726.

A FORMULA BY GAUSS FOR THE CALCULATION OF LOG 2 AND CERTAIN OTHER LOGARITHMS.

[From the Messenger of Mathematics, vol. viII. (1879), pp. 125, 126.]
Gauss has given, Werke, t. II., p. 501, a formula which is in effect as follows:

$$
2^{196}=10^{59}\left(\frac{1025}{1024}\right)^{5}\left(\frac{1048576}{1048575}\right)^{8}\left(\frac{6560}{6561}\right)^{3}\left(\frac{15624}{15625}\right)^{8}\left(\frac{9801}{9800}\right)^{4}
$$

viz. this is

$$
=2^{59} \cdot 5^{59}\left(\frac{5^{2} \cdot 41}{2^{10}}\right)^{5}\left(\frac{2^{20}}{5^{2} \cdot 3 \cdot 11 \cdot 31 \cdot 41}\right)^{8}\left(\frac{5 \cdot 2^{5} \cdot 41}{3^{8}}\right)^{3}\left(\frac{2^{3} \cdot 3^{2} \cdot 7 \cdot 31}{5^{6}}\right)^{8}\left(\frac{3^{4} \cdot 11^{2}}{2^{3} \cdot 5^{2} \cdot 7^{2}}\right)^{4},
$$

where on the right-hand side the several prime factors have the indices following, viz.

or the right-hand side is $=2^{196}$ as it should be. The value of $\log 2$ calculated from $2^{196}=10^{59}$ is $\log 2=\frac{59}{196}=301020$, viz. there is an error of a unit in fifth place of decimals. The actual value of 2^{196} has been given me by Mr Glaisher:

$$
\begin{array}{rllllll}
2^{196} & =\begin{array}{llllll}
10043 & 36277 & 66186 & 89222 & 13726 & 30771 \\
& 32266 & 26576 & 37687 & 11142 & 45522
\end{array} 06336 . *
\end{array}
$$

Supposing $\log 2$ calculated by the form, we then have
and

$$
41=\left(\frac{1025}{1024}\right) 2^{12} \div 10^{2}, \text { giving } \log 41,
$$

$$
3^{8}=10 \cdot \frac{6561}{6560} \cdot 2^{4} \cdot 41 \text {, giving } \log 3 ;
$$

and formulæ may be obtained proper for the calculation of the logarithms of $\frac{11}{7}, 11.31$, and 7.31.

[^0]
[^0]: * The value was deduced by Mr Glaisher from Mr Shanks's value of 2^{193} in his Rectification of the Circle, (1853), p. 90.

