722.

A PROBLEM IN PARTITIONS.

[From the Messenger of Mathematics, vol. viI. (1878), pp. 187, 188.]

Take for instance 6 letters; a partition into 3 's, such as abc. def contains the 6 duads $a b, a c, b c, d e, d f$, ef. A partition into 2 's such as $a b . c d . e f$ contains the 3 duads $a b, c d$, ef. Hence if there are α partitions into 3's, and β partitions into 2's, and these contain all the duads each once and only once, $6 \alpha+3 \beta=15$, or $2 \alpha+\beta=5$. The solutions of this last equation are $(\alpha=0, \beta=5),(\alpha=1, \beta=3),(\alpha=2, \beta=1)$, and it is at once seen that the first two sets give solutions of the partition problem, but that the third set gives no solution; thus we have

$\alpha=0, \quad \beta=5$	$\alpha=1, \quad \beta=3$
$a b . c d \cdot e f$	$a b c \cdot d e f$
$a c \cdot b e \cdot d f$	$a d . b e \cdot c f$
$a d . b f . c e$	$a e \cdot b f \cdot c d$
$a e \cdot b d . c f$	$a f . b d . c e$.
$a f . b c \cdot d e$	

Similarly for any other number of letters, for instance 15 ; if we have α partitions into 5 's and β partitions into 3's, then, if these contain all the duads, $4 \alpha+2 \beta=14$, or what is the same $2 \alpha+\beta=7$; if $\alpha=0, \beta=7$, the partition problem can be solved (this is in fact the problem of the 15 school-girls): but can it be solved for any other values (and if so which values) of α, β ? Or again for 30 letters; if we have α partitions into 5's, β partitions into 3 's and γ partitions into 2 's; then, if these contain all the duads, $4 \alpha+2 \beta+\gamma=29$; and the question is for what values of α, β, γ, does the partitionproblem admit of solution.

The question is important from its connexion with the theory of groups, but it seems to be a very difficult one.

I take the opportunity of mentioning the following theorem: two non-commutative symbols α, β, which are such that $\beta \alpha=\alpha^{2} \beta^{2}$ cannot give rise to a group made up of symbols of the form $\alpha^{p} \beta^{q}$. In fact, the assumed relation gives $\beta \alpha^{2}=\alpha^{2} \beta \alpha^{2} \beta^{2}$; and hence, if $\beta \alpha^{2}$ be of the form in question, $=\alpha^{x} \beta^{y}$ suppose, we have

$$
\alpha^{x} \beta^{y}=\alpha^{2} \cdot \alpha^{x} \beta^{y} \cdot \beta^{2},=\alpha^{x+2} \beta^{y+2}
$$

that is, $1=\alpha^{2} \beta^{2}$, and thence $\beta \alpha=1$, that is, $\beta=\alpha^{-1}$, viz. the symbols are commutative, and the only group is that made up of the powers of α.

