739.

NOTE ON THE OCTAHEDRON FUNCTION.

[From the Quarterly Journal of Pure and Applied Mathematics, vol. xvi. (1879), pp. 280, 281.]

A sextic function

$$
U=\left(a, b, c, d, e, f, g \gamma(x, y)^{6},\right.
$$

such that its fourth derivative

$$
\begin{aligned}
(U, U)^{4},= & \left(a e-4 b d+3 c^{2}\right) x^{4} \\
& +2(a f-3 b e+2 c d) x^{3} y \\
& +\left(a g-9 c e+8 d^{2}\right) x^{2} y^{2} \\
& +2(b g-3 c f+2 d e) x y^{3} \\
& +\left(c g-4 d f+3 e^{2}\right) y^{4}
\end{aligned}
$$

is identically $=0$, is considered by Dr Klein, and is called by him the octahedron function. Supposing that by a linear transformation the function is made to contain the factors x, y, or what is the same thing assuming $a=0, g=0$, then the equations to be satisfied become

$$
-4 b d+3 c^{2}=0, \quad-3 b e+2 c d=0, \quad-9 c e+8 d^{2}=0, \quad-3 c f+2 d e=0, \quad-4 d f+3 e^{2}=0,
$$ which are all satisfied if only $c=d=e=0$; and then assuming, as is allowable,

$$
b=-f=1,
$$

we have his canonical form $x y\left(x^{4}-y^{4}\right)$ of the octahedron function.
But the equations may be satisfied in a different manner; viz. the first and last equations give

$$
b=\frac{3 c^{2}}{4 d}, \quad f=\frac{3 e^{2}}{4 d},
$$

and, substituting these in the remaining equations, they become

$$
\frac{c}{4 d}\left(-9 c e+8 d^{2}\right)=0,-9 c e+8 d^{2}=0, \frac{e}{4 d}\left(-9 c e+8 d^{2}\right)=0
$$

all satisfied if only $-9 c e+8 d^{2}=0$. Assuming $b=f=2$, the values are

$$
b, c, d, e, f=2,2 \sqrt{ }(2), 3,2 \sqrt{ }(2), 2
$$

and the form is

$$
\begin{aligned}
& x y\left(x^{4}+\frac{5}{\sqrt{ }(2)} x^{3} y+5 x^{2} y^{2}+\frac{5}{\sqrt{ }(2)} x y^{3}+y^{4}\right), \\
= & x y\left(x^{2}+\frac{3}{\sqrt{ }(2)} x y+y^{2}\right)\left\{x^{2}+\sqrt{ }(2) x y+y^{2}\right\}, \\
= & x y\left(x+\frac{1+i}{\sqrt{ }(2)} y\right)\left(x+\frac{1-i}{\sqrt{ }(2)} y\right)\{x+y \sqrt{ }(2)\}\left(x+\frac{y}{\sqrt{ }(2)}\right) .
\end{aligned}
$$

This is, in fact, a linear transformation of the foregoing form $X Y\left(X^{4}-Y^{4}\right)$; for writing

$$
\begin{aligned}
& X=\left(x+\frac{1+i}{\sqrt{ }(2)} y\right) \\
& Y=\left(x+\frac{1-i}{\sqrt{ }(2)} y\right)
\end{aligned}
$$

we have

$$
\begin{aligned}
& X^{2}=x^{2}+(1+i) \sqrt{ }(2) x y+i y^{2} \\
& Y^{2}=x^{2}+(1-i) \sqrt{ }(2) x y-i y^{2}
\end{aligned}
$$

and therefore

$$
\begin{aligned}
& X^{2}+Y^{2}=\quad 2 x\{x+\sqrt{ }(2) y\} \\
& X^{2}-Y^{2}=2 i \sqrt{ }(2) y\left(x+\frac{y}{\sqrt{(2)}}\right)
\end{aligned}
$$

or finally

$$
X Y\left(X^{4}-Y^{4}\right)=4 i \sqrt{ }(2) x y\left(x+\frac{1+i}{\sqrt{ }(2)} y\right)\left(x+\frac{1-i}{\sqrt{ }(2)} y\right)\{x+y \sqrt{ }(2)\}\left(x+\frac{y}{\sqrt{ }(2)}\right)
$$

and the two forms are thus identical.

