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Deflection of a round turbulent jet in a cross-wind

7+

H. SCHMITT (GOTTINGEN)

A mopEL for the round jet in a cross-wind describes the jet in terms of its lateral spread, its
cross-section and its velocity, which is taken constant across every section. New empirical rela-
tions for the entrainment by the jet and for the development of the cross-sectional area are
proposed. The solution of the balance-equations for mass and momentum, which form a system
of ordinary differential equations, is constructed as a Taylor expansion of the cross-wind number
o, which is defined as the ratio of the cross-wind velocity to the initial jet velocity. Analytical
expressions are given for the coefficients in the expansion up to second-order terms. The free
empirical parameters of the entrainment, the cross-sectional area and the length of the potential
core are determined in such a way that the theoretical results fit the values &btained experiment-
ally for the locus of the centre line, the lateral spread of the jet and the mean axial velocity of
the jet at any cross-section. It is shown that the empirical parameters can be chosen so, that the
theory is in good agreement with the experiments for cross-wind numbers o tetween 1/8 and
1/4. However, for o = 1/20, the theoretically determined deflections of the jet are greater than
the experimental values.

Model okraglego strumienia w przeplywie poprzecznym opisuje strumiefi w funkcji jego roz-
szerzenia przekroju i predkosci, ktora w kazdym przekroju jest przyjeta jako stala, Zapropo-
nowano nowe zaleznosci empiryczne dla “zaladowania™ (entrainment) oraz dla wzrostu prze-
kroju poprzecznego. Uzyskano rozwiazanie rownan bilansu masy i pedu, stanowigcych ukiad
réwnan rézniczkowych zwyczajnych, w postaci taylorowskiego rozwiniecia dla liczby przeplywu
poprzecznego o, zdefiniowanej jako stosunek predkoéci przeplywu poprzecznego do poczatkowej
predkosci strumienia. Podano wyrazenia analityczne na wspolczynniki rozwinigcia do drugiego
rzedu wigcznie. Swobodne parametry empiryczne: “zaladowanie”, pole przekroju poprzecznego
oraz dlugo$é rdzenia potencjalnego sa okre$lane w taki sposob, ze wyniki teoretyczne zgadzaja
si¢ z warto§ciami do$wiadczalnymi dla polozenia linii centralnej, rozszerzenia strumienia oraz
$redniej predkofci osiowej strumienia we wszystkich przekrojach. Pokazano, Ze parametry
empiryczne moga byé dobrane w taki sposob, ie teoria zgadza sie dobrze z doSwiadczeniem
dla obu liczb przeplywu poprzecznego ¢ pomiedzy 1/8 i 1/4. Dla o = 1/20 odchylenia strumie-
nia okreslone teoretycznie sa wicksze od warto$ci do§wiadczalnych.

Mopen: KpyroBoro MoToKa B IONEPEYHOM TEUEHHH ONMCHIBAET MOTOK B (DYHKIIMH ero pacuiu-
PEHHS CEYeHHA M CKODOCTH, KOTOpas B KWJOM CeueHHH NpHHAMaeTcs mocrosHHoi. Ilpea-
JIOYKeHb! HOBBIE OMIIMpHYECKHE 3aBHCHMOCTH JUIS ,,3arpysku’’ (entrainment) u Ay pocra
nonepeunoro cedennus. [Tosyueno pemenne ypaBHeHHit GanaHca Macchkl M HMITYJIbCa, COCTaBIIA-
IOIHX CHCTeMY OOBIKHOBEHHBIX Au(depeHIMANIBHEIX YpaBHeHHH, B BHMe TeHIOPOBCKOTO
PAsJIOXKEHHA [UIA YHCA TONEPEYHOTO TEeUeHWsl ¢, ONpe[eIeHHOr0 KaK OTHOIUEHHE CKOPOCTH
MOMEPEYHOro TedeHHA K HAYaJIHOM CKOPOCTH moToKa. J[al0TcA aHaJMTHYECKHe BbIpayKeHHA
A K03 PUIMEHTOB Pa3IoMKeHus KO BTOPOMY MOPAAKY BKMIOuUnTensHo. CBobomuble aMIH-
PHYECKHE NapaMerTphl: ,,3arpyska’’, mojie NMONEpeYHOro CeUeHHA H [JIMHA IOTCHLMANIBHOIO
CepleuHHKa OnpejelieHbl TakuM ofpasoM, 4TOOBI TEOpEeTHYECKHE PpE3yJbTaThl COBNAaNH
C 9KCIEPHMEHTAILHBIMH 3HAYEHHAMH 1A TOJNIOXKEHHA LEHTPANLHON JIMHHH, PaclIMpeHHs
MOTOKA M CpefHeii oceBoll CKOPOCTH NOTOKA BO BCeX cedeHusx. [ToKasaHO, YTO SMIMpHYECKHE
napameTphl MOryT ObiTh momobpaHb! TakuM oOpa3oM, UTOObI TEOPHS XOPOMIO COIJIAcOBAaJach
C SKCIIEPHMEHTOM U1k 06OHX UHCes! MONepeuHoro TeueHust o mexxay 1/8m 1/4. lna o = 1/20
OTKJIOHEHHS TOTOKA Oonpefe/ieHHble TeopeTHyeckn GOblle YemM IKCIepHMEHTAIbHbIE SHAUCHHA.
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1. Introduction

THE TURBULENT structure of plane and of round jets, which are injected into a medium
at rest, is known from the theories of ToLLMIEN [13], GORTLER [5] and SCHLICHTING [11,
p. 699] and from the measurements of REICHARDT [9]. Ricou and SPALDING [10] used
a new method to determine the entrainment coefficient of the jet directly.

If the jet is injected into a cross-wind, the turbulence pattern of the jet is substantially
modified by its own turbulent wake. Also, the deflection of the jet gives rise to a secondary
flow similar to that in a curved pipe.

As long as no full theoretical description of all these details exists, the jet flow is ap-
proximated by models. The model of WOOLER, BURGHART and GALLAGHER [14] describes
the jet by the centre line, the cross-sectional area, the lateral spread and the mean velocity
of every cross-section. This model takes into account the interaction between the jet and
the cross-wind due to the drag of the jet in the cross-wind and due to the entrainment
of fluid by the jet. In the above theory, empirical equations are used for the entrainment
by the jet and for the cross-sectional area.

In the following new empirical equations for these two quantities are proposed. The
empirical constants in these equations are determined in such a way that the theory
does not only fit the measurements of the centre line by KerFer and BAINEs [8] and by
JorDINSON [7], as does the theory of WOOLER, BURGHART and GALLAGHER, but also fits
the measurements of the lateral spread and the mean velocity by KEFFER and BAINES.

In many practical cases, the initial jet flow is strong in comparison with the cross-
flow; the downward directed jet of a VTOL plane in the transition phase is an example.
In such cases, the cross-wind number — that is the ratio of the velocity of the cross-
wind to the initial velocity of the jet is small. Therefore, a Taylor series expansion for
small cross-wind numbers is proposed here. Contrary to the method of WoOLER, BURG-
HART and GALLAGHER this leads to analytical solutions.

Le Grives and Benoit [6] and ABRAMOVICH [1, p. 549] also give models for the round
jet in a cross-wind; but they neglect the effect of entrainment. This effect, however,
is considered to be the only effect of the interaction between the jet and the cross-wind
as given in the model by BRAUN and MCALLISTER [2].

2. Basic equations

A jet is formed by the flow of a fluid through a circular orifice of diameter D, as shown
in Fig. 1. The initial direction of flow in the jet is perpendicular. to the plane of a plate
in which the orifice lies. In the orifice, the jet has the constant velocity U}, over the entire
cross-section. A Cartesian system of spatial coordinates (x*,z*) is introduced with the
origin in the centre of the orifice. The x*-axis has the direction of the cross-wind; this
cross-wind is parallel to the plate and has the velocity UZ. The z*-axis is perpendicular
to the plate and has the direction of the initial jet velocity. The centre line M of the jet
is defined as the line which passes through the points of maximum velocity of the various
cross-sections; the origin of the coordinate system also lies on the centre line. Along
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F1G. 1. Model of a round turbulent jet in a cross-wind.

this line the arc length t* is introduced. The angle & between the centre line and the z*-axis
is the angle of deflection of the jet. The area of the cross-section of the jet is denoted
by A4*.
Since the turbulent structure of the jet in the cross-wind is very complicated, the follow-
ing model is taken as a first approximation for the jet flow:
(i) It is assumed that the jet flow up to z* = z* is not influenced by the cross-wind;
that is, between z* = 0 and z* = z} the flow is a uniform potential flow.
(ii) Also, it is assumed that the jet velocity has a constant value U} across every cross-
section perpendicular to the centre line, The direction of this velocity is assumed
to be parallel to the centre line.

2.1- Balance equations

With the above assumptions, the balance equations for mass and momentum are
formulated for a volume element AV*, In the limit A7* — 0 the balance of mass is given
by:

d

T*

@1 o*

(4*U}) = o*e*,

where g* is the density of the fluid. The left-hand side of this equation represents the
variation of the mass flux from one cross-section to the next one; this variation is caused
by the fact that due to the turbulent frictional forces, fluid is entrained through the surface
of the jet; e* is the entrained volume of fluid per length of the jet and per time.
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The momentum balance in the direction of the centre line and perpendicular to it
is represented by the following equations:

2.2 o* d(:* (A*UP?) = g*e*U¥sind,
%2 *
2.3) gm*%— = p*e*Ukcosd+cpb* 32— U#Z2cos?d.

Here, R* is the radius of the curvature of the centre line; the drag coefficient is denoted
by ¢, and the lateral spread of the jet by b*. The variation of the momentum flux of the
jet is caused by the fact that the entrained mass p*e* transfers its momentum to the jet,
and by the frictional force of the cross-wind. The influence of pressure gradients is
neglected.

In this model, the frictional forces of the cross-wind are estimated as follows: If the
jet would not entrain fluid from the cross-wind, the relative velocity between the jet and
the cross-wind would be responsible for the frictional forces. But since part of the cross-
wind flow is entrained by the jet, the frictional forces are smaller. In order to take this
effect into account, only the component U2, cos# of the relative velocity is used to calculate
the frictional forces. The other component of the relative velocity determines the amount
of cross-wind, which is entrained.

These balance equations were given by WoOLER, BURGHART and GALLAGHER [14]
for the first time.

2.2. Empirical equations

In the balance Egs. (2.1), (2.2) and (2.3), the density p* cancels. The centre line of the
jet may be described by a function x* = x*(z*), and the arc length 7* and the radius R*
of the curvature of the centre line may be expressed by this function. Then the balance
equations are three equations for the five unknown functions of z*, namely A*, UF, e*, b*
and x*. Therefore, two further equations are needed in order to determine all unknown
functions. Empirical equations may be used for the mass e* entrained by the jet and for
the area A* of the cross-section of the jet. Since both quantities e* and A* are known
for the case of vanishing cross-wind, these known equations are extended to the case
with non-vanishing cross-wind by introduction of empirical functions.

Following the theories of ToLLMIEN [13] and SCHLICHTING [11, p. 699] for zero cross-
wind — that is, for U% = 0 — the value of e*/(U}fb*) is constant. In the case with no
cross-wind, the quantity U must be replaced by the corresponding quantity (U — U¥sind).
Furthermore, the value of e*/{(Uf— U% sin#)b*} is no longer constant; it is assumed,
that it depends only on the ratio of the two components of the relative velocity between
the cross-wind and the jet:

e* UZXcos?
0 (U —Uxsind)b* ~ s ( U —Uksind )

The area A* of the cross-section is the area of a circle with the diameter b* for a jet
without cross-wind. In the case with cross-wind a correction factor, g, is used; this factor
takes into account the deformation of the area of the cross-section by the cross-wind;
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it is assumed that this function depends only on the ratio of the distance z* from the plate
and the diameter D of the orifice, and on the ratio of the velocities UZ* of the cross-wind
and U}, of the jet in the orifice:

o =T g, (2 %)
(2.5) A 4b g(D'U}‘o ;
The Egs. (2.4) and (2.5) proposed here are different from those given by WOOLER, BURG-
HART and GALLAGHER [14].

2.3. Boumdary conditions

Since it is assumed that the jet flow is a uniform potential flow between z* = 0 and
z* = z}, the boundary conditions at the end of the potential flow —i.e., at the beginning
of the turbulent flow — are as follows:

dx* |

2.6) Ues) = Up, B =D, B =0, gl .

= 0.

3. Taylor expansion for small cross-wind numbers

The ratio of the velocities U, of the cross-wind and Uj, of the jet in the orifice is called
the cross-wind number:

Us
(3.1 o= .
This number is a measure of the influence of the cross-wind on the jet and vice versa.

First, the limit of a cross-wind number ¢ = 0 may be considered. In this case, the jet
is injected into a medium at rest. Therefore, only the momenfum transferred from the jet
to the medium at rest gives rise to a force on the plate. Since this momentum is directed
downward (Fig. 1), the force on the plate is directed upward.

Secondly, the opposite limit may be considered, in which the cross-wind number
tends to infinity. This occurs when the cross-wind has the finite velocity U¥, while the fluid
is initially at rest in the orifice. Then this fluid is entrained by the cross-wind. Due to
the friction of this entrained fluid at the wall in front of the orifice, a downward directed
force acts on the plate.

For finite values of o, these two opposite effects are superimposed. It follows that
only for moderate cross-wind numbers g, the force on the plate is directed upwards; from
experiments, it is known that ¢ should not exceed a value of one third (see [8], e.g.).

For small cross-wind numbers,

(3.2 o<1

it is not necessary to solve the whole system of differential equations. Every unknown
function @(z, o) is expanded into a Taylor series with respect to o:

(3.3) ®(z, 6) = DOE) +oPND(2) + 2 DDE) + ...
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In this expression, as well as in the following, non-dimensional quantities are used. That
is, all lengths are divided by D and all velocities by U},. These non-dimensional quantities
are denoted by the same symbols as the corresponding dimensioned quantities, but without
the asterisk. The beginning of the z-axis, z = 0, is taken at the end of the potential flow —
that is, at z* = zp.

The series expansions of the empirical functions g for the cross-sectional area and f
for the entrained mass will be explained in detail:

Since the cross-sectional area of a jet without cross-wind is a circular area,
(3.4 g9 =1,
Also, at the end of the potential flow of the jet the cross-section is circular; therefore,
g®(0) = 0. From the experiments of SHANDOROV [12], JORDINSON [7] and KEFFER and
BAINES [8] it is known that between z = 0 and z = 1 the shape of the cross-section changes
rapidly from a circular one to one similar to a horseshoe; for z > 1 this shape varies only
slightly, although the cross-sectional area increases. The least complex functions, which
have these desired properties, are:

i B (=1'a®z  for nggl}__lz

43 = -1a® for zs1 [T

with constant 4.
The argument of the empirical function f, which will be called %, is small for small
cross-wind numbers; therefore f is expanded into a Taylor series with respect to this

argument:
g
n= 3 .
o) 1+(Z) -0
. dz dz

The entrainment coefficient & for a jet without cross-wind has been measured by Ricou
and SPALDING [10] using a direct method:

3.7 e® = 0.251.

The theory of SCHLICHTING [11] and the measurements of REICHARDT [9] for the velocity
distribution lead to € = 0.266.

(3.6) f) = €V +enten’+ ...

3.1. Zeroth-order solution

The zeroth-order solution describes a jet without cross-wind:

(3.9 0@ =0, B =142, UPE = 6O@).

n

Since in this case the jet is not deflected, the equation for its centre line is x* = 0.

The lateral spread 5 of the jet increases in proportionally to z beginning with the value

one at the end of the potential flow. This increase is determined by the entraininent co-
efficient e®.

Since the forces caused by pressure gradients are neglected, no force acts upon

the jet in the z-direction. Hence the total momentum flux through a cross-section of the
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jet is independent of z, as TOLLMIEN has already stated [13]. But the momentum flux is
proportional to the cross-sectional area of the jet — that is, proportional to the square
of the diameter 5®; moreover, the momentum flux is proportional to the square of the
jet velocity U§®. Hence b U is independent of z.

This simple model of a jet without cross-wind gives a lateral spreading of the jet with
db®dz = 0.319. The more detailed model of SCHLICHTING [11] leads to the value of 0.170.

3.2. First-order solution

In the first-order solution, the cross-wind causes a parabolic deflection of the centre
line of the jet:
0)

(39 o =2

The total deflection x(z) is proportional to the cross-wind number ¢ and to the entrain-
ment coefficient ¢ of the jet without cross-wind. The drag coefficient cp is not involved
in this equation. This leads to the conclusion that the entrainment of momentum has.
a larger influence on the deflection than the action of the frictional forces between the
cross-wind and the jet.

The equations for the lateral spread

1 26
(3.10) b(z) = — g“’b‘°’+ oy 6 ~1) - —— ()
with
(3.11) @) = [ g()de
0

and for the velocity

(3.12) Ui () = - U~ —;— U

contain not only the entrainment coefficient ¢®’, but also e, ; furthermore, the function
g*(z) — i.e., the deviation of the cross-sectional area from the circular form — is involved

here. The influence of the frictional forces given by ¢, does not yet appear in this order
of the solution,

3.3. Second-order solution

In contrast with the first-order coefficient of deflection of the centre line x(*, the
corresponding second-order coefficient

0) 0) H
(.13) x3(z2) = (”1*7 (1+ 431 z) zz—z‘(T f GO()dz’
]
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contains not only & but also e,, g(z) and cp. The coefficient of the velocity

iy 3 1 1 5
(3.14) U}:)(z) = b(O)U}l) b(m_. =T leb“’”

23(0) : (2) 3 ()27, ’ 1) 0)
+nb‘°”f £~ ) 4 i O+ e |~ ¥
0

3 2)_ ez(b(o,__;m)
p® T p7 ] T 3,0 7 >

(3.15) bV() = —b“’”Uj”+b‘°)’U}”’+%g‘"b‘°"U}“

<+

and of the lateral spread of the jet

+b(°’{%—(b‘“’—l)‘—l--g-g“”-—%gm}

even in this order are not influenced by the frictional forces between the cross-wind and
the jet, but only by the entrainment of momentum.

3.4. Third-order solution for the centre line

Since contrary to the other quantities the centre line is trivial in the zeroth order [see
(3.8);] an additional coefficient of this quantity is calculated. Indeed, this is possible
without knowledge of the other third-order coefficients:

(3.16) £() = % f e f H(z”)dz“),
¢ e?
H(z) = %(O)an ie(m_l_ gu) ( _22) b(&)} S (b(ﬂ)_l)z

+ —(bt‘"‘ 66 +5)— g"’+ g g“”+(e;+ CT") b + e, b,

4. Determination of the empirical parameters by comparison with experimental results

The empirical parameters have been determined so, that the theory fits the experimental
results of Kerrer and BAINES [8] and those of JORDINSON [7]. The centre line, the lateral
spread and the mean velocity of the jet, which have been measured by KEFFER and BAINES
for the cross-wind numbers ¢ = 1/8 and o = 1/4, have been used for this comparison;
furthermore, the centre line given by the measurements of JORDINSON for o = 1/8.1 and
o = 1/4.3 has also been used. In the present theory, the value of ¢, = 1.8 has been taken,
which gives the drag coefficient of an elliptical cylinder with the axis of the cyliader and
the larger axis of the cross-section perpendicular to the flow.
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In order to compare the experimental results of KEFFER and BAINES with the present
theory, at a given cross-section the distance between those two lateral points, in which
the velocity excess above the external undisturbed flow, (U*— U¥), is half the maximum
excess at this cross-section, has been taken as lateral spread b*. Further, the velocity uy

has been identified with the mean velocity U* of the cross-section, which has been taken
as defined by (ﬁ*— Uy = %—(U}— U¥); here, U} is the maximum velocity of the cross-

section.

Close agreement between theory and the above cited experiments is obtained if the
parameters take the following numerical values:

——J-. — () — ) — = "_1_ __1_._
@41 e 02, e =17, a 1, d 4, zp(o) 5 oys"

Furthermore, experiments of GERTSBERG [4], who measured the centre line for a cross-
wind number o = 1/20, have been taken into account to determine the function zp(o).
Since a weak potential jet is destroyed instantaneously by a strong cross-wind by means
of the turbulent frictional forces, zp tends to zero for large cross-wind numbers ¢. The
limit of zero cross-wind number ¢ = 0 is not given correctly by (4.1)s; for, following
this formula, z,(0) has no finite value — that is, the jet flow would remain a potential
flow.

In the following figures the experimental results of different authors are compared
with the present theory, the empirical parameters of which have been determined by the
method outlined above.

In Fig. 2 the centre line of the jet is plotted for a cross-wind number o of approximately
a quarter. The experimental results of ENDO and NAKAMURA [3] and those of KEFFER
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2 \ 6= 3,’_ 21‘? y
zZ+2Zp \ ' Z2+Zp \
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4 4 ~_
\:\ oKeffer+ Ba:ﬁs\'q-
" \h 6
°F o i 8 X 12

0 Endo + Nakamura

0 2 4 6xa2

(o]
2l i 1 goda}
0=704 4 =73
2+ZP 2‘+ZP a
4 \ 6 \\
—Theory
6 O%nhho . O Jordinson 2

F1G. 2. Centre line of the jet for o ~ 1/4.
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and BAINES compare well with this theory. On the other hand, the theory gives somewhat
smaller deflections of the jet than the experiments of SHANDOROV [12] and those of JORr-
DINSON. Perhaps this may be caused by the fact that the experimental results of differ-
ent authors are obtained on different conditions; these should be described by additional
parameters, which are not considered in the theory.

Figure 3 shows good agreement of the centre line given by the theory with the measure-
ments by JORDINSON for the cross-wind number ¢ = 1/8.1. For the very small cross-wind

0 4 8 2 X1B_ 2

0 4 8 X 12 16
E :
4 6=1/20
6=1/81 | 16 \

8l

3 24 'u\...‘
\}. Z+Zp \--..\

o Shf_;fy e —Theory
ordinson o Gertsh o
6 ), Wt sminel.
FiG. 3. Centre line of the jet for o = 1/8.1. F1G. 4. Centre line of the jet for o = 1/20.

number ¢ = 1/20, the theoretical results are compared with the experiments of GERTSBERG
[4] in Fig. 4, It can be seen that the theory describes the measurements well up to
a distance from the plate z+zp = 18, but it gives deflection values which are too
large for greater distances. Since the local cross-wind number U%/U} tends to one for
large distances from the plate, the quality of the theory decreases with increasing z. The
given Taylor series expansions with respect to o are not justified in this case, because

0 1 2 s b g 0 049V 08 10 12

[ /l’

o| =—Theory
O Keffer+Baines
2 ‘i — 2 A
\Q 6=1/8 6=1/8
4 % 4
o
z o Z —U; Theory
o U Keffer+_|

g N . Baines

o | O |

FIG. 5. Lateral spread of the jet. F1G. 6. Velocity of the jet.
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the jet velocity U; has the order of o, while in the series expansions it is assumed that
U, has the order of one. Another reason for the breakdown of the theory at large distances
from the orifice is the fact that the real flow has a strong vorticity, which is not taken
into consideration by the present theory.

Figures 5 and 6 show the good agreement of the lateral spread b and of the velocity U,
with the experimental results of KEFFER and BAINES for the mean velocity for o = 1/8.
It can be seen that the lateral spread increases monotonically with increasing z; at z = 7
it has already quadrupled. The velocity decreases monotonically with increasing z.
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