443.

NOTE ON THE SOLUTION OF THE QUARTIC EQUATION

$$
\alpha U+6 \beta H=0 .
$$

[From the Mathematische Annalen, vol. 1. (1869), pp. 544, 55.$]$
If U denote the quartic function $(a, b, c, d, e \chi x, y)^{4}, H$ its Hessian

$$
=\left(a c-b^{2}, 2(a d-b c), a e+2 b d-3 c^{2}, 2(b e-c d), c e-d^{2} 久 x, y\right)^{4},
$$

α and β constants, then we may find the linear factors of the function $\alpha U+6 \beta H$ (or what is the same thing solve the equation $\alpha U+6 \beta H=0$) by a formula almost identical with that given by me (Fifth Memoir on-Quantics, Phil. Trans. vol. cxlviri. (1858), see p. 446, [156]) in regard to the original quartic function U.

In fact (reproducing the investigation) if I, J are the two invariants, $M=\frac{I^{3}}{4 J^{2}}$, Φ the cubicovariant

$$
=\left(-a^{2} d+3 a b c-2 b^{3}, \& c \delta(x, y)^{6}\right.
$$

then the identical equation $J U^{3}-I U^{2} H+4 H^{3}=-\Phi^{2}$, may be written $(1,0,-M, M \gamma I H, J U)^{3}$ $=-\frac{1}{4} I^{3} \Phi^{2}$, whence if $\omega_{1}, \omega_{2}, \omega_{3}$ are the roots of the equation $\left(1,0,-M, M \gamma(\omega, 1)^{3}=0\right.$, or what is the same thing $\omega^{3}-M(\omega-1)=0$; then the functions

$$
I H-\omega_{1} J U, I H-\omega_{2} J U, I H-\omega_{3} J U
$$

are each of them a square: writing

$$
\begin{aligned}
& \left(\omega_{2}-\omega_{3}\right)\left(I H-\omega_{1} J U\right)=X^{2} \\
& \left(\omega_{3}-\omega_{1}\right)\left(I H-\omega_{2} J U\right)=Y^{2}, \\
& \left(\omega_{1}-\omega_{2}\right)\left(I H-\omega_{3} J U\right)=Z^{2}
\end{aligned}
$$

so that identically $X^{2}+Y^{2}+Z^{3}=0$, the expression $\alpha X+\beta Y+\gamma Z$ will be a square if only $\alpha^{2}+\beta^{2}+\gamma^{2}=0$. (To see this observe that in virtue of the equation $X^{2}+Y^{2}+Z^{2}=0$, we have $X+i Y, X-i Y$ each of them a square, and thence

$$
\alpha X+\beta Y+\gamma Z,=\frac{1}{2}(\alpha+i \beta)(X-i Y)+\frac{1}{2}(\alpha-i \beta)(X-i Y)-\gamma i \sqrt{X^{2}}+Y^{2},
$$

is a square if the condition in question be satisfied.)
Hence in particular writing

$$
\sqrt{\omega_{2}-\omega_{3}} \sqrt{\alpha I+6 \beta \omega_{1} J}, \ldots, \quad \sqrt{\omega_{1}-\omega_{2}} \sqrt{\alpha I+6 \beta \omega_{3} J},
$$

for α, β, γ, we have

$$
\left(\omega_{2}-\omega_{3}\right) \sqrt{\alpha I+6 \beta \omega_{1} J} \sqrt{I H+\omega_{1} J} \bar{U}+\ldots+\left(\omega_{1}-\omega_{2}\right) \sqrt{\alpha I+6 \beta \omega_{3} J} \sqrt{I H+\omega_{3} J U}
$$

a perfect square, and since the product of the four different values is a multiple of $(\alpha U+6 \beta H)^{2}$ (this is most readily seen by observing that for $\alpha U+6 \beta H=0$, the irrational expression omitting a factor is $\left(\omega_{2}-\omega_{3}\right)\left(\alpha I+6 \beta \omega_{1} J\right)+\ldots+\left(\omega_{1}-\omega_{2}\right)\left(\alpha I+6 \beta \omega_{3} J\right)$, which vanishes identically) it follows that the expression in question is the square of a linear factor of $\alpha U+6 \beta H$.

It thus appears that the radicals (other than those arising from the solution of $U=0$) contained in the solution of the equation $\alpha U+6 \beta H=0$ are the three roots

$$
\sqrt{\alpha I+6 \beta \omega_{1} J}, \quad \sqrt{\alpha I+6 \beta \omega_{2} J}, \quad \sqrt{\alpha I+6 \beta \omega_{3} J} .
$$

Cambridge, September 2, 1868.
c. VII.

