Preparatyka ¹³C- i ¹⁵N- znakowanych RNA do badań strukturalnych metodami heterojądrowego, wielokierunkowego magnetycznego rezonansu jądrowego (NMR)

Mikołaj Olejniczak Instytut Chemii Bioorganicznej Polska Akademia Nauk Poznań

Do najważniejszych metod badania struktur makrocząsteczek biologicznych należą: 1) analiza rentgenowska ich monokryształów i 2) badania w roztworach za pomocą heterojądrowych, wielokierunkowych technik magnetycznego rezonansu jądrowego (NMR).

Obecnie powiązanie metod heterojądrowego, wielokierunkowego NMR oraz technik znakowania izotopowego (13 C i 15 N) białek za pomocą metod inżynierii genetycznej umożliwia określenie struktury w roztworze dla białek, których ciężary cząsteczkowe (dla monomeru) sięgają 25kD (1). Izotopy 13 C i 15 N są nieradioaktywnymi, występującymi w śladowych ilościach pierwiastkami, których jądra cechują właściwości magnetyczne umożliwiające ich łatwą detekcję stosując metody NMR.

W przypadku badań strukturalnych RNA, dla których pozyskiwanie monokryształów jest bardzo trudne, alternatywne zastosowanie metod NMR napotyka wiele przeszkód. Część z nich związana jest z charakterystycznymi właściwościami strukturalnymi RNA (2) sprawiającymi, że sygnały protonów H3', H4' i H5'/H5" rybozy stłoczone są w przedziale 1ppm. Dla pełnej interpretacji widm i rozwiązania struktur RNA rzędu 20 jednostek nukleotydowych stało się konieczne wprowadzenie wielokierunkowych technik ¹H, ¹³C i ¹⁵N NMR opartych na pełnym lub selektywnym ¹³C- i ¹⁵N-znakowaniu cząsteczek (3,4). Selektywne ¹³C- i ¹⁵N-znakowanie wybranych atomów węgla i azotu w czasteczce RNA może być oparte jedynie na metodach chemicznych, które nie są przedmiotem tego artykułu. Przygotowanie w pełni ¹³C- i ¹⁵N-znakowanych (*uniformly labelled*) preparatów, a zatem takich w których wszystkie atomy węgla i azotu są zastąpione izotopami ¹³C i ¹⁵N wymaga zastosowania drogich i pracochłonnych procedur biosyntetycznych (5-7).

Procedura otrzymywania w pełni ¹³C- i ¹⁵N-znakowanych RNA składa się z kilku podstawowych etapów przedstawionych schematycznie na rys.1. Naj-

Rys. 1. Etapy procedury otrzymywania 13 C- i/lub 15 N-znakowanego RNA z uwzględnieniem alternatywnych metod pozyskiwania NMP z komórek bakteryjnych.

biotechnologia ____ 1 (32) '96

pierw z bakterii hodowanych na pożywkach zawierających, jako źródła węgla i azotu wyłącznie izotopy ¹³C i/lub ¹⁵N, izoluje się RNA, który zostaje następnie hydrolizowany do nukleozydo-5'-monofosforanów (NMP). W procesie enzymatycznej fosforylacji NMP otrzymuje się nukleozydo-5'-trifosforany (NTP). Wykorzystywane są one w reakcji transkrypcji *in vitro* przy udziale T7 RNA polimerazy i matryc DNA.

Najprostszą metodą otrzymywania biomasy bakteryjnej, zawierającej RNA w pełni wyznakowane izotopami ¹³C i/lub ¹⁵N, jest hodowla *E. coli* na pożywce minimalnej zawierającej ¹³C-glukozę i/lub sole ¹⁵N-amonowe (5). Bakterie z tego gatunku hoduje się na pożywce płynnej, w warunkach tlenowych, w temperaturze 37°C, po czym oddziela się je wirowaniem od pożywki, tab.1 (5). Dla uniknięcia wysokich kosztów zakupu ¹³C-glukozy można na tym etapie wykorzystywać bakterie hodowane na ¹³C-metanolu. Związek ten jest najtańszym (w przeliczeniu na mol atomów węgla) źródłem izotopu ¹³C do znakowania nukleotydów. Zastosowano w tym celu bakterie z gatunku Methylophilus methylotrophus, które są bezwzględnymi metylotrofami, wykorzystującymi do przyswajania metanolu szlak heksulozomonofosforanowy (HMP). Zdecydowano się na wybór metylotrofa wykorzystującego tor HMP, a nie alternatywny, serynowy szlak asymilacji węgla ponieważ w tym drugim przypadku na dwa mole CH₃OH przyswajany jest jeden mol CO₂ z atmosfery. Zjawisko to jest niepożadane ponieważ prowadziłoby do rozcieńczenia izotopu ¹³C w baktervinvm RNA.

Składnik	Zawartość w litrze
KH ₂ PO ₄	13,6 g
(¹⁵ NH ₄) ₂ SO ₄	0,3 g
$MgSO_4 \ge 7H_2O$	0,25 g
$CaCl_2 \ge 2H_2O$	15 mg
Na ₂ EDTA	30 mg
FeCl ₃ x 6H ₂ O	25 mg
$CuSO_4 \ge 5H_2O$	240 µg
$MnSO_4 \ge 5H_2O$	180 µg
$ZnSO_4 \ge 7H_2O$	27 μg
CoCl ₂	270 μg
98% ¹³ C-glukoza	0,1% (wag./obj.)

				TABELA	1				
SKŁAD POŻYWKI	E	COLI HODOWANEJ	NA	PODŁOŻU	ZAWIERAJACYM	IZOTOPY	13 _{C ORA:}	Z 15 _N	(5)

Stosując M. methylotrophus, w przeliczeniu na ilość wykorzystanego izotopu, uzyskuje się o 58% mniej NMP niż w przypadku E. coli, ale koszt

Preparatyka ¹³C- i ¹⁵N- znakowanych RNA do badań strukturalnych

zakupu ¹³C-metanolu jest siedmiokrotnie niższy niż dla odpowiedniej ilości ¹³C-glukozy. Natomiast, wydajność wbudowywania ¹⁵N przez *M. methylotrophus* do zasad azotowych jest znacznie niższa i wynosi 0,058% AMP i 0,085% GMP, podczas gdy z *E. coli* otrzymuje się 0,87% AMP i 1,07% GMP, a z *B. subtilis* 1,68% inozyny i 5,14% guanozyny w stosunku do ilości wykorzystanego izotopu ¹⁵N (8). *M. methylotrophus* szybko *rośnie* na pożywkach zawierających minimalny zestaw soli mineralnych i metanol (czas podwojenia liczby komórek wynosi ok. 2 godz.). Hodowlę prowadzi się na pożywce płynnej, w warunkach tlenowych, w temp. 37°C, tab. 2 (5). Aby zapewnić, jak najpełniejsze wykorzystanie ¹³C-metanolu komórki oddziela się od pożywki na początku stacjonarnej fazy wzrostu hodowli.

Składnik	Zawartość w litrze
KH ₂ PO ₄	0,95 g
NaH ₂ PO ₄	0,78 g
(NH4)2SO4	1,8 g
$MgSO_4 \ge 7H_2O$	0,2 g
$FeSO_4 \ge 7H_2O$	50 mg
$MnSO_4 \ge 5H_2O$	50 µg
$CuSO_4 \ge 5H_2O$	10 mg
$ZnSO_4 \ge 7H_2O$	50 µg
$CaCl_2 \ge 2H_2O$	1,3 mg
CoCl ₂	10 µg
H ₃ BO ₃	7 μg
NaMoO4	10 µg
99% ¹³ C-metanol	1ml

 TABELA 2

 Skład pożywki bakterii m. methylotrophus hodowanej na podłożu zawierającym ¹³C-metanol (5)

Izolując w pełni ¹³C- i ¹⁵N-znakowane RNA z komórek *E. coli*, jak i *M. methylotrophus* można wykorzystać procedurę przedstawioną schematycznie w tab. 3 (5). W pierwszym etapie tej metody z rozbitych detergentem komórek bakteryjnych izoluje się całą pulę kwasów nukleinowych i trawi nukleazą P1. Następnie oddziela się 5'-rybonukleotydy od niepożądanych 5'-deoksyrybonu-kleotydów, stosując chromatografię na kolumnach zmodyfikowanych resztami kwasu borowego wiążącego reszty cis-diolowe rybonukleotydów.

179

TABELA 3							
GŁÓWNE	ETAPY	IZOLACJI	NMP	Z	KOMÓREK	BAKTERYJNYCH	(5

774		. 1		
Etai	DV	17.0	aci	1
2 ccc	- 1	11101	ine	~

liza komórek 0,5% SDS w buforze STE (0,1 M NaCl, 10 mM Tris·Cl (pH 8,0), 1mM EDTA (pH 8,0)), w 37°C

ekstrakcja białek mieszaniną: fenol, chloroform, alkohol izoamylowy w stosunku 25:24:1

wytrącenie kwasów nukle
inowych przez inkubację z jedną objętością izopropanolu z octanem sodu (w sto
sunku 11:1) przez noc, w temp. -20°C

trawienie kwasów nukleinowych (DNA+RNA) nukleazą P1. Całkowitą hydrolizę do NMP i dNMP potwierdzono HPLC

separacja rybonukleotydów przy użyciu chromatografii powinowactwa do reszt kwasu borowego

Dla pozyskania znakowanego RNA z komórek *E. coli* można wykorzystać też inną metodę. Opiera się ona na izolacji tylko rybosomalnego RNA i jego enzymatycznej hydrolizie. O wyborze rRNA, jako źródła NMP zdecydowało to, że zawiera on najmniej zmodyfikowanych nukleotydów spośród komórkowych RNA, stanowiąc jednocześnie 80% kwasu rybonukleinowego w komórkach *E. coli*. Najważniejsze etapy tej procedury izolacyjnej są przedstawione w tab. 4 (6).

TABELA 4								
GŁÓWNE	ETAPY	IZOLACJI	NMP	Z	KOMÓREK	BAKTERYJNYCH	(6)	

	Etapy izolacji
rozbicie komórek prasą	
hydroliza kwasu deoksyrybo	nukleinowego DNazą 1
izolacja wirowaniem frakcji r	ybosomalnej
ekstrakcja białek mieszanina	a: fenol, chloroform, alkohol izoamylowy w stosunku 25:24:1
wytrącenie rRNA potrójną ob	ojętością etanolu, przez noc, w temp20°C
hydroliza rRNA do NMP przy	v użyciu nukleazy Pl

Jeżeli w RNA, które zamierzamy otrzymać tylko niektóre typy nukleotydów mają być wyznakowane konieczne jest rozdzielenie otrzymanych UMP, AMP, GMP i CMP. Reakcja enzymatycznej fosforylacji każdego NMP jest wtedy prowadzona osobno; gdy syntezowany RNA ma być złożony z wszystkich czterech ¹³C- i ¹⁵N-znakowanych nukleotydów reakcję fosforylacji prowadzi się w jednej mieszaninie reakcyjnej.

Ostatnio zaproponowano (8) alternatywną drogę uzyskiwania ¹⁵N-znakowanych nukleozydów purynowych, które mogą być po fosforylacji wykorzystywane w syntezie RNA. W tym celu wykorzystuje się szczep *B. subtilis* wydzielający do pożywki duże ilości guanozyny i inozyny. Inozyna może być następnie przekształcona chemicznie do adenozyny. Źródłem ¹⁵N w pożywce jest ¹⁵N-mocznik i (¹⁵NH₄)₂SO₄.

Preparatyka ¹³C- i ¹⁵N- znakowanych RNA do badań strukturalnych

Enzymatyczne przekształcenie NMP do NTP w procedurze ¹³C- i ¹⁵N-znakowania RNA zostało opisane przez Williamsona i wsp. (5). W skład mieszaniny reakcyjnej wchodzą m. in. AMP, UMP, CMP, GMP i 3-fosfoglicerynian (3-PG). Reakcję inicjuje się dodaniem fosfogliceromutazy, kinazy adenylanowej (AK), enolazy, i kinazy pirogronianowej (PK). Na tym etapie dochodzi do całkowitego przekształcenia AMP w ATP i częściowego CMP w CTP. Przebieg reakcji monitoruje się, np. przy użyciu HPLC. Po zamianie > 90% puli AMP w ATP do reakcji dodaje się kinazę guanylanową (GK) i kinazę nukleozydomonofosforanów (NMPK). Powstały uprzednio ATP zostaje teraz użyty w reakcji fosforylacji pozostałych NMP do NTP.

W trakcie reakcji 3-PG przy udziale fosfogliceromutazy i enolazy zostaje przekształcony do fosfoenolopirogronianu (PEP), alternatywnie do mieszaniny reakcyjnej można bezpośrednio dodać PEP, ale jest on drogi w porównaniu z odczynnikami potrzebnymi do jego syntezy *in situ.* AK, GK i NMPK przekształcają NMP do nukleozydo-5'-difosforanów (NDP), przenosząc na nie resztę ortofosforanu z ATP. Następnie NDP ulegają fosforylacji do NTP przy wykorzystaniu PK, która katalizuje reakcję przeniesienia ortofosforanu z PEP na NDP z wytworzeniem odpowiednich NTP i pirogronianu. Przed użyciem otrzymanych NTP w reakcji transkrypcji *in vitro* należy usunąć z ich roztworu sole i zanieczyszczenia o wysokiej masie cząsteczkowej. Można w tym celu stosować chromatografię powinowactwa cis-diolowego.

Syntezę RNA prowadzi się przy użyciu T7 RNA polimerazy z wykorzystaniem syntetycznych (9) lub plazmidowych matryc DNA w warunkach opisanych w tab. 5 (5). Po zakończeniu reakcji konieczne jest odseparowanie za pomocą metody preparatywnej elektroforezy właściwego transkryptu od, często występujących w przewadze, produktów ubocznych. Po oddzieleniu właściwego RNA pozostałe cząsteczki kwasu rybonukleinowego hydrolizuje się enzymatycznie odzyskując w ten sposób, w postaci ¹³C- i ¹⁵N-znakowanych NMP, 45-50% nukleotydów użytych w reakcji transkrypcji.

Składnik	Stężenie
Tris [.] HCl (pH 8,1)	40 mM
spermidyna	1 mM
DTT	5 mM
MgCl ₂	9,6 mM
Triton X-100	0,01%
glikol polietylenowy (8000)	80 mg/ml
NTP	6,0 mM (~1,5 mM każdy)
DNA -nić "górna" i "dolna"	200 nM każda
T7 RNA polimeraza	wg optimum

TABELA 5							
SYNTEZA	RNA	IN	VITRO.	SKŁAD	MIESZANINY	TRANSKRYPCYJNEJ	(5)

biotechnologia ____ 1 (32) '96

Dotychczas ¹³C- i ¹⁵N-znakowane RNA zostały wykorzystane do analizy strukturalnej stosując metody heterojądrowego, wielokierunkowego NMR takich cząsteczek jak: element TAR RNA wirusa HIV-1 (5,7), wzajemnie komplementarny dupleks GGCGCUUGCGUC (6), ¹³C-znakowany rybozym (10).

Literatura

- 1. Clore J. M., Gronenborn A., (1994), Prot. Sci., 3, 372-390.
- 2. Varani G, Tinoco I., Jr., (1991), Quar. Rev. Biophys., 24, 479-510.
- 3. Nikonowicz E. P., Pardi A., (1992), Nature, 355, 184-186.
- 4. Dieckmann T., Feigon J., (1994), Current Opinion in Structural Biology, 4, 745-749
- 5. Batey R. T., Inada M., Kujawinski E., Puglisi J. D., Williamson J. R., (1992), Nucleic Acids Res., 20, 4515-4523.
- Nikonowicz E. P., Sirr A., Legault P., Jucker F. M., Baer L. M., Pardi A., (1992), Nucleic Acid Res., 20, 4507-4513.
- 7. Michnicka M. J., Harper J. W., King J. C., (1993), Biochemistry, 32, 395-403.
- Niemann A. C., Meyer M., Engeloch T., Botta O., Hadener A., Strazewski P., (1995), Helv. Chim. Acta., 78, 421-439.
- 9. Wyatt J. R., Chastain M., Puglisi J. D., (1991), Biotechniques, 11, 764-769.
- Legault P., Farmer II B. T., Muller L., Pardi A., (1994), J. Am. Chem. Soc., 116, 2203-2204.

Preparation of ¹³C- and ¹⁵N-labelled RNA for the structural study using multi-dimensional, heteronuclear magnetic resonance techniques

Summary

Techniques for the preparation of 13 C- and 15 N-labelled RNA have been recently introduced, making the application of multidimensional, heteronuclear NMR techniques for the study of RNA structure in solution possible. The article briefly presents ways of RNA isolation from isotopically labelled bacteria and its subsequent degradation to 13 C- and 15 N-labelled nucleoside 5'-monophosphates then enzymatically converted to NTPs.

¹³C- and ¹⁵N-labelling of RNA is achieved by *in vitro* transcription with T7 RNA polymerase using isotopically labelled nucleoside 5'-triphosphates as substrates and DNA template.

Key words:

¹³C-, ¹⁵N-labelled RNA, RNA synthesis in vitro, heteronuclear NMR, RNA structure.

Adres do korespondencji:

Mikołaj Olejniczak, Instytut Chemii Bioorganicznej PAN, ul. Noskowskiego 12/14, 61-704 Poznań; fax: (061) 52 05 32.