718.

ADDITION TO MR GENESE'S NOTE ON THE THEORY OF ENVELOPES.

[From the Messenger of Mathematics, vol. viI. (1878), pp. 62, 63.]
THE example, although simple, is an instructive one. Introducing z, μ for homogeneity, the equation is

$$
\lambda^{2} y(y-b z)+2 \lambda \mu x y+\mu^{2} x(x-a z)=0,
$$

giving the envelope

$$
x y[(x-a z)(y-b z)-x y]=0 ;
$$

that is,

$$
x y(b x+a y-a b z) z=0 ;
$$

viz. we have thus the four lines

$$
x=0, \quad y=0, \quad \frac{x}{a}+\frac{y}{b}-z=0, \quad z=0 .
$$

Writing these values successively in the equation of the curve, we find respectively

$$
\begin{aligned}
\lambda^{2} y(y-b z) & =0, \\
\mu^{2} x(x-a z) & =0, \\
(b \lambda-a \mu)^{2} \frac{x y}{a b} & =0, \\
(\lambda y+\mu x)^{2} & =0
\end{aligned}
$$

viz. in each case the equation in λ, μ has (as it should have) two equal roots; but in the first three cases the values are constant; viz. we find $\lambda=0, \mu=0, b \lambda-a \mu=0$, respectively; and the curves $x=0, y=0, \frac{x}{a}+\frac{y}{b}-z=0$, are for this reason not proper envelopes.

It is to be remarked that writing in the equation of the parabola these values $\lambda=0, \mu=0, b \lambda-a \mu=0$ successively, we find respectively

$$
\begin{array}{r}
x(x-a z)=0 \\
y(y-b z)=0 \\
(b x+a y)(b \cdot x+a y-a b z)=0
\end{array}
$$

viz. in each case the parabola reduces itself to a pair of lines, one of the given lines and a line parallel thereto through the intersection of the other two lines; the parabola thus becomes a curve having a $d p$ on the line at infinity.

In the fourth case $z=0$, the equation in λ, μ is $(\lambda y+\mu x)^{2}=0$, giving a variable value $\lambda \div \mu=-x \div y$; hence $z=0$, the line at infinity is a proper envelope.

The true geometrical result is that the envelope consists of the three points A, B, C, and the line at infinity; a point qua curve of the order 0 and class 1 is not representable by a single equation in point-coordinates, and hence the peculiarity in the form of the analytical result.

