467.

EXPRESSIONS FOR PLANA'S e, γ IN TERMS OF THE ELLIPTIC e, γ.

[From the Monthly Notices of the Royal Astronomical Society, vol. xxv. (1864-1865), pp. 265-271.]

The coefficient of sin cnt in Plana's expression for the true longitude v (see Plana, t. I. p. 574), putting therein $E^{\prime}=\epsilon^{\prime}=e^{\prime}$, that is, neglecting the terms which depend on the variation of the solar excentricity, is

$$
\begin{aligned}
& =e \quad\left(2+\frac{3}{2} m^{2}-\frac{75}{64} m^{3}-\frac{6659}{256} \quad m^{4}-\frac{4884375}{36864} m^{5}-\frac{65756819}{147456} m^{6}\right) \\
& +e^{3} \quad\left(-\frac{1}{4}-17 m^{2}-\frac{3195}{32} m^{3}-\frac{4635997}{7680} m^{4}\right) \\
& +e^{5} \quad\left(\frac{5}{96}+\frac{66863}{6144} m^{2}\right) \\
& +e^{7} \quad\left(\frac{5921}{161280}\right) \\
& +e \gamma^{2} \quad\left(-\frac{1}{2}-\frac{63}{32} m^{2}+\frac{1467}{256} m^{3}+\frac{22857}{512} m^{4}\right) \\
& +e^{3} \gamma^{2}\left(\frac{23}{16}-\frac{405}{128} m+\frac{16029}{612} 2 m^{2}\right) \\
& +e^{5} \gamma^{2}\left(-\frac{195}{128}\right) \\
& +e \gamma^{4} \quad\left(-\frac{3}{8}+\frac{135}{256} m+\frac{3749}{2048} m^{2}\right) \\
& +e^{3} \gamma^{4}\left(\frac{1761}{1280}\right) \\
& +e \gamma^{6} \quad\left(-\frac{5}{16}\right) \\
& +e e^{\prime 2} \quad\left(\left(-\frac{45}{4}+\frac{9}{4}=\right)-9 m^{2}+\left(-\frac{6455}{64}+\frac{165}{42}=\right)-\frac{6125}{64} m^{3}\right. \\
& \left.+\left(-\frac{281095}{512}-\frac{147}{256}=\right)-\frac{281389}{512} m^{4}\right) \\
& +e^{3} e^{\prime 2}\left(\left(-\frac{12831}{480}-\frac{33}{2}=\right)-\frac{20751}{480} m^{2}\right) \\
& +e e^{2} \gamma^{2}\left(\left(\frac{5171}{128}-\frac{453}{128}=\right)+\frac{2359}{64} m^{2}\right) \\
& +e e^{\prime 4}\left(\left(\frac{45}{16}-\frac{2025}{64}=\right)-\frac{1845}{64} m^{2}\right) \\
& +e b^{4} \quad\left(-\frac{135}{32} m^{2}\right) \\
& +e e^{\prime 2} b^{4}\left(-\frac{75}{16}\right) \text {. }
\end{aligned}
$$

Taking this to the fifth order only, and comparing it with the coefficient in the elliptic theory, we have

> Plana. Elliptic.

$$
\begin{array}{rlr}
= & e\left(2-\frac{3}{2} m^{2}-\frac{75}{64} m^{3}-\frac{6659}{256} m^{4}\right) & =e\left(\begin{array}{r}
2
\end{array}\right) \\
& +e^{3}\left(-\frac{1}{4}-17 m^{2}\right) & +e^{3}\left(-\frac{1}{4}\right) \\
& +e^{5}\left(\quad \frac{5}{96}\right) & \\
& +e \gamma^{5}\left(-\frac{1}{9}-\frac{5}{96}\right) \\
& +e^{3} \gamma^{2}\left(\frac{23}{16} m^{2}\right) & \\
& +e \gamma^{4}\left(-\frac{3}{8}\right) & \\
& +e e^{\prime 2}\left(-9 m^{2}\right) . &
\end{array}
$$

The coefficient of \sin ght in Plana's expression for the latitude (see t. I. p. 704) is

$$
\begin{aligned}
= & \gamma\left(1+\frac{33}{128} m^{3}+\frac{241}{512} m^{4}-\frac{82495}{24576} m^{5}\right) \\
& +\gamma e^{2}\left(-1-\frac{31}{512} m^{2}-\frac{7977}{256} m^{3}\right) \\
& +\gamma e^{4}\left(\frac{5}{64}+\frac{945}{512} m\right) \\
+ & \gamma^{3}\left(-\frac{3}{8}+\frac{5}{128} m^{2}+\frac{69}{256} m^{3}\right) \\
+ & \gamma^{3} e^{2}\left(\frac{7}{32}-\frac{405}{256} m\right) \\
+ & \gamma^{5}\left(\frac{1}{4}\right) \\
& \left.+\gamma e^{\ell^{2}\left(\quad \frac{27}{8}\right.} m^{2}-\frac{113}{128} m^{3}\right) .
\end{aligned}
$$

But according to the calculation of Prof. Adams (quoted by M. Delaunay, Comptes Rendus, t. Liv. (1862), this should be

$$
\begin{aligned}
= & \gamma\left(1+\frac{33}{128} m^{3}-\frac{1}{512} m^{4}-\frac{82497}{2456} m^{5}-\frac{4801697}{294012} m^{6}\right) \\
& +\gamma e^{2}\left(-1-\frac{1111}{256} m^{2}-\frac{7977}{256} m^{3}\right) \\
& +\gamma e^{4}\left(\frac{3}{16}-\frac{135}{512} m\right) \\
& +\gamma^{3}\left(-\frac{3}{8}+\frac{5}{128} m^{2}-\frac{15}{128} m^{3}\right) \\
& +\gamma^{3} e^{2}\left(\frac{23}{32}+\frac{135}{256} m\right) \\
& +\gamma^{5}\left(\frac{15}{64}\right) \\
& +\gamma e^{\prime 2}\left(\frac{9}{8} m^{2}-\frac{113}{128} m^{3}+\frac{3521}{1024} m^{4}\right) .
\end{aligned}
$$

Adopting this as the true expression according to Plana's theory, taking it to the fifth order only, and comparing with the elliptic value of the same coefficient, we have

> Plana. Elliptic.

$$
\begin{array}{ll}
\quad \gamma\left(1+\frac{33}{128} m^{3}-\frac{1}{512} m^{4}\right) & =\gamma(1) \\
+\gamma e^{2}\left(-1-\frac{111}{256} m^{2}\right) & +\gamma e^{2}(-1) \\
+\gamma e^{4}\left(\frac{3}{16}\right) & +\gamma e^{4}\left(\frac{7}{64}\right) \\
+\gamma^{3}\left(-\frac{3}{8}+\frac{5}{128} m^{2}\right) & +\gamma^{3}\left(-\frac{3}{8}\right) \\
+\gamma^{3} e^{2}\left(\frac{23}{32}\right) & +\gamma^{3} e^{2}\left(\frac{3}{8}\right) \\
+\gamma^{5}\left(\frac{15}{64}\right) & +\gamma^{5}\left(\frac{55}{64}\right) . \\
+\gamma e^{\prime 2}\left(\frac{9}{8} m^{2}\right) &
\end{array}
$$

We have thus two equations for the determination of Plane's e, γ in terms of the elliptic e, γ. And the solution of these equations give

Elliptic.

$$
\begin{aligned}
e(\text { Plana })= & e\left(1-\frac{3}{4} m^{2}+\frac{75}{128} m^{3}+\frac{6947}{512} m^{4}\right) \\
& +e^{5}\left(\begin{array}{c}
\left.\frac{263}{32} m^{2}\right) \\
\\
\end{array}+\gamma^{2} e\left(\frac{1}{4}+\frac{39}{64} m^{2}\right)\right. \\
& +\gamma^{2} e^{3}\left(-\frac{5}{8}\right) \\
& +\gamma^{4} e\left(\begin{array}{l}
\left.\frac{1}{4}\right) \\
\\
\end{array}+e e^{\prime^{2}}\left(\frac{9}{2} m^{2}\right)\right. \\
\gamma(\text { Plan })= & \gamma\left(1-\frac{33}{128} m^{2}+\frac{1}{512} m^{4}\right) \\
& +\gamma e^{2}\left(\frac{727}{256} m^{2}\right) \\
& +\gamma e^{4}\left(-\frac{5}{64}\right) \\
& +\gamma^{3}\left(-\frac{5}{128} m^{2}\right) \\
& +\gamma^{3} e^{2}\left(\frac{5}{32}\right) \\
& +\gamma^{5}\left(\frac{5}{8}\right) \\
& +\gamma e^{\prime 2}\left(-\frac{9}{8} m^{2}\right) .
\end{aligned}
$$

I annex the verification of these expressions; we have

Plan.

$$
\begin{aligned}
& e \quad\left(2+\frac{3}{2} m^{2}-\frac{75}{64} m^{3}-\frac{6659}{256} m^{4}\right)=\quad e \quad\left(2-\frac{3}{2} m^{2}+\frac{75}{64} m^{3}+\frac{6947}{256} m^{4}\right. \\
& +\frac{3}{2} m^{2} \quad-\frac{9}{8} m^{4} \\
& \left.-\frac{75}{64} m^{3}-\frac{6659}{256} m^{4}\right) \\
& +e^{3} \quad\left(\quad \frac{263}{32} m^{2}\right) \\
& +e \gamma^{2}\left(\frac{1}{2}+\frac{39}{32} m^{2}\right. \\
& \left.+\frac{3}{8} m c^{2}\right) \\
& +e^{3} \gamma^{2}\left(-\frac{5}{4}\right) \\
& +e \gamma^{4}\left(\frac{1}{2}\right) \\
& +e e^{\prime 2}\left(9 m^{2}\right) \text {, } \\
& e^{3}\left(-\frac{1}{4}-17 m^{2}\right)=e^{3}\left(-\frac{1}{4}+\frac{9}{16} m^{2}\right. \\
& \left.-17 \mathrm{~m}^{2}\right) \\
& \begin{array}{l}
+e^{3} \gamma^{2}\left(-\frac{3}{16}\right), \\
=e^{5} \quad\left(\frac{5}{96}\right),
\end{array} \\
& \begin{array}{l}
+e^{3} \gamma^{2}\left(-\frac{3}{16}\right), \\
=\quad e^{5}\left(\frac{5}{96}\right),
\end{array} \\
& e \gamma^{2}\left(-\frac{1}{2}-\frac{63}{32} m^{2}\right)=e \gamma^{2}\left(-\frac{1}{2}-\frac{63}{32} m^{2}\right. \\
& \left.+\frac{3}{8} m^{2}\right) \\
& +e \gamma^{4}\left(-\frac{1}{8}\right) \\
& e^{3} \gamma^{2}\left(\frac{23}{16}\right) \quad=e^{3} \gamma^{2}\left(\frac{23}{16}\right) \\
& e \gamma^{4}\left(-\frac{3}{8}\right)=e \gamma^{4}\left(-\frac{3}{8}\right) \\
& e e^{t_{2}}\left(-9 m^{2}\right)=e e^{\prime 2}\left(-9 m^{3}\right) \text {, } \\
& \frac{3}{6} \text {) }
\end{aligned}
$$

whence, adding, we have the first equation.
And, moreover,

$$
\begin{aligned}
& \gamma\left(1+\frac{33}{128} m^{3}-\frac{1}{512} m^{4}\right) \quad=\gamma\left(1-\frac{33}{128} m^{3}+\frac{1}{512} m^{4}\right. \\
& \left.+\frac{33}{128} m^{3}-\frac{1}{512} m^{4}\right) \\
& +\gamma e^{2}\left(\quad \frac{727}{256} \mathrm{~m}^{2}\right) \\
& +\gamma^{4} e\left(-\frac{5}{64}\right) \\
& +\gamma^{3}\left(-\frac{5}{128} m^{2}\right) \\
& +\gamma^{3} e^{2}\left(\frac{5}{32}\right) \\
& +\gamma^{5}\left(\frac{5}{8}\right) \\
& +\gamma e^{2^{2}}\left(-\frac{9}{8} m^{2}\right), \\
& \gamma e^{2}\left(-1-\frac{1111}{256} m^{2}\right)=\gamma e^{2}\left(-1+\frac{3}{2} m^{2}\right. \\
& \left.-\frac{1111}{256} m^{2}\right) \\
& +\gamma^{3} e^{2}\left(\quad-\frac{1}{2}\right), \\
& \gamma e^{4}\left(\frac{3}{16}\right) \quad=\gamma e^{4}\left(\frac{3}{16}\right), \\
& \gamma^{3}\left(-\frac{3}{8}+\frac{5}{128} m^{2}\right)=\gamma^{3}\left(-\frac{3}{8}+\frac{5}{128} m^{2}\right) \\
& \gamma^{3} e^{2}\left(\frac{23}{32}\right)=\gamma^{3} e^{2}\left(\frac{23}{32}\right) \\
& \gamma^{5}\left(\frac{15}{64}\right)=\gamma^{5}\left(\frac{15}{64}\right) \\
& \left.\gamma e^{\prime 2} \quad \frac{9}{8} m^{2}\right) \quad=\gamma e^{\prime_{2}}\left(\quad \frac{9}{8} m^{2}\right),
\end{aligned}
$$

whence, adding, we have the second equation.
It may be noticed that, taking the foregoing expressions only as far as the third order, we have

Plana.	\quad Elliptic.	
e	$=$	$e\left(1+\frac{1}{4} \gamma^{2}-\frac{3}{4} m^{2}\right)$
γ	$=$	γ.

And moreover that, attending only to the terms which are independent of m, we have

$$
\begin{array}{lll}
e & = & e\left(1+\frac{1}{4} \gamma^{2}-\frac{5}{8} \gamma^{2}+\frac{1}{4} \gamma^{4}\right) \\
\gamma & =\gamma\left(1-\frac{5}{64} e^{4}+\frac{5}{32} e^{2} \gamma^{2}-\frac{5}{8} \gamma^{4}\right) .
\end{array}
$$

which are formulæ that may be found useful.

