737.

ON A COVARIANT FORMULA.

[From the Quarterly Journal of Pure and Applied Mathematics, vol. xvi. (1879), pp. 224-226.]

Starting from the equation

$$
x_{1}=x-\frac{f x}{f^{\prime} x},
$$

which presents itself in the Newton-Fourier problem, it is easy to see that, if a be a root of the equation $f x=0$, then

$$
x_{1}-a,=\frac{(x-a) f^{\prime} x-f x}{f^{\prime} x}
$$

contains the factor $(x-a)^{2}$, that is, the equation $\left(x-x_{1}\right) f^{\prime} x-f x=0$, considered as an equation in x containing the parameter x_{1}, will have a twofold root, if x_{1} is equal to any root a of the equation $f x=0$; and, consequently, the discriminant in regard to x of the function $\left(x-x_{1}\right) f^{\prime} x-f x$ will contain the factor $f x_{1}$. But if $f x$ be of the order n, then the discriminant is of the order $2 n-2$ in x_{1}, and there is consequently a remaining factor ϕx_{1} of the order $n-2$.

The like theorem applies to the homogeneous form

$$
\left(x y_{1}-x_{1} y\right)\left(\alpha \frac{d}{d x}+\beta \frac{d}{d y}\right) f(x, y)-\left(\alpha y_{1}-\beta x_{1}\right) f(x, y)
$$

which reduces itself to the foregoing on writing $\alpha=1, \beta=0, y=y_{1}=1$; or, changing the notation, say to the form

$$
(\xi y-\eta x)\left(\alpha \frac{d}{d \xi}+\beta \frac{d}{d \eta}\right) f(\xi, \eta)-(\alpha y-\beta x) f(\xi, \eta)
$$

viz. the discriminant hereof in regard to ξ, η, being a function, homogeneous of the order $2 n-2$ in regard to x, y, to α, β, and to the coefficients of $f(\xi, \eta)$, will contain the factor $f(x, y)$, and there will be consequently a remaining factor of the order $n-2$ in $(x, y), 2 n-2$ in (α, β) and $2 n-3$ in the coefficients of $f(\xi, \eta)$.

The most simple case is when $f(\xi, \eta)$ is the quadric function $(a, b, c \chi \xi, \eta)^{2}$. The form here is

$$
(\xi y-\eta x) 2\{(a \alpha+b \beta) \xi+(b \alpha+c \beta) \eta\}-(\alpha y-\beta x)(a, b, c \chi \xi, \eta)^{2}=(\mathrm{a}, \mathrm{~b}, \mathrm{c} \chi \xi, \eta)^{2},
$$

where the coefficients are

$$
\begin{array}{r}
\mathrm{a}=2 y(a \alpha+b \beta)-a(\alpha y-\beta x), \quad a \beta x+(a \alpha+2 b \beta) y, \\
\mathrm{~b}=y(b \alpha+c \beta)-x(a \alpha+b \beta)-b(\alpha y-\beta x), \\
=-\alpha \alpha x+c \beta y, \\
c=-2 x(b \alpha+c \beta)-c(\alpha y-\beta x),=-(2 b \alpha+c \beta) x-c \alpha y
\end{array}
$$

and we then have

$$
\begin{aligned}
\mathrm{ac}-\mathrm{b}^{2}= & -\left(2 b \alpha \beta+c \beta^{2}\right) a x^{2} \\
& -\left\{2 a b \alpha^{2}+\left(2 a c+4 b^{2}\right) \alpha \beta+2 b c \beta^{2}\right\} x y-\left(a \alpha^{2}+2 b \alpha \beta\right) c y^{2} \\
& -a x^{2} \cdot a x^{2}-\{-2 a c \alpha \beta\} x y-c \beta^{2} . c y^{2},
\end{aligned}
$$

which is

$$
=-\left(a \alpha^{2}+2 b \alpha \beta+c \beta^{2}\right)\left(a x^{2}+2 b x y+c y^{2}\right) .
$$

The discriminant is in this case

$$
=-\left(a, b, c \gamma(a, \beta)^{2} \cdot\left(a, b, c \gamma(x, y)^{2} .\right.\right.
$$

In the case of the cubic function $(a, b, c, d \gamma \xi, \eta)^{3}$, the form is

$$
\begin{aligned}
&(\xi y-x \eta)\left\{3(a \alpha+b \beta, b \alpha+c \beta, c \alpha+d \beta \chi \xi, \eta)^{2}\right\} \\
& \quad(\alpha y-\beta x)(a, b, c, d \gamma \xi, \eta)^{3}=(a, b, c, d \chi \xi, \eta)^{3},
\end{aligned}
$$

the values of the coefficients being

$$
\begin{array}{ll}
\mathrm{a}=a \beta x & +(2 a \alpha+3 b \beta) y, \\
\mathrm{~b}=-a \alpha x & +(b \alpha+2 c \beta) y, \\
\mathrm{c}=-(2 b \alpha+c \beta) x+ & d \beta y, \\
\mathrm{~d}=-(3 c \alpha+2 d \beta) x- & d \alpha y .
\end{array}
$$

Attending only to the terms in x^{2}, we have

$$
\begin{aligned}
& \mathrm{ac}-\mathrm{b}^{2}=-\left(a \alpha^{2}+2 b \alpha \beta+c \beta^{2}\right) a x^{2}, \\
& \mathrm{ad}-\mathrm{bc}=-2\left(b \alpha^{2}+2 c \alpha \beta+d \beta^{2}\right) a x^{2}, \\
& \mathrm{bd}-\mathrm{c}^{2}=\left\{\left(3 a c-4 b^{2}\right) \alpha^{2}+(2 a d-4 b c) \alpha \beta-c^{2} \beta^{2}\right\} x^{2} .
\end{aligned}
$$

And hence, in

$$
a^{2} d^{2}+4 a c^{3}+4 b^{3} d-3 b^{2} c^{2}-6 a b c d,=(a d-b c)^{2}-4\left(a c-b^{2}\right)\left(b d-c^{2}\right),
$$

we have the term

$$
4 a x^{3} \cdot x\left[a\left(b \alpha^{2}+2 c \alpha \beta+d \beta^{2}\right)^{2}+\left(a \alpha^{2}+2 b \alpha \beta+c \beta^{2}\right)\left\{\left(3 a c-4 b^{2}\right) \alpha^{2}+(2 a d-4 b c) \alpha \beta-c^{2} \beta^{2}\right\}\right] ;
$$

then, forming the analogous term in y^{4}, and assuming that the whole divides by $(a, b, c, d \chi x, y)^{3}$, and also expanding the $\alpha \beta$-functions within the square brackets, we find

$$
\begin{aligned}
& \text { Discriminant }=4\left(a, b, c, d \not(x, y)^{3}\right. \text { multiplied by } \\
& x\left|\begin{array}{l|l|l|l}
3 a^{2} c-3 a b^{2} & a^{2} d-b^{3} \\
2 a^{2} d+6 a b c-8 b^{3} \\
6 a b d+6 a c^{2}-12 b^{2} c \\
6 a c d-6 b c^{2}
\end{array}\right| \gamma(\alpha, \beta)^{4}+y \\
& a d^{2}-c^{3}
\end{aligned}\left|\begin{array}{ll}
6 a b d-6 b^{2} c \\
6 a c d+6 b^{2} d-12 b c^{2} \\
2 a d^{2}+6 b c d-8 c^{3} \\
3 b d^{2}-3 c^{2} d
\end{array}\right| \gamma(\alpha, \beta)^{4} .
$$

Writing down the Hessian of $\left(a, b, c, d \gamma(\alpha, \beta)^{3}\right.$,

$$
H=\left(a c-b^{2}, a d-b c, b d-c^{2} \gamma(\alpha, \beta)^{2},\right.
$$

and the cubicovariant

$$
\Phi=\left\{\begin{array}{r}
a^{2} d-3 a b c+2 b^{3} \\
a b d-2 a c^{2}+b^{2} c \\
-a c d+2 b^{2} d-b c^{2} \\
-a d^{2}+3 b c d-2 c^{3}
\end{array}\right\}(x, y)^{3},
$$

it is easy to see that the coefficient of x is

$$
=3\left(a, b, c \gamma(\alpha, \beta)^{2} \cdot(H-\beta \Phi) ;\right.
$$

hence also that of y is

$$
=3\left(b, c, d \gamma(\alpha, \beta)^{2} \cdot(H+\alpha \Phi),\right.
$$

and the final result is that the discriminant $=4(a, b, c, d \gamma x, y)^{3}$ multiplied by

$$
\left\{3\left(a, b, c, d \gamma(\alpha, \beta)^{3}(x, y) H+(\alpha y-\beta x) \Phi\right\} .\right.
$$

It would be interesting to calculate the result for the quartic $(a, b, c, d, e \gamma \xi, \eta)^{4}$.

March 14, 1879.

