721.

FORMULÆ INVOLVING THE SEVENTH ROOTS OF UNITY.

[From the Messenger of Mathematics, vol. viI. (1878), pp. 177-182.]
LET ω be an imaginary cube root of unity, $\omega^{2}+\omega+1=0$, or say $\omega=\frac{1}{2}\{-1+i \sqrt{ }(3)\}$; $\alpha^{3}=-7(1+3 \omega), \beta^{3}=-7\left(1+3 \omega^{2}\right)$, values giving $\alpha^{3} \beta^{3}=343$, and the cube roots α, β being such that $\alpha \beta=7$; then $\alpha+\beta,=\alpha+\frac{7}{\alpha}$, is a three-valued function (since changing the root ω we merely interchange α and $\frac{7}{\alpha}$); and if r be an imaginary seventh root of unity, then

$$
\begin{aligned}
& 3\left(r+r^{6}\right)=\alpha+\beta-1, \\
& 3\left(r^{2}+r^{5}\right)=\omega \alpha+\omega^{2} \beta-1, \\
& 3\left(r^{4}+r^{3}\right)=\omega^{2} \alpha+\omega \beta-1 .
\end{aligned}
$$

Any one of these formulæ gives the other two ; for observe that we have $\alpha^{3}=-\alpha \beta(1+3 \omega)$, $\beta^{3}=-\alpha \beta\left(1+3 \omega^{2}\right)$, that is, $\alpha^{2}=-\beta(1+3 \omega), \beta^{2}=-\alpha\left(1+3 \omega^{2}\right)$; hence, starting for instance with the first formula, we deduce

$$
\begin{aligned}
9\left(r^{2}+r^{5}+2\right)= & \alpha^{2}+2 \alpha \beta+\beta^{2}-2 \alpha-2 \beta+1 \\
= & -\beta(1+3 \omega)+14-\alpha\left(1+3 \omega^{2}\right)-2 \alpha-2 \beta+1 \\
= & -\alpha\left(3+3 \omega^{2}\right)-\beta(3+3 \omega)+15 \\
= & 3 \omega \alpha+3 \omega^{2} \beta+15 \\
& 3\left(r^{2}+r^{5}\right)=\omega \alpha+\omega^{2} \beta-1
\end{aligned}
$$

that is,
and in like manner by squaring each side of this we have the third formula

$$
3\left(r^{4}+r^{3}\right)=\omega^{2} \alpha+\omega \beta-1
$$

The foregoing formulæ apply to the combinations $r+r^{6}, r^{2}+r^{5}, r^{4}+r^{3}$ of the seventh roots of unity, but we may investigate the theory for the roots themselves $r, r^{2}, r^{3}, r^{4}, r^{5}, r^{6}$. These depend on the new radical $\sqrt{ }(-7)$ or $i \sqrt{ }(7)$; introducing instead hereof X, Y, where

$$
\begin{aligned}
& X=\frac{1}{2}\{-1+i \sqrt{ }(7)\}, \\
& Y=\frac{1}{2}\{-1-i \sqrt{ }(7)\},
\end{aligned}
$$

then if

$$
\begin{aligned}
& A^{3}=6+3 \omega X+\left(1+3 \omega^{2}\right) Y, \\
& B^{3}=6+3 \omega^{2} X+(1+3 \omega) Y,
\end{aligned}
$$

where

$$
A B=i \sqrt{ }(7)
$$

we have (Lagrange, Équations Numériques, p. 294),

$$
3 r=X+A+B .
$$

I found that, in order to bring this into connexion with the foregoing formula, $3\left(r+r^{6}\right)=\alpha+\beta-1$, where as before $\alpha^{3}=-7(1+3 \omega), \beta^{3}=-7\left(1+3 \omega^{2}\right), \alpha \beta=7$, it is necessary that B, A should be linear multiples of α, β respectively, the coefficients being rational functions of ω, X; and that the actual relations are

$$
\begin{aligned}
& B=\frac{\alpha}{7}\{4-\omega+X(1-2 \omega)\} \\
& A=\frac{\beta}{7}\{5+\omega+X(3+2 \omega)\}
\end{aligned}
$$

in verification of which, it may be remarked that these equations give

$$
A B=\frac{\alpha \beta}{49}\left\{\left(20-\omega-\omega^{2}\right)+X\left(17-4 \omega-4 \omega^{2}\right)+X^{2}\left(3-4 \omega-4 \omega^{2}\right)\right\},
$$

viz. in virtue of the equation $\omega^{2}+\omega+1=0$, the term in $\left\}\right.$ is $=21+21 X+7 X^{2}$, $=7\left(X^{2}+3 X+3\right)$, or since $X^{2}+X+2=0$, this is $=7(2 X+1),=7 i \sqrt{ }(7)$; the equation thus is $7 A B=\alpha \beta . i \sqrt{ }(7)$, which is true in virtue of $A B=i \sqrt{ }(7)$ and $\alpha \beta=7$. The same relations may also be written

$$
\begin{aligned}
& -\alpha=B\left(\omega^{2}+X\right), \\
& -\beta=A(\omega+X) .
\end{aligned}
$$

I found in the first instance

$$
\begin{aligned}
& 3 r=X+A+B, \\
& 3 r^{6}=-1-X+A\left(\omega^{2}-X\right)+B(\omega-X), \\
& 3 r^{2}=X+\omega^{2} A+\omega B, \\
& 3 r^{5}=-1-X+A\left(\omega-\omega^{2} X\right)+B\left(\omega^{2}-\omega X\right), \\
& 3 r^{4}=X+\omega A+\omega^{2} B, \\
& 3 r^{3}=-1-X+A(1-\omega X)+B\left(1-\omega^{2} X\right),
\end{aligned}
$$

which in fact gave the foregoing formulæ

$$
\begin{aligned}
& 3\left(r+r^{6}\right)=-1+\alpha+\beta, \\
& 3\left(r^{2}+r^{5}\right)=-1+\omega \alpha+\omega^{2} \beta, \\
& 3\left(r^{4}+r^{3}\right)=-1+\omega^{2} \alpha+\omega \beta .
\end{aligned}
$$

But there is a want of symmetry in these expressions for $r, r^{2}, \& c$ c., inasmuch as the values of r, r^{2}, r^{4} are of a different form from those of r^{6}, r^{5}, r^{3}; to obtain the proper forms, we must for A, B substitute their values in terms of α, β, and we thus obtain

$$
\begin{aligned}
& 3 r=X+\frac{\alpha}{7}\{4-\omega+X(1-2 \omega)\}+\frac{\beta}{7}\{5+\omega+X(3+2 \omega)\}, \\
& 3 r^{6}=-1-X+\frac{\alpha}{7}\{3+\omega+X(-1+2 \omega)\}+\frac{\beta}{7}\{2-\omega+X(-3-2 \omega)\}, \\
& 3 r^{2}=\quad X+\frac{\alpha}{7}\{1+5 \omega+X(2+3 \omega)\}+\frac{\beta}{7}\{-4-5 \omega+X(-1-3 \omega)\}, \\
& 3 r^{5}=-1-X+\frac{\alpha}{7}\{-1+2 \omega+X(-2-3 \omega)\}+\frac{\beta}{7}\{-3-2 \omega+X(1+3 \omega)\}, \\
& 3 r^{4}=\quad X+\frac{\alpha}{7}\{-5-4 \omega+X(-3-\omega)\}+\frac{\beta}{7}\{-1+4 \omega+X(-2+\omega)\}, \\
& 3 r^{3}=-1-X+\frac{\alpha}{7}\{-2-3 \omega+X(3+\omega)\}+\frac{\beta}{7}\{1+3 \omega+X(2-\omega)\} ;
\end{aligned}
$$

viz. each of the imaginary seventh roots is thus expressed as a linear function of the cubic radicals α, β (involving ω under the radical signs) with coefficients which are functions of ω, X.

Recollecting the equations $\alpha^{2}=-\beta(1+3 \omega), \beta^{2}=-\alpha\left(1+3 \omega^{2}\right), \alpha \beta=7 ; \omega^{2}+\omega+1=0$, $X^{2}+X+2=0$; it is clear that, starting for instance from the equation for $3 r$, and squaring each side of the equation, we should, after proper reductions, obtain for $9 r^{2}$ an expression of the like form; viz. we thus in fact obtain the expression for $3 r^{2}$; then from the expressions of $3 r$ and $3 r^{2}$, multiplying together and reducing, we should obtain the expression for $3 r^{3}$; and so on; viz. from any one of the six equations we can in this manner obtain the remaining five equations.

At the time of writing what precedes I did not recollect Jacobi's paper "Ueber die Kreistheilung und ihre Anwendung auf die Zahlentheorie," Berliner Monatsber., (1837) and Crelle, t. xxx. (1846), pp. 166-182; [Ges. Werke, t. vi. pp. 254-274]. The starting-point is the following theorem: if x be a root of the equation $\frac{x^{p}-1}{x-1}=0$, p a prime number, and if g is a prime root of p, and

$$
F(\alpha)=x+\alpha x^{g}+\alpha^{2} x^{\rho^{2}}+\ldots+\alpha^{p-1} x^{p-2},
$$

where α is any root of $\frac{\alpha^{p-1}-1}{\alpha-1}=0$, we have

$$
F\left(\alpha^{m}\right) F\left(\alpha^{n}\right)=\psi(\alpha) F\left(\alpha^{m+n}\right),
$$

where $\psi(\alpha)$ is a rational and integral function of α with integral coefficients; or, what is the same thing, if α and β be any two roots of the above-mentioned equation, then

$$
F^{\prime}(\alpha) F(\beta)=\psi(\alpha, \beta) F(\alpha \beta),
$$

where $\psi(\alpha, \beta)$ is a rational and integral function of α, β with integral coefficients. As regards the proof of this, it may be remarked that, writing x^{3} for $x, F(\alpha), F(\beta)$, and $F(\alpha \beta)$ become respectively $\alpha^{-1} F(\alpha), \beta^{-1} F(\beta),(\alpha \beta)^{-1} F(\alpha \beta)$; hence, $F(\alpha) F(\beta) \div F(\alpha \beta)$ remains unaltered, and it thus appears that the function in question is expressible rationally in terms of the adjoint quantities α and β. With this explanation the following extract will be easily intelligible:
"The true form (never yet given) of the roots of the equation $x^{p}-1=0$ is as follows: The roots, as is known, can easily be expressed by mere addition of the functions $F(\alpha)$. If λ is a factor of $p-1$ and $a^{\lambda}=1$, then it is further known that $\left\{F^{\prime}(\alpha)\right\}^{\lambda}$ is a mere function of α. But it is only necessary to know those values of $F^{\prime}(\alpha)$ for which λ is the power of a prime number. For suppose $\lambda \lambda^{\prime} \lambda^{\prime \prime} \ldots$ is a factor of $p-1$; further let $\lambda, \lambda^{\prime}, \lambda^{\prime \prime}, \ldots$ be powers of different prime numbers, and $\alpha, \alpha^{\prime}, \alpha^{\prime \prime}, \ldots$ prime λ th, λ^{\prime} th, $\lambda^{\prime \prime t}$ th, \ldots roots of unity, then

$$
F\left(\alpha \alpha^{\prime} \alpha^{\prime \prime} \ldots\right)=\frac{F(\alpha) F\left(\alpha^{\prime}\right) F\left(\alpha^{\prime \prime}\right) \ldots}{\psi\left(\alpha, \alpha^{\prime}, \alpha^{\prime \prime}, \ldots\right)}
$$

where $\psi\left(\alpha, \alpha^{\prime}, \alpha^{\prime \prime}, \ldots\right)$ denotes a rational and integral function of $\alpha, \alpha^{\prime}, \alpha^{\prime \prime}, \ldots$ with integral coefficients. Hence, considering always the $(p-1)$ th roots of unity as given, there are contained in the expression for x only radicals, the exponents of which are powers of prime numbers, and products of such radicals. But if λ is a power of a prime number, $=\mu^{n}$, suppose, the corresponding function $F(\alpha)$ can be found as follows: Assume

$$
F(\alpha) F\left(\alpha^{i}\right)=\psi_{i}(\alpha) F\left(\alpha^{i+1}\right):
$$

then

$$
\begin{aligned}
& F(\alpha)=\sqrt[\mu]{ }\left\{\begin{array}{l}
\left\{\psi_{1}(\alpha)\right. \\
\psi_{2}(\alpha)
\end{array} \ldots \psi_{\mu-1}(\alpha) F\left(\alpha^{\mu}\right)\right\}, \\
& F\left(\alpha^{\mu}\right)=\sqrt[\mu]{ }=\left\{\psi_{1}\left(\alpha^{\mu}\right) \psi_{2}\left(\alpha^{\mu}\right) \ldots \psi_{\mu-1}\left(\alpha^{\mu}\right) F\left(\alpha^{\mu^{2}}\right)\right\},
\end{aligned}
$$

and so on, up to

$$
F\left(\alpha^{\mu n-1}\right)=\sqrt[\mu]{\{ }\left\{\psi_{1}\left(\alpha^{\mu n-1}\right) \psi_{2}\left(\alpha^{\mu n-1}\right) \ldots \psi_{\mu-1}\left(\alpha^{\mu n-1}\right)(-)^{\frac{p-1}{\mu}} p\right\}, "
$$

so that the formulæ contain ultimately μ th roots only. It is remarked in a footnote that, when $n=1$, the $\mu-1$ functions can always be reduced to one-sixth part in number, and that by an induction continued as far as $\mu=31$, Jacobi had found that all the functions ψ could be expressed by means of the values of a single one of these functions.
"The $\mu-1$ functions determine, not only the values of all the magnitudes under the radical signs, but also the mutual dependence of the radicals themselves. For replacing α by the different powers of α, one can by means of the values so obtained for these functions rationally express all the $\mu^{n}-1$ functions $F\left(\alpha^{i}\right)$ by means of the powers of $F(\alpha)$; since all the $\mu^{n}-1$ magnitudes $\{F(\alpha)\}^{i} \div F\left(\alpha^{i}\right)$ are each of them

$$
8-2
$$

equal to a product of several of the functions $\psi(\alpha)$. Herein consists one of the great advantages of the method over that of Gauss, since in this the discovery of the mutual dependency of the different radicals requires a special investigation, which, on account of its laboriousness, is scarcely practicable for even small primes; whereas the introduction of the functions ψ gives simultaneously the quantities under the radical signs, and the mutual dependency of the radicals. The formation of the functions ψ is obtained by a very simple algorithm, which requires only that one should, from the table for the residues of g^{m}, form another table giving $g^{m^{\prime}}=1+g^{m}(\bmod . p)$, [see Table IV. of the Memoir]. According to these rules one of my auditors [Rosenhain] in a Prize-Essay of the [Berlin] Academy has completely solved the equations $x^{p}-1=0$ for all the prime numbers p up to 103."

I am endeavouring to procure the Prize-Essay just referred to. As an examplewhich however is too simple a one to fully bring out Jacobi's method, and its difference from that of Gauss-consider the equation for the fifih roots of unity, $x^{4}+x^{3}+x^{2}+x+1=0$. According to Gauss, we have $x+x^{4}$ and $x^{2}+x^{3}$, the roots of the equation $u^{2}+u-1=0$; say $x+x^{4}=\frac{1}{2}\{-1+\sqrt{ }(5)\}, x^{2}+x^{3}=\frac{1}{2}\{-1-\sqrt{ }(5)\}$. The first of these, combined with $x . x^{4}=1$, gives $x-x^{4}=\sqrt{ }\left[-\frac{1}{2}\{5+\sqrt{ }(5)\}\right]$; and thence $4 x=-1+\sqrt{ }(5)+\sqrt{ }[-2\{5+\sqrt{ }(5)\}]$; if from the second of them, combined with $x^{2} \cdot x^{3}=1$, we were in like manner to obtain the values of x^{2} and x^{3}, it would be necessary to investigate the signs to be given to the radicals, in order that the values so obtained for x^{2} and x^{3} might be consistent with the value just found for x. For the Jacobian process, observing that a prime fourth root of unity is $\alpha=i$, and writing for shortness $F_{1}, F_{2}, F_{3}, F_{4}$ to denote $F(\alpha)$, $F\left(\alpha^{2}\right), F\left(\alpha^{3}\right), F\left(\alpha^{4}\right)$ respectively, these functions are

$$
\begin{aligned}
& F_{1}=x-x^{4}+i\left(x^{2}-x^{3}\right), \\
& F_{2}=x+x^{4}-\left(x^{2}+x^{3}\right), \\
& F_{3}=x-x^{4}-i\left(x^{2}-x^{3}\right), \\
& F_{4}=x+x^{4}+x^{2}+x^{3},
\end{aligned}
$$

viz. we have $F_{4}=-1, F_{2}{ }^{2}=5$, or say $F_{2}=\sqrt{ }(5), F_{1}{ }^{2}=-(1+2 i) F_{2},=-(1+2 i) \sqrt{ }(5)$; and similarly $F_{3}{ }^{2}=-(1-2 i) F_{2},=-(1-2 i) \sqrt{ }(5)$; but also $F_{1} F_{3}=-5$, so that the values $F_{1}=\sqrt{ }\{-(1+2 i) \sqrt{ }(5)\}, F_{3}=\sqrt{ }\{-(1-2 i) \sqrt{ }(5)\}$, must be taken consistently with this last equation $F_{1} F_{3}=\sqrt{ }(5)$. The values of $F_{1}, F_{2}, F_{3}, F_{4}$ being thus known, the four equations then give simultaneously x, x^{4}, x^{2}, x^{3}, these values being of course consistent with each other. It may be remarked that the form in which x presents itself is

$$
4 x=-1+\sqrt{ }(5)+\sqrt{ }\{-(1+2 i) \sqrt{ }(5)\}+\sqrt{ }\{-(1-2 i) \sqrt{ }(5)\},
$$

with the before-mentioned condition as to the last two radicals; with this condition we, in fact, have

$$
\sqrt{ }\{-(1+2 i) \sqrt{ }(5)\}+\sqrt{ }\{-(1-2 i) \sqrt{ }(5)\}=\sqrt{ }[-2\{5+\sqrt{ }(5)\}],
$$

as is at once verified by squaring the two sides.

