714.

VARIOUS NOTES.

[From the Messenger of Mathematics, vol. viI. (1878), pp. 69, 115, 124, 125.]

An Identity.

The following remarkable identity is given under a slightly different form by Gauss, Werke, t. III., p. 424,

$$
\begin{gathered}
1+\left(\frac{\frac{1}{2}}{1}\right)^{3} x+\left(\frac{\frac{1}{2} \cdot \frac{3}{2}}{1.2}\right)^{3} x^{2}+\left(\frac{\frac{1}{2} \cdot \frac{3}{2} \cdot \frac{5}{2}}{1 \cdot 2 \cdot 3}\right)^{3} x^{3}+\& c . \\
=\left\{1+\left(\frac{\frac{1}{4}}{1}\right)^{2} x+\left(\frac{\frac{1}{4} \cdot \frac{5}{4}}{1.2}\right)^{2} x^{2}+\left(\frac{\frac{1}{4} \cdot \frac{5}{4} \cdot \frac{9}{4}}{1.2 \cdot 3}\right)^{2} x^{3}+\& c\right)^{2}
\end{gathered}
$$

On two related quadric functions.
Assume

$$
\begin{aligned}
& \phi x=a^{2}(c-x)-x\left(c^{2}-b^{2}-c x\right) \\
& \psi x=b^{2}(c-x)-x\left(c^{2}-a^{2}-c x\right):
\end{aligned}
$$

then

$$
\begin{aligned}
& \phi\left(\frac{a^{2}}{c-x}\right)=\frac{a^{2}}{(c-x)^{2}} \psi x \\
& \psi\left(\frac{b^{2}}{c-x}\right)=\frac{b^{2}}{(c-x)^{2}} \phi x .
\end{aligned}
$$

In the first of these for x write $\frac{b^{2}}{c-x}$; then

$$
\phi\left\{\frac{a^{2}(c-x)}{c^{2}-b^{2}-c x}\right\}=\frac{a^{2}(c-x)^{2}}{\left(c^{2}-b^{2}-c x\right)^{2}} \frac{b^{2}}{(c-x)^{2}} \phi x=\frac{a^{2} b}{\left(c^{2}-b^{2}-c x\right)^{2}} \phi(x)
$$

A Trigonometrical Identity.

$$
\begin{aligned}
& \cos (b-c) \cos (b+c+d)+\cos a \cos (a+d) \\
= & \cos (c-a) \cos (c+a+d)+\cos b \cos (b+d) \\
= & \cos (a-b) \cos (a+b+d)+\cos c \cos (c+d) \\
= & \cos a \cos (a+d)+\cos b \cos (b+d)+\cos c \cos (c+d)-\cos d
\end{aligned}
$$

Extract from a Letter.

"I wish to construct a correspondence such as

$$
(x+i y)^{3}+(x+i y)=X+i Y,
$$

or, say, for greater convenience

$$
4(x+i y)^{3}-3(x+i y)=X+i Y
$$

viz. if

$$
x+i y=\cos u
$$

then

$$
X+i Y=\cos 3 u .
$$

Suppose $3 u_{0}$ is a value of $3 u$ corresponding to a given value of $X+i Y$, then the three values of $x+i y$ are of course $\cos u_{0}, \cos \left(u_{0} \pm \frac{2 \pi}{3}\right)$; but I am afraid that the calculation of u_{0}, even with cosh and sinh tables, would be very laborious. Writing

$$
X+i Y=R(\cos \Theta+i \sin \Theta)
$$

the intervals for Θ might be $5^{\circ}, 10^{\circ}$ or even 15°, those of R, say $0 \cdot 1$ from 0 to 2, and then 0.5 up to 4 or 5 ; and 2 places of decimals would be quite sufficient; but even this would probably involve a great mass of calculation.

It has occurred to me that perhaps a geometrical solution might be found for the equation $X+i Y=\cos 3 u$."

October 31, 1877.

