443.

NOTE ON THE SOLUTION OF THE QUARTIC EQUATION $\alpha U + 6\beta H = 0.$

[From the Mathematische Annalen, vol. 1. (1869), pp. 54, 55.]

IF U denote the quartic function (a, b, c, d, $e i (x, y)^4$, H its Hessian

$$=(ac-b^2, 2(ad-bc), ae+2bd-3c^2, 2(be-cd), ce-d^2 \Im x, y)^4,$$

 α and β constants, then we may find the linear factors of the function $\alpha U + 6\beta H$ (or what is the same thing solve the equation $\alpha U + 6\beta H = 0$) by a formula almost identical with that given by me (Fifth Memoir on Quantics, *Phil. Trans.* vol. CXLVIII. (1858), see p. 446, [156]) in regard to the original quartic function U.

In fact (reproducing the investigation) if I, J are the two invariants, $M = \frac{I^3}{4J^2}$, Φ the cubicovariant

 $= (-a^2d + 3abc - 2b^3), \&c Xx, y)^6,$

then the identical equation $JU^3 - IU^2H + 4H^3 = -\Phi^2$, may be written $(1, 0, -M, M \Im IH, JU)^3 = -\frac{1}{4}I^3\Phi^2$, whence if $\omega_1, \omega_2, \omega_3$ are the roots of the equation $(1, 0, -M, M \Im \omega, 1)^3 = 0$, or what is the same thing $\omega^3 - M(\omega - 1) = 0$; then the functions

 $IH - \omega_1 JU, IH - \omega_2 JU, IH - \omega_3 JU$

are each of them a square : writing

 $(\omega_2 - \omega_3) (IH - \omega_1 JU) = X^2,$ $(\omega_3 - \omega_1) (IH - \omega_2 JU) = Y^2,$ $(\omega_1 - \omega_2) (IH - \omega_3 JU) = Z^2,$ so that identically $X^2 + Y^2 + Z^3 = 0$, the expression $\alpha X + \beta Y + \gamma Z$ will be a square if only $\alpha^2 + \beta^2 + \gamma^2 = 0$. (To see this observe that in virtue of the equation $X^2 + Y^2 + Z^2 = 0$, we have X + iY, X - iY each of them a square, and thence

$$\alpha X + \beta Y + \gamma Z, = \frac{1}{2} \left(\alpha + i\beta \right) \left(X - iY \right) + \frac{1}{2} \left(\alpha - i\beta \right) \left(X - iY \right) - \gamma i \sqrt{X^2 + Y^2},$$

is a square if the condition in question be satisfied.)

Hence in particular writing

$$\sqrt{\omega_2 - \omega_3}\sqrt{\alpha I + 6\beta\omega_1 J}, \dots, \sqrt{\omega_1 - \omega_2}\sqrt{\alpha I + 6\beta\omega_3 J},$$

for α , β , γ , we have

$$(\omega_2 - \omega_3)\sqrt{\alpha I} + 6\beta\omega_1 J\sqrt{IH} + \omega_1 JU + \ldots + (\omega_1 - \omega_2)\sqrt{\alpha I} + 6\beta\omega_3 J\sqrt{IH} + \omega_3 JU$$

a perfect square, and since the product of the four different values is a multiple of $(\alpha U + 6\beta H)^2$ (this is most readily seen by observing that for $\alpha U + 6\beta H = 0$, the irrational expression omitting a factor is $(\omega_2 - \omega_3)(\alpha I + 6\beta \omega_1 J) + \ldots + (\omega_1 - \omega_2)(\alpha I + 6\beta \omega_3 J)$, which vanishes identically) it follows that the expression in question is the square of a linear factor of $\alpha U + 6\beta H$.

It thus appears that the radicals (other than those arising from the solution of U=0) contained in the solution of the equation $\alpha U + 6\beta H = 0$ are the three roots

 $\sqrt{\alpha I + 6\beta \omega_1 J}, \quad \sqrt{\alpha I + 6\beta \omega_2 J}, \quad \sqrt{\alpha I + 6\beta \omega_3 J}.$

Cambridge, September 2, 1868.