722.

A PROBLEM IN PARTITIONS.

[From the Messenger of Mathematics, vol. VII. (1878), pp. 187, 188.]

TAKE for instance 6 letters; a partition into 3's, such as *abc*. *def* contains the 6 duads *ab*, *ac*, *bc*, *de*, *df*, *ef*. A partition into 2's such as *ab*.*cd*.*ef* contains the 3 duads *ab*, *cd*, *ef*. Hence if there are α partitions into 3's, and β partitions into 2's, and these contain all the duads each once and only once, $6\alpha + 3\beta = 15$, or $2\alpha + \beta = 5$. The solutions of this last equation are $(\alpha = 0, \beta = 5), (\alpha = 1, \beta = 3), (\alpha = 2, \beta = 1)$, and it is at once seen that the first two sets give solutions of the partition problem, but that the third set gives no solution; thus we have

$\alpha = 0, \beta = 5$	$\alpha = 1, \beta = 3$
ab.cd.ef	abc . def
ac.be.df	ad.be.cf
ad.bf.ce	ae.bf.cd
ae.bd.cf	af.bd.ce.
af.bc.de	

Similarly for any other number of letters, for instance 15; if we have α partitions into 5's and β partitions into 3's, then, if these contain all the duads, $4\alpha + 2\beta = 14$, or what is the same $2\alpha + \beta = 7$; if $\alpha = 0$, $\beta = 7$, the partition problem can be solved (this is in fact the problem of the 15 school-girls): but can it be solved for any other values (and if so which values) of α , β ? Or again for 30 letters; if we have α partitions into 5's, β partitions into 3's and γ partitions into 2's; then, if these contain all the duads, $4\alpha + 2\beta + \gamma = 29$; and the question is for what values of α , β , γ , does the partitionproblem admit of solution.

www.rcin.org.pl

The question is important from its connexion with the theory of groups, but it seems to be a very difficult one.

I take the opportunity of mentioning the following theorem: two non-commutative symbols α , β , which are such that $\beta \alpha = \alpha^2 \beta^2$ cannot give rise to a group made up of symbols of the form $\alpha^p \beta^q$. In fact, the assumed relation gives $\beta \alpha^2 = \alpha^2 \beta \alpha^2 \beta^2$; and hence, if $\beta \alpha^2$ be of the form in question, $= \alpha^x \beta^y$ suppose, we have

$$\alpha^{x}\beta^{y} = \alpha^{2} \cdot \alpha^{x}\beta^{y} \cdot \beta^{2}, = \alpha^{x+2}\beta^{y+2};$$

that is, $1 = \alpha^2 \beta^2$, and thence $\beta \alpha = 1$, that is, $\beta = \alpha^{-1}$, viz. the symbols are commutative, and the only group is that made up of the powers of α .