733.

ON A FORMULA OF ELIMINATION.

[From the Proceedings of the London Mathematical Society, vol. xi. (1880), pp. 139-141. Read June 10, 1880.]

Consider the equations

$$
\begin{aligned}
& (a, \ldots \gamma \theta, 1)^{n}=0 \\
& (A, \ldots \gamma \theta, 1)^{m}=0
\end{aligned}
$$

where a, \ldots, A, \ldots are functions of coordinates. To fix the ideas, suppose that each of these coefficients is a linear function of the four coordinates x, y, z, w. Then, eliminating θ, we obtain $\nabla=0$, the equation of a surface; and (as is known) this surface has a nodal curve.

It is easy to obtain the equations of the nodal curve in the case where one of the equations, say the second, is a quadric: the process is substantially the same whatever may be the order of the other equation, and I take it to be a cubic; the two equations therefore are

$$
\begin{aligned}
& (a, b, c, d \gamma \theta, 1)^{3}=0, \\
& (A, B, c \gamma \theta, 1)^{2}=0 ;
\end{aligned}
$$

giving rise to an equation

$$
\nabla,=(a, b, c, d)^{2}(A, B, C)^{3},=0 .
$$

And it is required to perform the elimination so as to put in evidence the nodal line of this surface.

Take θ_{1}, θ_{2} the roots of the second equation, or write

$$
(A, B, C \gamma \theta, 1)^{2}=A\left(\theta-\theta_{1}\right)\left(\theta-\theta_{2}\right) ;
$$

that is,

$$
\theta_{1}+\theta_{2}=-\frac{2 B}{A}, \quad \theta_{1} \theta_{2}=\frac{C}{A}
$$

then, if

$$
\begin{aligned}
& \Theta_{1}=\left(a, b, c, d \gamma \theta_{1}, 1\right)^{3}, \\
& \Theta_{2}=\left(a, b, c, d \gamma \theta_{2}, 1\right)^{3},
\end{aligned}
$$

we have

$$
\nabla=A^{3} \Theta_{1} \Theta_{2} ;
$$

viz. on the right-hand side, replacing the symmetrical functions of θ_{1}, θ_{2} by their values in terms of A, B, C, we have the expression of ∇ in its known form

$$
\nabla=a^{2} C^{3}+\& c
$$

Form now the expressions

$$
\Theta_{1}-\Theta_{2}, \quad \theta_{2} \Theta_{1}-\theta_{1} \Theta_{2}, \quad \theta_{2}^{2} \Theta_{1}-\theta_{1}^{2} \Theta_{2}, \quad \theta_{2}^{3} \Theta_{1}-\theta_{1}^{3} \Theta_{2},
$$

each divided by $\theta_{1}-\theta_{2}$. These are evidently symmetrical functions of θ_{1}, θ_{2}, the values being given by the successive lines of the expression

$$
\left(\left.\begin{array}{cccc}
0, & 1, & \theta_{1}+\theta_{2}, & \left.\theta_{1}^{2}+\theta_{1} \theta_{2}+\theta_{2}{ }^{2} l d, 3 c, 3 b, a\right) ; ~ \\
-1, & 0, & \theta_{1} \theta_{2}, & \theta_{1} \theta_{2}\left(\theta_{1}+\theta_{2}\right) \\
-\left(\theta_{1}+\theta_{2}\right), & -\theta_{1} \theta_{2}, & 0, & \theta_{1}^{2} \theta_{2}^{2} \\
-\left(\theta_{1}^{2}+\theta_{1} \theta_{2}+\theta_{2}^{2}\right), & -\theta_{1} \theta_{2}\left(\theta_{1}+\theta_{2}\right), & -\theta_{1}^{2} \theta_{2}^{2}, & 0
\end{array} \right\rvert\,\right.
$$

and, consequently, these same quantities, each multiplied by A^{2}, are given by the successive lines of

$$
\left(\left.\begin{array}{cccc}
0, & A^{2}, & -2 A B, & \left.-A C+4 B_{2} 久 d, 3 c, 3 b, a\right) . \\
-A^{2}, & 0, & A C, & -2 B C \\
2 A B, & -A C, & 0, & C^{2} \\
A C-4 B^{2}, & 2 B C, & -C^{2}, & 0
\end{array} \right\rvert\,\right.
$$

Calling these X, Y, Z, W, that is, writing

$$
X=3 A^{2} c-6 A B b+\left(-A C+4 B^{2}\right) a, \& c
$$

then X, Y, Z, W are the values of

$$
\Theta_{1}-\Theta_{2}, \quad \theta_{2} \Theta_{1}-\theta_{1} \Theta_{2}, \quad \theta_{2}{ }^{2} \Theta_{1}-\theta_{1}^{2} \Theta_{2}, \quad \theta_{2}^{3} \Theta_{1}-\theta_{1}^{3} \Theta_{2},
$$

each multiplied by $A^{2} \div\left(\theta_{1}-\theta_{2}\right)$; and the functions all four of them vanish if only $\Theta_{1}=0, \Theta_{2}=0$; or, what is the same thing, the equations $X=0, Y=0, Z=0, W=0$ constitute only a twofold system.

The functions

$$
\left(\left.\begin{array}{lll}
X, & Y, & Z \\
Y, & Z, & W
\end{array} \right\rvert\,\right.
$$

contain each of them the factor $\Theta_{1} \Theta_{2}$, that is, ∇; they, in fact, each of them vanish if $\Theta_{1}=0$, and they also vanish if $\Theta_{2}=0$; or, by a direct substitution, we have

$$
\begin{array}{ll}
X Z-Y^{2}=\frac{A^{4}}{\left(\theta_{1}-\theta_{2}\right)^{2}} \cdot-\left(\theta_{1}-\theta_{2}\right)^{2} \Theta_{1} \Theta_{2}, & =-A^{4} \Theta_{1} \Theta_{2}, \\
X W-Y Z=\quad " \quad-\left(\theta_{1}-\theta_{2}\right)^{2}\left(\theta_{1}+\theta_{2}\right) \Theta_{1} \Theta_{2}, & =-A^{4} \Theta_{1} \Theta_{2}\left(\theta_{1}+\theta_{2}\right), \\
Y W-Z^{2}=\quad " \quad-\left(\theta_{1}-\theta_{2}\right)^{2} \theta_{1} \theta_{2} \Theta_{1} \Theta_{2}, & =-A^{4} \Theta_{1} \Theta_{2} \theta_{1} \theta_{2} .
\end{array}
$$

Or, what is the same thing, these are $=-A \nabla, 2 B \nabla,-C \nabla$, respectively; thus the first equation is

$$
\begin{aligned}
\left\{3 A^{2} c-6 A B b+\left(-A C+4 B^{2}\right) a\right\} & \left\{2 A B d-3 A C c+C^{2} a\right\} \\
& -\left(-A^{2} d+3 A C b-2 B C a\right)^{2}=-A\left(A^{3} d^{2}+\& c .\right),=-A \nabla
\end{aligned}
$$

and similarly for the other two equations. The nodal curve is thus given by the twofold system $X=0, Y=0, Z=0, W=0$.

The method may be extended to the case where, instead of the quadric equation $\left(A, B, C(\theta, 1)^{2}=0\right.$, we have an equation of any higher order, but the formulæ are less simple.

