733.

ON A FORMULA OF ELIMINATION.

[From the Proceedings of the London Mathematical Society, vol. XI. (1880), pp. 139—141. Read June 10, 1880.]

CONSIDER the equations

$$(a, \dots \oint \theta, 1)^n = 0,$$

 $(A, \dots \oint \theta, 1)^m = 0,$

where a, ..., A, ... are functions of coordinates. To fix the ideas, suppose that each of these coefficients is a linear function of the four coordinates x, y, z, w. Then, eliminating θ , we obtain $\nabla = 0$, the equation of a surface; and (as is known) this surface has a nodal curve.

It is easy to obtain the equations of the nodal curve in the case where one of the equations, say the second, is a quadric: the process is substantially the same whatever may be the order of the other equation, and I take it to be a cubic; the two equations therefore are

$$(a, b, c, d \not (\theta, 1)^3 = 0,$$

 $(A, B, C \not (\theta, 1)^2 = 0;$

giving rise to an equation

$$\nabla$$
, = $(a, b, c, d)^2 (A, B, C)^3$, = 0.

And it is required to perform the elimination so as to put in evidence the nodal line of this surface.

Take θ_1 , θ_2 the roots of the second equation, or write

$$(A, B, C \mathfrak{H} \theta, 1)^2 = A (\theta - \theta_1) (\theta - \theta_2);$$

that is,

$$\theta_1 + \theta_2 = -\frac{2B}{A}, \quad \theta_1 \theta_2 = \frac{C}{A};$$

www.rcin.org.pl

then, if

$$\Theta_1 = (a, b, c, d \not \otimes \theta_1, 1)^3,$$

 $\Theta_2 = (a, b, c, d \not \otimes \theta_2, 1)^3,$

we have

 $\nabla = A^{3}\Theta_{1}\Theta_{2};$

viz. on the right-hand side, replacing the symmetrical functions of θ_1 , θ_2 by their values in terms of A, B, C, we have the expression of ∇ in its known form

$$\nabla = a^2 C^3 + \&c.$$

Form now the expressions

$$\Theta_1-\Theta_2, \quad heta_2\Theta_1- heta_1\Theta_2, \quad heta_2{}^2\Theta_1- heta_1{}^2\Theta_2, \quad heta_2{}^3\Theta_1- heta_1{}^3\Theta_2,$$

each divided by $\theta_1 - \theta_2$. These are evidently symmetrical functions of θ_1 , θ_2 , the values being given by the successive lines of the expression

and, consequently, these same quantities, each multiplied by A^2 , are given by the successive lines of

0,	A^2 ,	-2AB,	$-AC+4B_2$ d	, 3ċ,	3b, a)
$-A^{2}$,	0,	AC,	-2BC		
2AB,	-AC,	0,	C^2		
$AC - 4B^2$,	2BC,	$-C^{2}$,	0		

Calling these X, Y, Z, W, that is, writing

$$X = 3A^{2}c - 6ABb + (-AC + 4B^{2})a, \&c.,$$

then X, Y, Z, W are the values of

$$\Theta_1 - \Theta_2, \quad \theta_2 \Theta_1 - \theta_1 \Theta_2, \quad \theta_2^2 \Theta_1 - \theta_1^2 \Theta_2, \quad \theta_2^3 \Theta_1 - \theta_1^3 \Theta_2,$$

each multiplied by $A^2 \div (\theta_1 - \theta_2)$; and the functions all four of them vanish if only $\Theta_1 = 0$, $\Theta_2 = 0$; or, what is the same thing, the equations X = 0, Y = 0, Z = 0, W = 0 constitute only a twofold system.

The functions

$$(X, Y, Z)$$

 $|Y, Z, W|$

www.rcin.org.pl

733]

contain each of them the factor $\Theta_1 \Theta_2$, that is, ∇ ; they, in fact, each of them vanish if $\Theta_1 = 0$, and they also vanish if $\Theta_2 = 0$; or, by a direct substitution, we have

$$\begin{split} XZ & -Y^2 = \frac{A^4}{(\theta_1 - \theta_2)^2} \cdot -(\theta_1 - \theta_2)^2 \Theta_1 \Theta_2, \qquad \qquad = -A^4 \Theta_1 \Theta_2, \\ XW - YZ = &, \qquad -(\theta_1 - \theta_2)^2 (\theta_1 + \theta_2) \Theta_1 \Theta_2, \qquad = -A^4 \Theta_1 \Theta_2 (\theta_1 + \theta_2), \\ YW - Z^2 & = &, \qquad -(\theta_1 - \theta_2)^2 \theta_1 \theta_2 \Theta_1 \Theta_2, \qquad = -A^4 \Theta_1 \Theta_2 \theta_1 \theta_2. \end{split}$$

Or, what is the same thing, these are $= -A \nabla$, $2B \nabla$, $-C \nabla$, respectively; thus the first equation is

$$\begin{aligned} [3A^2c - 6ABb + (-AC + 4B^2)a] & \{2ABd - 3ACc + C^2a\} \\ & - (-A^2d + 3ACb - 2BCa)^2 = -A(A^3d^2 + \&c.), = -A\nabla; \end{aligned}$$

and similarly for the other two equations. The nodal curve is thus given by the twofold system X = 0, Y = 0, Z = 0, W = 0.

The method may be extended to the case where, instead of the quadric equation $(A, B, C \wr \theta, 1)^2 = 0$, we have an equation of any higher order, but the formulæ are less simple.