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A ·continuum theory for granular media with a critical state 

M. ROMANO (NAPLES) 

IN THIS work an attempt is presented to formulate a theory of the mechanical behaviour of granu
lar media for finite deformations. The critical state assumption is fundamental, while no idea 
of plastic limit condition is presented. No true elastic range is exibited. Dilatancy effects are taken 
into account. An explicit form of the constitutive equations has been obtained and stress-strain 
relations are presented both for loading and unloading processes. 

W pracy ·przedstawiono pro~ sformulowania teorii mechanicznego zachowania si~ material6w 
ziarnistych przy odksztalceniach skonczonych. Podstawowym zaloi:eniem pracy jest przyj~ie 
hipotezy stanu krytycznego przy r6wnoczesnym odrzuceniu idei warunku plastyczno8ci. W roz
wai:aniach pomini~to zakres spr~i:ysty. Uwzgl~dniono efekty dylatancji. Otrzymano jawn~ postac 
r6wnan konstytutywnych, w kt6rych zwi~ki mi~zy napn;i:eniami i odksztalceniami obowi~zuj~ 
zar6wno w procesie obci~i:enia jak i odci~enia. 

B pa6oTe npe~craaJieHa nonLITI<a <j;K>pMyJIHpOBI<H TeopHH Mexam~qeci<oro noae~eHHH aepHH
CTLIX MaTepHaJIOB npH I<OHeqHbiX ~e<l>opMai.UUIX. 0CHOBHbiM npe~OJIO»<eHHeM HBJIHeTCH npH
HHTHe rHnOTe3bl I<pH~eci<oro COCTOHHHH npH O,llHOBpeMeHHOM HenpHHHTHe ~eH YCJIOBHH 
nJiaCTJ~qHoCTH. B paccy~eHHHX npeHe6peraeTcH ynpyroH: o6naCTLro. Y ~eHLI a<P<Pei<TLI 
~aTal.\HH. iloJiyqeH HBHbiH BH~ onpe~eJIHIOIIUfX ypaBHeHHH, B KOTOpbiX COOTHOIIIeHHH Me»<
~ HanpiDKeHHHMH H ~e<fK>pMal.\HHMH o6H3LtBaroT Tai< B npo~ecce Jtarpyai<H, I<ai< H paarpyai<H. 

1. Introduction 

THE GRANULAR media this paper will be dealing with are isotropic, one-phase, non viscous, 
cohesionless solids. They are conceived as the continuum idealization of real materials 
as e.g. dry sand with uniform grain size. Many soil materials as well as some organic or 
artificial gra.nular . materials ·· can show~ at least und~r convenient assumptions, similar 
mechanical properties. In this context, the aim of the present paper is to develop, by a 
plienomenological approach, a t~eoretical model for the mechanical behaviour of granular 
media that can give an appropriate description of some basic properties of these materials. 
Let us now introduce the subject by some brief considerations that by no means intend 
to be a review of the overwhelming literature in this field. Only very few specific works 
wiH be listed, as being more strictly connected with the ideas that will be presented in this 
paper. 

Classical soil mechanics theories were conceived to predict failure of soils, rather than 
to obtain a good description of real deformation processes. Such a point of view is evident 
in the assumption of a rigid or elastic behaviour up to rupture, and a Coulomb type fail
ure condition. More attention to the deformation process brought about the formulations 
ofnew, rnore sophisticated models. Bestdeveloped and most satisfactory are the theories 
considering granular media as. elasto-plastic materials admitting plastic potential with 
associated flow rule. The first attempts in this dir~ction failed because, e.g. assuming 
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a Coulomb type limit surface as yield surface, too large volume increase during plastic 
flow was predicted [1]. But these shortcomings are absent in the theories that consider 
the yield surface as a function of the density, giving account of the softening and hardening 
due to density variations. Worth mentioning are two main approaches. The Cambridge 
theory [2] developed the critical state conception in the framework of an elasto-plastic 
model, obtaining the plastic potential function, i.e. the yield surface, by the assumption 
of a special simple form for the specific power dissipation during plastic flow, which is 
supposed to be of "frictional" nature. On a similar line is Mroz theory of density hardening 
media [3] that can be considered, to a certain extent, a generalization of the previous one. 
This approach has also more sound foundations in general plasticity theory. The plastic 
potential is in general a function of the stress invariants and of the density, and can be 
chosen in the most convenient form. This theory has been generalized to allow for non
linear behaviour in the elastic range [16]. Many serious objections have been raised against 
classical elasto-plastic models with regard to the description of plastic deformations of met
als and much more can be said thinking of granular media. In general, no elastic range is 
exhibited by these materials, in the sense that also small deformations are partially irrevers
ible. For this reason RoscoB and BURLAND presented a generalization of Cambridge 
theory for "wet" clays [4], giving account of irreversible shear deformations that take 
place beneath the yield surface, confirming so the non-existence of a true elastic region. 
Moreover, the stress strain relations are very smooth, so that also if irreversible deforma
tions up to a certain amount are disregarded, the definition of conventional yield points 
is arbitrary. Different definitions give rise to different experimental determination of the 
initial yield surface. These differences can be important and any way become non-negli
gible for the subsequent yield surfaces, e.g. during hardening of the material, giving rise 
to big discrepancies between the deformation histories associated. It must be said that 
while experimental evidence shows that for granular media the relevant processes involve 
very large deformations, no one of the previously mentioned theories is properly formulat
ed to take account of finite deformations. So there are good reasons to reject the previous 
approaches and to try new ones. 

T. Y. THOMAS first attempted to develop a theory of the plastic behaviour of non
viscous metals without a yield surface [5]. Assuming a special form of Truesdell's Hypo
elastic [6, 7] constitutive relations, he described continuous transition from elastic to per
fectly plastic behaviour during loading processes. The form of the constitutive relations 
range from the incremental version for infinitesimal elasticity (for zero stres~es ), to a correct
ly invariant form for finite deformations of the Prandtl-Reuss equations for isochoric 
perfectly plastic flow (when von Mises condition is satisfied). This is obtained by an appro
priate choice of the constitutive functions. It is clear that von Mises condition in this case 
looses the meaning of yield limit, conceived in the classical sense, but is a limit condition, 
never definitively satisfied but asymptotically approached when deviatoric deformations 
increase. This interpretation is in perfect agreement with Truesdell's observation that 
during simple shear of a particular hypoelastic material of grade 2 (that can be considered 
a special case of Thomas material for purely deviatoric deformations) von Mises yield 
is never reached, but only asymptotically approached when shear deformations increase. 
T. Y. THOMAS developed also a similar theory for von Mises plasticity and with a refer-
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ence to a generalized von Mises yield condition [8]. The Hypoelastic yield observed by 
TRUESDELL is of purely "mathematical'' nature. A more general approach was presented 
by A. E. GREEN [9, 10], always in connection with the formulation of a theory for plastic 
flow of metals. By means of a representation theorem he reduced the general Hypoelastic 
constitutive relations to a tensorial polynomial form. Then he assumed a definition of 
loading and unloading processes in terms of the sign of the deviatoric stress power and 
determined the constitutive coefficients for processes of each kind, by means of some 
axiomatic assumptions on the material properties. The different determination of the con
stitutive coefficients for loading and unloading processes gives account of the irreversible 
deformations. Green requires that constitutive equations for loading and unloading must 
coincide when the stress power is zero, i.e. for neutral states, to assure a smooth transi
tion from one process to the other. This hypothesis does not seem necessary and is not 
supported by the experimental results that show discontinuity of the derivatives at the 
transition points in the stress-strain relations. Green also tried to reconcile this new 
approach with the classical conception of a yield surface. He assumed that when the yield 
condition was satisfied, the constitutive coefficients had to be of such a form as to assure 
the condition to be satisfied further until unloading occurred. In this conception the yield 
condition has again the classical meaning and for the non-yield states elastic behaviour 
is hypotheitzed. We obtain in such a way a true generalization of Prandtl-Reuss theory, 
now formulated in a correctly invariant form for finite deformations. The yield condition 
can be any smooth function of the stress invariants, and "elastic" compressibility during plas
tic flow is taken into account. There is no idea here of continuous, smooth transition from 
elastic to perfectly plastic states. 

All these theories refer to metallic materials, but it is natural to think that Green's 
general approach that describes irreversible behaviour assuming different constitutive 
laws for loading and unloading processes, when these are defined in a convenient way, 
can suggest a procedure to built up a model for the mechanical behaviour of granular 
media. 

2. Choice of the model 

Let us list some well established experimental facts about granular materials as consti
tutive assumptions: 

1. Relevant processes involve finite deformations (so that a properly invariant theory 
is needed). 

2. Density variations play a fundamental role and strongly influence the mechanical 
response (softening and hardening). 

3. No elastic range is observed in general. 
4. When undergoing increasing deviatoric deformations these materials may tend to 

reach "critical states" in which they flow as frictional "fluids". In these states some limit 
condition on stresses must be satisfied. Later on this behaviour will be discussed in detail. 

The peculiarities in the mechanical behaviour of granular materials summarized above 
justify the choice of the model that will be developed in this paper. 
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The assumed definition for a granular material and the constitutive assumptions I) 
and 2) suggest constitutive equations of the form(!) 

(2.1) T = H(T, e) [DJ, 

where T is the Cauchy stress tensor, D is the stretching tensor, e the density, T the coro
tational stress rate and the tensor function His isotropic in its tensor arguments and linear 
in D. The linearity of H in D assures time scale independent mechanical properties. By a 
special case of a general representation theorem of C. C. WANG, we have [14]: 

(2.2) H(T, e) [D] = [0 1 trD+0 2 tr(TD)+0 3 tr(T2D)]l 

+ [04 tr D + 0 5 tr(7D) + 0 6 tr(T2 D)]T 

+ [01tr D+ 0 8 tr(TD) + 0 9 tr(T2D)]T2 

+ OtoD+Ott(DT+TD)+0 12(DT2 +T2D), 

where the 0; i = 1, ... , 12 are scalar functions of the fundamental stress invariants and 
of the density e. In this paper we will be dealing with a special simple form of the general 
representation (2.2) Indeed it will be assumed: 

(2.3) T = [0 1 tr D+ 0 2 tr(TD)] 1 + [04tr D+ 0 5 tr(TD)]T+ 0 10 D. 

The irreversible behaviour will be described following Green's approach, assuming 
the same form of the general constitutive equations for loading and unloading processes, 
but withdifferent choice of the constitutive coefficients, let us say 0; and 0 i, respectively. 
Loading states are characterized by positive stress power, i.e. tr(TD) > 0, neutral states by 
zero stress power, i.e. tr(TD) = 0, and unloading states by negative stress power, i.e. 
tr(TD) < 0. This definition, also due to A .E. GREEN, seems to be the most appropriate 
for our purposes. We will reject Green's hypothesis that the constitutive coefficients 0; 
and 0 ~ must coincide for neutral states to assure smooth transition from loading to unload
ing processes and conversely because, as previously stated in the introduction, it seems 
not at .all justified by the experimental results. Stress-strain relations show discontilruity 
in the derivatives at the transition points. In what follows we will distinguish only between 
loading states (tr(TD) ~ 0) and unloading states (tr(TD) < 0), assuming that the same 
constitutive equations are valid for neutral and loading processes. 

On the basis of convenient constitutive assumptions it is possible to obtain an explicit 
form of the coefficients Di 0~. The procedure that will be followed is general but will be 
illustrated with reference to a special case, chosen due to the physical reliability of the 
constitutive assumptions and the clear meaning of the state parameters introduced. 

3. The state space 

Most of present knowledge about constitutive properties in soil mechanics come from 
laboratory triaxial tests on cylindrical specimens. It is evident that in these tests only stress 
states in which two principal stresses are equal are feasible. Then only two independent 

(I) Constitutive equations of the same form are assumed in Noli's theory of hygrosteric materials 
[l 1], and have been assumed also in [12 and 13] with reference to granular media. 
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stress parameters are needed e.g. the axial and the radial principal stresses t 1 and t2 e) 
or the mean pressure p = -(t1 +2t2 )/3 and the parameter q' = t 1 -t2 that can be consid
ered a "measure" of deviatoric stresses. In such a situation, to obtain an explicit form 
of the constitutive relations in terms of well established experimental facts, in this paper 
a point of view has been adopted similar to that of the Cambridge school, assuming only 
two constitutive stress parameters that can be considered an appropriate generalization 
.of p and q'. Namely, we shall define: 

trT 
(3.1) P = --

3
-, q = ytr(T*)2~e> 

where T* = T +pi is the stress deviator (observe that for triaxial tests it is q = V ; q'). 
Such a choice is quite natural because all the constitutive assumptions, if they are to be 
founded on experimental evidence, at present can be expressed only in terms of these 
stress parameters. Anyway the procedure that will allow the determination of the consti
tutive coefficients is completely general. Therefore, as state parameters in what follows 
will be considered the pressure p, the density e and the non-negative "measure" of the 
deviatoric stresses q. The constitutive coefficients 0 1 , 0 2 , 0 4 , 0 5 , 0 10 in the Eq. (2.3) 
will be assumed to be functions of p, q, e only. The three-dimensional space with coordi-

t
1 

OR=p RP,.,q :rrl.s 

FIG. 1. 

nates p, q, (!,will be called the state space. For a fixed value of the density, the points repre
sentative of tl;le "state" characterized by the pair (p, q) are situated in the Haigh-Wester
gaard principal stress space, on a circumference of radius q contained in the plane ortho
gonal to the space diagonal at the point of abscissa p and with center on the space diagonal 
(Fig. 1). 

4. Some experimental results 

Let us now recall some basic features of the mechanical behaviour of granular media 
m the most indicative available experimental tests. 

(2) Principal stresses are assumed positive if they correspond to tension; while in soil mechanics usually 
the opposite convention is adopted. 

(l) .The non-negative parameter q can be considered as the norm of the stress deviator. 
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4.1. Purely spherical motion under hydrostatic pressure 

It is well known that the set of admissible states (pairs (p, e)) in the p, e plane is bounded 
by the so called virgin compression line, that represents the set of the "loosest states" 
of the material. It means that for every value of the pressure p, the point on the virgin 
compression line corresponds to the least admissible value of the density e and is actually 
reached only when the material never before experienced greater densities, i.e. when it is yet 

p 

p 

FIG. 2. 

"virgin". Figure 2 shows a schematic picture of typical pressure-density paths for cohe
sionless materials. 

4.2. Constant p tests 

When deviatoric deformations increase, the density and the stress parameter q tend 
to reach limit values that depend only on the fixed value of p. If the initial value e1 of the 
density is greater, equal or less than the limit "critical" one ec, the responses are of a differ-

p 

FIG. 3. FIG. 4. 

ent kind as is shown in Figs. 3, 4 and 5, where q and e are plotted as functions of the para
meter y that indicates a "measure" of the deviatoric deformation. 

If l?i < l?c (Fig. 3) (loose states), both e and q tend asymptotically to the final values. 
If e1 = ec {Fig. 4) (critical states), there is no density variation and q behaves as before. 
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If (!f > ec (Fig. 5) (dense states), both e and q first increase reaching a maximum, and 
subsequently decrease tending to reach the critical values. 

Q 
K(p) 

p 

FIG. 5. 

4.3. Constant e tests 

The deformation process is of course purely deviatoric. When deformation increases. 
the mean pressure and the stress parameter q tend to reach a limit value that depends only 
on the fixed value of e. The responses are different if the initial value p, of the mean pressure 
is greater, equal or less than the limit "critical" Pc as is shown in Figs. 6, 7 and 8 where p and 
q are plotted as functions of y. 

Q 

Pc 

Pi 

p 

FIO. 6. 

Pt 
Pc 

p 

FIO. 8. 

Q. 

K~)r-----~~===== 

Pi=Pc 1---------
p 

FI0.7. 
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If Pi >Pc (Fig. 6) (loose states), the mean pressure decreases monotonically to the 
critical value, q increases monotonically to the final value. 

If Pi = Pc (Fig. 7) (critical states), the mean pressure remains constant while q behaves 
as before. 

If Pi <Pc (Fig. 8) (dense states), the mean pressure reaches a minimum and after 
increases tending to the critical value, the parameter q behaves like before. 

These results will be of great importance in the following formulation of the critical 
state assumption. 

5. The critical state 

RoscoE, SCHOFIELD and WROTH [I 5] suggested that granular materials when undergoing 
increasing deviatoric deformations tend to reach a critical state in which they continue 
to distort without further change of p, q and!!· According to the experimental facts previ
ously exposed it will be assumed that in the critical states the following relations must hold: 
(5.1) q = k(e), q = 'PP and then k(e) = 1pp, 

where k is a strictly increasing function of the density e and 'P is a dimensionless positive 
constant. Relations (5.1) define in the state space two surfaces and a plane that intersect 

Cl 

p 

cx-actg1p 

FIG. 9. 
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in a curve, called the critical state line, that is the set of all the points representative of crit
ical states. In general we will call "dense" these states in which is k(e) > 'PP and "loose" 
those where k(e) < 'PP (Fig. 9). The critical state assumption can be enounced in the 
following way: 

{5.2) 
q-+ k(e)} 
q _.. 'PP ~ ii, q, e _.. o. 

'PP-+ k(e) 

6. 'Ibe constitutive equations 

To obtain an explicit determination of the constitutive coefficients, it is convenient 
to split the Eq. (2.3) in two that describe the deviatoric and the spherical stress· responses, 
respectively. Because T = T- WT+TW = T*- WT*+T*W-pl = T*-pl, where W 
is the spin tensor, and by the local form of the continuity equation 

(6.1) trD = - .!L 
e 

it can easily be shown that the following system: 

p = (o,+ 
0
;• -O.p-01 p+OsP'): +(Osp-O,)tr(T*D*), 

(6.2) 

T* = O,oD*+[(OsP-0.): +05 tr(T*D*)]T*, 

is equivalent to the Eq. (2.3). 
A new important constitutive assumption is that purely spherical motions does not 

affect the deviatoric part of the stress response. 
The second equation of the system (6.2) for purely spherical motions (D* = 0) redu-

ces to 

(6.3) 

and then, by the stated assumption, necessarily must be 

(6.4) 

From (6.4) it results 0 4 = 0 5p, and substituting in (6.2), we obtain the system 

(6.5) 
p = ( O, + 

0
3'

0 -o.p): +(OsP-O.)tr (T*D*), 

T* = DtoD*-0 5 tr(T*D*)T*, 

that is equivalent to the unique equation 

(6.6) f = [O,trD+0 2 tr(TD)]I +05 [tr(TD)- (trT);trD) ]r+010 D. 

6 Arch. Mech. Stos. or 6n4 
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The system (6.5) and the Eq. (6.6), by the arbitrariness of the functions Db 0 10 , 0 2 and 
0 5 , can, of course, be written in the form: 

(6.7) 

where 

(6.8) 

. 
p = F(p, q, e)g_ +C(p, q, e)tr(T*D*), 

e 
T* = 2p,(p, q, e)D*-B(p, q, e)tr(T*D*)T*, 

r Dto 
= -

3
- +Dt-D2p, 

C = DsP-02, 

2fl = Dto, 

B= Os; 

r and 2p, usually denote the bulk and shear moduli of isotropic linear elastic materials, 
respectively. The analogy is clear if we consider that the constitutive equations of isotropic 
infinitesimal elasticity in incremental form is 

(6.9) T = A(trT)l +2p,D, 

where A and 2p, are the two Lame constants. 
By decomposing (6.9) in the spherical and deviatoric part we obtain 

(6.10) 0 re p= -, 
e T* = 2p,D*' 

2 0 0 

where F = A+ "3~' is the bulk modulus. Because T* = T*- WT* + T* W, for small values 

of T* it results T* = T* and for T* = 0 is T* = T* 0 

When T* ~ 0, the (6.10) become 

(
6

.1I) jJ = F(p, o, e): , 

t• = 2p,(p, o, e)D*, 

so that the analogy is evident and we conclude that the materials whose mechanical prop
erties are described by the constitutive Eqs. (6.7) behave in the neighbourhoods of 
states in which the deviatoric stresses are zero as isotropic elastic materials. System ( 6. 7) 
is equivalent to the single equation 

(6.12) T = [0o+Bp 2 -Cp)trD+(Bp-C)tr(TD)]l +B[tr(TD)+p(trD)]T+2iJD, 

which on the basis of the inverses of relations (6.8), namely 

(6.13) 

Dto = 2p,, 

Ds = B, 

02 = Bp-C, 

2 
Dt = F- 3 p,+Bp2 -Cp = J.+Bp2 -Cp, 
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can be written again in the form 

. ( ~n~~) (6.14) T= (D 1 trD+D 2 tr(TD))l+D 5 tr(TD)-
3 

T+D 10 D. 

Let us now look for an explicit form of the constitutive coefficients for loading processes 
(tr(Tp) ~ 0). A diofferential equation for q can be,obtained remembering that q2 = tr(T*)2 

and then qq = tr(T*T*). Multiplying the second term in (6.10) by T* and taking the trace, 
we have 

(6.15) qq = (2p, +Bq2)tr(T*D*). 

From (6.15) it is clear that the deviatoric stress response in terms of q is described by the 
constitutive function B. Figure 5 shows that in dense states at least, this response depends 
more strictly on the density changes than on the mean pressure. A simple interpretation 
in agreement with the various typical stress results schematically illustrated in Figs. 3-8 
comes out naturally in terms of the following constituti\'e hypothesis: 

(6.16) q-+ k(e), iJ-+ o. 
By ( 6.15) this implies 2p, + Bq2 -+ 0 when q -+ k(e), so that by continuity .it must be 2p, + 
+ Bk2 ((}) = · 0, from which 

(6.17) 

We can now substitute (6.17) in (6.15) to obtain 

(6.18) qq = 2,_.( 1- k~:e) )tr(T*D*). 

From (6.18) it results that for loading processes in which the deviatoric part of the stress 

power tr(T* D*) = tr(TD)- Pf! is positive, q has the same sign of the difference k(e)- q. 
(} . 

The previous considerations make clear the int~rpretation of the test results of Figs. 3-8, 
on the basis of the Eq. (6.18). 

Substituting (6.17), the second of (6.7) can be written in the form: 

(6.19) T* = 2 [n•- tr(T*D*)T*] 
, k 2(e) • 

The first of (6.7) for constant p tests assumes the form 

(6.20) 

and for constant (} tests 

(6.21) 

0 = r.!!_ +Ctr(T*D*) 
(} 

p = Ctr(T*D*). 

The typical stress results shown in Figs. 3-8 refer to deformation process in which 
tr(T* D*) > 0. Because r is always positive, it is possible to deduce some implications 
concerning the constitutive function C that gives account of the coupling between de
viatoric and spherical parts of the stress response. If C is zero, the first of (6.7) could be 

6* 
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solved separately to give the spherical stresses. This is the case in [12]. Figs. 3 and 5, when 
compared with the Eq. (6.20), respectively suggest that 

k(e)-+ 'PPo, C-+ 0, 

and 

Moreover, Fig. 5 shows that e has always the same sign of the difference 'PPo -q and that 

'/'Po = 0 ~ ~ = 0. 
Because C is a dimensionless function, we propose the following explicit form: 

(6.22) C(p
. q ) _ (q-tpp)lk(e)-tppl 
' ,(! - b ' 

where b is a constant with dimension of stress. Of course, the smaller is b, the greater are 
the dilatancy effects during shear processes of dense materials (Fig. 5). 

Expression (6.22) is in agreement with the behaviour illustrated in Fig. 4 and for 
constant e tests, with that of Figs. 6, 1, 8 when compared with the Eq. (6.21). 

We can now summarize the previous results writing (6.7) in the form 

(6.23) 

P = r.l + (q-'PP)ik(e)-'I'Pi tr(T*D*), 
e b 

T* = 2 [n• _ tr(T* D*) T*] 
.P k 2 (e) · 

The constitutive functions r, p and k remain now to be given an explicit form. Their 
determination is really difticult, mainly because of the lack of suitable experimental data. 
By the same reason, the choice of a suitable form of the constitutive equations for unloading 
processes is troublesome. Anyway a major step toward the verification of the validity 
of the proposed model is the evaluation of the reliability, at least from a qualitative point 
of view, of the solutions obtainable for boundary-value problems that simulate some real 
processes. With these considerations in mind, the next step will be to conceive an explicit 
form of the constitutive coefficients that, if strongly simplified, can be realistic. 

To this aim, for the unloading processes will be assumed the absence of dilatancy 
effects, i.e. C = 0, and an "elastic" behaviour with variable moduli r and p,, i.e. B = 0, 
so that the constitutive Eqs. (6.1) assume now the special form 

(6.24) p=F(p,q,e):, T* = 2p,(p, q, e)D*. 

A leading hypothesis in the determination of the constitutive coefficients for loading and 
unloading processes is that every granular material has a limited range of admissible den
sities, with an upper bound f!L that is asymptotically approached when the pressure 
increases, and a lower limit f!M, beyond which the continuity of the body is lost. The 
deformability of the material, of course, decreases with the density and will be assumed 
that it tends to zero for e -+ f!L and to infinity as e -+ eM (Fig. 2). 
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Let us suppose that, during purely hydrostatic compression of the virgin material, r 
is a function of the density only. The constitutive equations for such processes can then 
be written in the form 

(6.25) 

The first of ( 6.25) gives 

(6.26) 

. r. 
p=-ee, T* = 0. 

and by integration we obtain the following expression for the pressure on the virgin com
pression line: 

p 

(6.27) p(e) = J r~'TJ) dTJ+P~r~, 
PM 

where PM = p(eM), while the previous considerations and the diagrams of Fig. (11) 
suggest the following explicit simple form 

(6.28) 

where rl) is a constant with dimension of stress. 
From (6.27) and (6.28) we have 

(6.29) 

for virgin compression processes. 
Experimental pressure-density relat~ons (Fig. 2) show that it is reasonable to assume 

for unloading processes a similar expression of the rate rJe but with a greater value of 
the constant, so that we take 

(6.30) 

with ru > rl). 
For general loading processes, observing that the rate dpfde = r1e decreases with the 

distance from the virgin compression line tending to reach the value (6.29), we will assume 

(6.31) 

where r is a dimensionless constant. For virgin processes by (6.29) it is e-eM r, = 1 
· eL-e P 

and (6.31) reduces to (6.29). Thus we can summarize: 

if tr(TD)~O. 

(6.32) 

if tr(TD)~O. 
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Let us now analyze the response to purely deviatoric loading deformation processes, 
characterized by the same stretch history but different values of the density. 

Equation (6.19) can be written in the form 

(6.33) • ( q2
) tr(T*D*) 

q = 2p 1- kz (tr T*2)If2 . 

With the initial condition T*(O) = 0, we have q(O) = 0 and 

(6.34) 

where 

(6.35) 

q, 

q(O) = 2p,d(D*), 

I. tr(T* D*) _ ~ (D*) O 
am ( T*2)tf2 - u ~ . r---o tr 

========-.... f!1 
~=====-pz 

__:.======-- Ps 
=-.:::=.====- p.., 

fll> Pz >pa>P-t 
a=arctg 2pcS(D*} 

FIG. 10. 

The non-negative function d is linear and such that D* = 0 => d(D*) = 0. Typical test 
results are plotted in Fig. (10) and when interpreted in terms of (6.34) and (6.35), justify 
the assumption of the following expression for k and p,: 

(6.36) 

(6.37) (!-(]M 
p = P.r . ' r!L -e 

where kc and P.r are constants with dimension ofstress. The constitutive parameters whose 
Value ffiUSt be determined experimentally for each material are therefore r,H ru, r, (}M, 

(!L, kc, f.tr, 1p, b. The design of suitable experimental procedures for such determination 
will be discussed in a next paper. 

Comparison with experimental data shows that as possible values for the constitutive 
parameters can be assumed 

(!M = 1.2, ~£ = 2.2, P,r = 600, kc = 90, 

rf) = 400' r. = 4000, r = 5' b = 10000' "P = 1 . 
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With such a choice, the constitutive equations can be integrated to give local stress-strain 
relations. The procedure is illustrated in detail in [17]. Here, only some results for spherical 
compression and simple contraction under constant pressure or constant density are 
reported. Initial states are always spherical. For spherical and constant pressure processes, 
also unloading-reloading paths are shown. The results are illustrated in Figs. 11-16. 

T11=Tz2 
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FIG. 11. 
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Axial contracti'on, ronstant density 
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FIG.14. 

0 
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FIG. 15. 

0~--------------------------------~ 

1.60 

1.50 
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Axial contraction, constant pressure 

733 

30 

OL---------------------------------~-

1.65r-: 
1.60 

Po-16 

p 

p== 60 loose 

[1026] 
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7. Conclgjions 

The present theory is characterized by the inclusion of the powerfully simplifyingp 
but realistic, critical state conception in the general framework of the theory of rate type 
materials. It is an attempt to provide a model of the mechanical behaviour of granular 
media for finite deformations whose main features will be listed below: 

1. No true elastic range is exibited. 
2. Account is given of the dilatancy effects under constant mean pressure, through 

the coupling of deviatoric and spherical parts of stress response. 
3. Purely spherical processes do not affect deviatoric stresses. 
4. Linear elastic behaviour in the neighbourhoods of states with zero deviatoric stresses, 

if the density is constant. 
5. Continuous transition from elastic behaviour (when T* ~ 0) to perfectly plastic 

behaviour as deviatoric deformations increase under constant pressure or constant density. 
The determination of stress-strain relations for relevant homogeneous deformation 

processes, to be compared with experimental tests, the discussion of tlie procedures as 
well as the solution of boundary value problems for non-uniform motions, will be the 
subject of next works. 
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