726.

A FORMULA BY GAUSS FOR THE CALCULATION OF LOG 2 AND CERTAIN OTHER LOGARITHMS.

[From the Messenger of Mathematics, vol. VIII. (1879), pp. 125, 126.]

GAUSS has given, Werke, t. II., p. 501, a formula which is in effect as follows:

$$2^{196} = 10^{59} \left(\frac{1025}{1024}\right)^5 \left(\frac{1048576}{1048575}\right)^8 \left(\frac{6560}{6561}\right)^3 \left(\frac{15624}{15625}\right)^8 \left(\frac{9801}{9800}\right)^4,$$

viz. this is

$$=2^{59} \cdot 5^{59} \left(\frac{5^2 \cdot 41}{2^{10}}\right)^5 \left(\frac{2^{20}}{5^2 \cdot 3 \cdot 11 \cdot 31 \cdot 41}\right)^8 \left(\frac{5 \cdot 2^5 \cdot 41}{3^8}\right)^3 \left(\frac{2^3 \cdot 3^2 \cdot 7 \cdot 31}{5^6}\right)^8 \left(\frac{3^4 \cdot 11^2}{2^3 \cdot 5^2 \cdot 7^2}\right)^4,$$

where on the right-hand side the several prime factors have the indices following, viz.

2,	index	is	(59 +	160 +	15 + 24 -	50 - 12) = 196
3	"		(16+	16-	8 - 24) = 0,
5	"		(59 +	10+	3-16-	(48 - 8) = 0,
7	"		(8-	8) = 0,
11	"		(8-	8) = 0,
31	"		(8-	8) = 0,
41	"		(5+	3-	8) = 0,

or the right-hand side is $= 2^{196}$ as it should be. The value of log 2 calculated from $2^{196} = 10^{59}$ is log $2 = \frac{59}{196} = 301020$, viz. there is an error of a unit in fifth place of decimals. The actual value of 2^{196} has been given me by Mr Glaisher:

 $2^{196} = 10043$ 36277 66186 89222 13726 30771 32266 26576 37687 11142 45522 06336.*

Supposing log 2 calculated by the form, we then have

 $41 = (\frac{1025}{1024}) 2^{12} \div 10^2$, giving log 41,

and

 $3^8 = 10 \cdot \frac{6561}{6560} \cdot 2^4 \cdot 41$, giving log 3;

and formulæ may be obtained proper for the calculation of the logarithms of $\frac{11}{7}$, 11.31, and 7.31.

* The value was deduced by Mr Glaisher from Mr Shanks's value of 2¹⁹³ in his *Rectification of the Circle*, (1853), p. 90.