; for a less value, as has been seen, instead of the self-intersecting
loop, there is a loop and link branch; at least this is the case until for the minimum
value <1148 of 7,; on the separator boundary BYB’ the link branch disappears. For
smaller values down to 7% =950, which belongs to the nodal isochronic, there is no
link branch, but only the loop; and as 7} diminishes below this value, there is still
a continually diminishing loop, lying wholly on the left hand of the meridian, and
with its upper branch always touching the separator; and ultimately for 7;,=0 the
loop vanishes.

138. We have attended wholly to the lateral regions; but the consideration of
the axial and inner regions is very easy: for any value between the values 1'983 and
‘950, there are in the axial region (between the nodal and cuspidal curves) two
branches each proceeding from the separator to A, where they unite, and, crossing
each other, pass into the inner region, forming a loop within the loop of the nodal
isochronic; and, moreover, there is in the inner region a branch, the continuation of
the lower branches of the lateral loops, uniting the points A’, 4”, and lying between
the nodal and cuspidal isochronic. And for 7); less than '950 there are in the axial
region, between the mnodal curve and the separator, two branches, each proceeding from
the separator to A, where, crossing each other, they enter the inner region passing
outside the nodal curve (or in the side regions of the inner region) to the points
A’, A”, where they respectively join on to the lower branches of the lateral loops.
Ultimately, for Ty, =0, the curve coincides with the finite portions AA’, 4A4” of the
regulator circle.

139. We have finally to consider the case 7', greater than 1'983: there is in
the axial region a branch lying outside the cuspidal curve, and extending from
separator to separator; in each lateral region two branches (lying outside those of
the cuspidal curve) each proceeding from A’ (or A”) to the separator boundary B'B™
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or B’BY, an upper branch touching the separator at A4’ or 4A”, and a lower branch;
and in the inner region, a branch (continuation of the lower branches) lying between
the cuspidal curve and the parabolic boundary of the antiloop, and uniting the points
A, A”. In the ultimate case T,,= o, the curve coincides with the before-mentioned
discontinuous curve composed of portions of the parabolic curve and of two separators.

140. To obtain a comprehensive statement of the foregoing results, we may (as
in the case of the iseccentric lines) imagine the curves completed and rendered
continuous by the insertion of portions lying outside the spherogram, or within the
half-shaded and shaded regions; which inserted portions are to be ultimately obliterated.
The upper and under branches terminating in the separator boundary of a lateral
region are thus completed into a loop; the link branch into a closed curve or oval;
the vanishing of the link branch happens when the oval, on the point of passing
outside the separator boundary of the lateral region, just touches this boundary; as
T,; diminishes to the value for which this happens, and continues still further to
diminish, I think it may be assumed that there is some value (to fix the ideas, say
T,=110? but I do not attempt to determine it) for which the oval becomes a
conjugate point, viz, for this value 7,;,=110? the curve will have two conjugate
points (nodes) Z’, Z”, outside the two lateral regions respectively.

141. We may now state the forms of the curve. The points A4, 4’, A”, are
always mnodes, viz, A’, A”, nodes with real branches, but A is either a conjugate point,
a cusp, or a node with real branches.

Ty >1983: two-looped curve, containing within it A as a conjugate point:
as 7T, diminishes, the curve bends inwards towards A4, and
T,,=1983: cuspidal isochronic; A, a cusp.

T3 < 1:983, the curve cuts itself at A, having thus acquired an internal loop: as
T,; diminishes, changes occur first as regards the lateral loops, and afterwards as regards
the internal loop; viz., each of the lateral loops is gradually pinched together until

T;=1807? there are two new nodes Y’, Y, each lateral loop being a figure of 8.

As T, diminishes the figure-of-8-loop breaks up into a loop and oval, which oval
continually diminishes until for

T;=110? the ovals have each become conjugate points, or there is a curve with
two conjugate points Z’, Z”. As T, diminishes the conjugate points have disappeared,
and we have again a curve with an internal and two lateral loops; but in the
meantime the internal loop and the branch A4’A” are continually approaching each
other; and, 7}, =950, nodal isochronic, there is a node X on the axis. The curve
consists of two figures of 8, each crossing itself at one of the points A4’, 4”, and the
two crossing each other at the points 4, X.

As T, diminishes, the curve breaks off from X on each side of the axis so as
not any longer to cross the axis (except at A), that is
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T:<'950; curve is a chain intersecting itself at A4’, 4, A4”; viz, from each loop
there pass two branches, one inside, the other outside, the regulator, uniting themselves
at A with the branches from the other loop outside and inside the regulator

respectively ; and finally
T\; =0, the curve is the arc A’AA” of the regulator circle.

142. There is not in the several curves any discontinuity of direction at the
point A’ or A”: the branch from A within ‘the shaded or half-shaded region, emerges
at A" or A” into the lateral region, uniting itself with the upper branch of the loop;
it can only do this in virtue of its being at A’ or A” a tangent to the separator
(for otherwise it would cross the separator and regulator into the inner region);
that 1is, the continuation thereof, or upper branch of the loop, must at the point A’
or A” touch the separator; it has been previously throughout assumed that this is so.

143. It is to be observed, both as regards the iseccentric and the isochronic
curves, that there is a real meaning in the obliterated portions; viz, to any position
of the orbit-pole on such obliterated portion of the curve there corresponds a conic
determined by means of a given trivector, but which, by reason of its being a convex
hyperbola, or hyperbola such that the three points do not lie on the same branch
thereof, is not regarded as an orbit. The obliterated portions have been in the present
Memoir considered only so far as they present themselves in continuity with the curves
which are the loci of the pole of a proper orbit, and for the purpose of explaining
the course of these curves; and the curves completed as above are not the complete
loci which would be obtained if instead of the selected conic called the orbit, we
had considered simultaneously the four conics determined by means of any given
trivector ; such extension of the theory would, it is probable, be interesting geometrically ;
but it would be devoid of all astronomical significance.
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Plate II1.
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