721.

FORMULÆ INVOLVING THE SEVENTH ROOTS OF UNITY.

[From the Messenger of Mathematics, vol. VII. (1878), pp. 177-182.]

LET ω be an imaginary cube root of unity, $\omega^2 + \omega + 1 = 0$, or say $\omega = \frac{1}{2} \{-1 + i \sqrt{3}\};$ $\alpha^3 = -7 (1+3\omega), \ \beta^3 = -7 (1+3\omega^2), \ \text{values giving} \ \alpha^3 \beta^3 = 343, \ \text{and the cube roots } \alpha, \ \beta$ being such that $\alpha\beta = 7$; then $\alpha + \beta$, $= \alpha + \frac{7}{\alpha}$, is a three-valued function (since changing the root ω we merely interchange α and $\frac{7}{\alpha}$); and if r be an imaginary seventh root of unity, then

3	(<i>r</i>	+	$r^{6})$	=	α	+	β	-	1,
3	$(r^2$	+	$r^{5})$	=	ωα	+	$\omega^2\beta$	-	1,
3	$(r^4$	+	r^{3}	=	$\omega^2 \alpha$	+	ωβ	_	1.

Any one of these formulæ gives the other two; for observe that we have $\alpha^3 = -\alpha\beta(1+3\omega)$, $\beta^3 = -\alpha\beta(1+3\omega^2)$, that is, $\alpha^2 = -\beta(1+3\omega)$, $\beta^2 = -\alpha(1+3\omega^2)$; hence, starting for instance with the first formula, we deduce

$$\begin{array}{l}9\left(r^{2}+r^{5}+2\right) = & \alpha^{2}+2\alpha\beta+\beta^{2}-2\alpha-2\beta+1,\\ & = -\beta\left(1+3\omega\right)+14-\alpha\left(1+3\omega^{2}\right)-2\alpha-2\beta+1,\\ & = -\alpha\left(3+3\omega^{2}\right)-\beta\left(3+3\omega\right)+15,\\ & = & 3\omega\alpha+3\omega^{2}\beta+15, \end{array}$$

that is,

$$3(r^2+r^5)=\omega\alpha+\omega^2\beta-1;$$

and in like manner by squaring each side of this we have the third formula

$$3(r^4+r^3)=\omega^2\alpha+\omega\beta-1.$$

www.rcin.org.pl

721]

The foregoing formulæ apply to the combinations $r + r^6$, $r^2 + r^5$, $r^4 + r^3$ of the seventh roots of unity, but we may investigate the theory for the roots themselves r, r^2 , r^3 , r^4 , r^5 , r^6 . These depend on the new radical $\sqrt{(-7)}$ or $i\sqrt{(7)}$; introducing instead hereof X, Y, where

$$X = \frac{1}{2} \{-1 + i\sqrt{7}\},\$$

$$Y = \frac{1}{2} \{-1 - i\sqrt{7}\},\$$

$$I^{3} = 6 + 3\omega X + (1 + 3\omega^{2}),\$$

$$I^{3} = 6 + 3\omega^{2} X + (1 + 3\omega),\$$

where

then if

 $AB = i\sqrt{(7)},$

we have (Lagrange, Équations Numériques, p. 294),

$$3r = X + A + B.$$

I found that, in order to bring this into connexion with the foregoing formula, $3(r+r^6) = \alpha + \beta - 1$, where as before $\alpha^3 = -7(1+3\omega)$, $\beta^3 = -7(1+3\omega^2)$, $\alpha\beta = 7$, it is necessary that *B*, *A* should be linear multiples of α , β respectively, the coefficients being rational functions of ω , *X*; and that the actual relations are

$$B = \frac{\alpha}{7} \left\{ 4 - \omega + X \left(1 - 2\omega \right) \right\},$$
$$A = \frac{\beta}{7} \left\{ 5 + \omega + X \left(3 + 2\omega \right) \right\};$$

in verification of which, it may be remarked that these equations give

$$AB = \frac{\alpha\beta}{49} \left\{ (20 - \omega - \omega^2) + X (17 - 4\omega - 4\omega^2) + X^2 (3 - 4\omega - 4\omega^2) \right\},\$$

viz. in virtue of the equation $\omega^2 + \omega + 1 = 0$, the term in $\{ \}$ is $= 21 + 21X + 7X^2$, = 7 $(X^2 + 3X + 3)$, or since $X^2 + X + 2 = 0$, this is = 7 (2X + 1), = 7 $i\sqrt{7}$; the equation thus is $7AB = \alpha\beta . i\sqrt{7}$, which is true in virtue of $AB = i\sqrt{7}$ and $\alpha\beta = 7$. The same relations may also be written

$$-\alpha = B (\omega^2 + X),$$

$$-\beta = A (\omega + X).$$

I found in the first instance

$$\begin{aligned} &3r = X + A + B, \\ &3r^{5} = -1 - X + A (\omega^{2} - X) + B (\omega - X), \\ &3r^{2} = X + \omega^{2}A + \omega B, \\ &3r^{5} = -1 - X + A (\omega - \omega^{2}X) + B (\omega^{2} - \omega X), \\ &3r^{4} = X + \omega A + \omega^{2}B, \\ &3r^{3} = -1 - X + A (1 - \omega X) + B (1 - \omega^{2}X), \end{aligned}$$

C. XI.

8

which in fact gave the foregoing formulæ

$$\begin{aligned} 3 & (r + r^{6}) = -1 + \alpha + \beta, \\ 3 & (r^{2} + r^{5}) = -1 + \omega \alpha + \omega^{2} \beta, \\ 3 & (r^{4} + r^{3}) = -1 + \omega^{2} \alpha + \omega \beta. \end{aligned}$$

But there is a want of symmetry in these expressions for r, r^2 , &c., inasmuch as the values of r, r^2 , r^4 are of a different form from those of r^6 , r^5 , r^3 ; to obtain the proper forms, we must for A, B substitute their values in terms of α , β , and we thus obtain

$$\begin{split} &3r = X + \frac{\alpha}{7} \left\{ \begin{array}{ccc} 4 - \omega + X \left(-1 - 2\omega \right) \right\} + \frac{\beta}{7} \left\{ \begin{array}{ccc} 5 + \omega + X \left(-3 + 2\omega \right) \right\}, \\ &3r^6 = -1 - X + \frac{\alpha}{7} \left\{ -3 + \omega + X \left(-1 + 2\omega \right) \right\} + \frac{\beta}{7} \left\{ -2 - \omega + X \left(-3 - 2\omega \right) \right\}, \\ &3r^2 = X + \frac{\alpha}{7} \left\{ -1 + 5\omega + X \left(-2 + 3\omega \right) \right\} + \frac{\beta}{7} \left\{ -4 - 5\omega + X \left(-1 - 3\omega \right) \right\}, \\ &3r^5 = -1 - X + \frac{\alpha}{7} \left\{ -1 + 2\omega + X \left(-2 - 3\omega \right) \right\} + \frac{\beta}{7} \left\{ -3 - 2\omega + X \left(-1 + 3\omega \right) \right\}, \\ &3r^4 = X + \frac{\alpha}{7} \left\{ -5 - 4\omega + X \left(-3 - \omega \right) \right\} + \frac{\beta}{7} \left\{ -1 + 4\omega + X \left(-2 + \omega \right) \right\}, \\ &3r^3 = -1 - X + \frac{\alpha}{7} \left\{ -2 - 3\omega + X \left(-3 + \omega \right) \right\} + \frac{\beta}{7} \left\{ -1 + 3\omega + X \left(-2 - \omega \right) \right\}; \end{split}$$

viz. each of the imaginary seventh roots is thus expressed as a linear function of the cubic radicals α , β (involving ω under the radical signs) with coefficients which are functions of ω , X.

Recollecting the equations $\alpha^2 = -\beta (1 + 3\omega)$, $\beta^2 = -\alpha (1 + 3\omega^2)$, $\alpha\beta = 7$; $\omega^2 + \omega + 1 = 0$, $X^2 + X + 2 = 0$; it is clear that, starting for instance from the equation for 3r, and squaring each side of the equation, we should, after proper reductions, obtain for $9r^2$ an expression of the like form; viz. we thus in fact obtain the expression for $3r^2$; then from the expressions of 3r and $3r^2$, multiplying together and reducing, we should obtain the expression for $3r^3$; and so on; viz. from any one of the six equations we can in this manner obtain the remaining five equations.

At the time of writing what precedes I did not recollect Jacobi's paper "Ueber die Kreistheilung und ihre Anwendung auf die Zahlentheorie," *Berliner Monatsber.*, (1837) and *Crelle*, t. xxx. (1846), pp. 166—182; [*Ges. Werke*, t. vI. pp. 254—274]. The starting-point is the following theorem: if x be a root of the equation $\frac{x^p-1}{x-1} = 0$, p a prime number, and if g is a prime root of p, and

$$F(\alpha) = x + \alpha x^g + \alpha^2 x^{g^2} + \ldots + \alpha^{p-1} x^{g^{p-2}},$$

where α is any root of $\frac{\alpha^{p-1}-1}{\alpha-1}=0$, we have

 $F(\alpha^m) F(\alpha^n) = \psi(\alpha) F(\alpha^{m+n}),$

www.rcin.org.pl

721]

where $\psi(\alpha)$ is a rational and integral function of α with integral coefficients; or, what is the same thing, if α and β be any two roots of the above-mentioned equation, then

$$F(\alpha) F(\beta) = \psi(\alpha, \beta) F(\alpha\beta),$$

where $\psi(\alpha, \beta)$ is a rational and integral function of α , β with integral coefficients. As regards the proof of this, it may be remarked that, writing x^3 for x, $F(\alpha)$, $F(\beta)$, and $F(\alpha\beta)$ become respectively $\alpha^{-1}F(\alpha)$, $\beta^{-1}F(\beta)$, $(\alpha\beta)^{-1}F(\alpha\beta)$; hence, $F(\alpha)F(\beta) \div F(\alpha\beta)$ remains unaltered, and it thus appears that the function in question is expressible rationally in terms of the *adjoint* quantities α and β . With this explanation the following extract will be easily intelligible:

"The true form (never yet given) of the roots of the equation $x^p - 1 = 0$ is as follows: The roots, as is known, can easily be expressed by mere addition of the functions $F(\alpha)$. If λ is a factor of p-1 and $\alpha^{\lambda} = 1$, then it is further known that $\{F(\alpha)\}^{\lambda}$ is a mere function of α . But it is only necessary to know those values of $F(\alpha)$ for which λ is the power of a prime number. For suppose $\lambda\lambda'\lambda''$... is a factor of p-1; further let $\lambda, \lambda', \lambda'', \ldots$ be powers of different prime numbers, and $\alpha, \alpha', \alpha'', \ldots$ prime λ th, λ' th, λ'' th, ... roots of unity, then

$$F(\alpha \alpha' \alpha'' \ldots) = \frac{F(\alpha) F(\alpha') F(\alpha'') \ldots}{\psi(\alpha, \alpha', \alpha'', \ldots)}$$

where $\psi(\alpha, \alpha', \alpha'', ...)$ denotes a rational and integral function of $\alpha, \alpha', \alpha'', ...$ with integral coefficients. Hence, considering always the (p-1)th roots of unity as given, there are contained in the expression for x only radicals, the exponents of which are powers of prime numbers, and products of such radicals. But if λ is a power of a prime number, $= \mu^n$, suppose, the corresponding function $F(\alpha)$ can be found as follows: Assume

$$F(\alpha) F(\alpha^{i}) = \psi_{i}(\alpha) F(\alpha^{i+1})$$
:

then

$$F(\alpha) = \sqrt[\mu]{\psi_1(\alpha) \psi_2(\alpha) \dots \psi_{\mu-1}(\alpha) F(\alpha^{\mu})},$$

$$F(\alpha^{\mu}) = \sqrt[\mu]{\psi_1(\alpha^{\mu}) \psi_2(\alpha^{\mu}) \dots \psi_{\mu-1}(\alpha^{\mu}) F(\alpha^{\mu^2})},$$

and so on, up to

$$F(\alpha^{\mu^{n-1}}) = \sqrt[\mu]{\{\psi_1(\alpha^{\mu^{n-1}}) \psi_2(\alpha^{\mu^{n-1}}) \dots \psi_{\mu-1}(\alpha^{\mu^{n-1}})(-)}]{\mu}},$$

so that the formulæ contain ultimately μ th roots only. It is remarked in a footnote that, when n=1, the $\mu-1$ functions can always be reduced to one-sixth part in number, and that by an induction continued as far as $\mu=31$, Jacobi had found that all the functions ψ could be expressed by means of the values of a single one of these functions.

"The $\mu - 1$ functions determine, not only the values of all the magnitudes under the radical signs, but also the mutual dependence of the radicals themselves. For replacing α by the different powers of α , one can by means of the values so obtained for these functions rationally express all the $\mu^n - 1$ functions $F(\alpha^i)$ by means of the powers of $F(\alpha)$; since all the $\mu^n - 1$ magnitudes $\{F(\alpha)\}^i \div F(\alpha^i)$ are each of them

8-2

equal to a product of several of the functions $\psi(\alpha)$. Herein consists one of the great advantages of the method over that of Gauss, since in this the discovery of the mutual dependency of the different radicals requires a special investigation, which, on account of its laboriousness, is scarcely practicable for even small primes; whereas the introduction of the functions ψ gives simultaneously the quantities under the radical signs, and the mutual dependency of the radicals. The formation of the functions ψ is obtained by a very simple algorithm, which requires only that one should, from the table for the residues of g^m , form another table giving $g^{m'} = 1 + g^m \pmod{p}$, [see Table IV. of the Memoir]. According to these rules one of my auditors [Rosenhain] in a Prize-Essay of the [Berlin] Academy has completely solved the equations $x^p - 1 = 0$ for all the prime numbers p up to 103."

I am endeavouring to procure the Prize-Essay just referred to. As an example which however is too simple a one to fully bring out Jacobi's method, and its difference from that of Gauss—consider the equation for the fifth roots of unity, $x^4 + x^3 + x^2 + x + 1 = 0$. According to Gauss, we have $x + x^4$ and $x^2 + x^3$, the roots of the equation $u^2 + u - 1 = 0$; say $x + x^4 = \frac{1}{2} \{-1 + \sqrt{(5)}\}$, $x^2 + x^3 = \frac{1}{2} \{-1 - \sqrt{(5)}\}$. The first of these, combined with $x \cdot x^4 = 1$, gives $x - x^4 = \sqrt{[-\frac{1}{2} \{5 + \sqrt{(5)}\}]}$; and thence $4x = -1 + \sqrt{(5)} + \sqrt{[-2 \{5 + \sqrt{(5)}\}]}$; if from the second of them, combined with $x^2 \cdot x^3 = 1$, we were in like manner to obtain the values of x^2 and x^3 , it would be necessary to investigate the signs to be given to the radicals, in order that the values so obtained for x^2 and x^3 might be consistent with the value just found for x. For the Jacobian process, observing that a prime fourth root of unity is $\alpha = i$, and writing for shortness F_1 , F_2 , F_3 , F_4 to denote $F(\alpha)$, $F(\alpha^2)$, $F(\alpha^3)$, $F(\alpha^4)$ respectively, these functions are

$$egin{array}{lll} F_1 = x - x^4 + i \, (x^2 - x^3), \ F_2 = x + x^4 - \, (x^2 + x^3), \ F_3 = x - x^4 - i \, (x^2 - x^3), \ F_4 = x + x^4 + \, x^2 + x^3 \,. \end{array}$$

viz. we have $F_4 = -1$, $F_2^2 = 5$, or say $F_2 = \sqrt{(5)}$, $F_1^2 = -(1+2i) F_2$, $= -(1+2i) \sqrt{(5)}$; and similarly $F_3^2 = -(1-2i) F_2$, $= -(1-2i) \sqrt{(5)}$; but also $F_1F_3 = -5$, so that the values $F_1 = \sqrt{\{-(1+2i)\sqrt{(5)}\}}$, $F_3 = \sqrt{\{-(1-2i)\sqrt{(5)}\}}$, must be taken consistently with this last equation $F_1F_3 = \sqrt{(5)}$. The values of F_1 , F_2 , F_3 , F_4 being thus known, the four equations then give simultaneously x, x^4 , x^2 , x^3 , these values being of course consistent with each other. It may be remarked that the form in which x presents itself is

$$4x = -1 + \sqrt{(5)} + \sqrt{\{-(1+2i)\sqrt{(5)}\}} + \sqrt{\{-(1-2i)\sqrt{(5)}\}},$$

with the before-mentioned condition as to the last two radicals; with this condition we, in fact, have

$$\sqrt{\{-(1+2i)\sqrt{(5)}\}} + \sqrt{\{-(1-2i)\sqrt{(5)}\}} = \sqrt{[-2\{5+\sqrt{(5)}\}]},$$

as is at once verified by squaring the two sides.

60

www.rcin.org.pl

721