713.

ADDITION TO MR ROWE'S MEMOIR ON ABEL'S THEOREM.

[From the Philosophical Transactions of the Royal Society of London, vol. 172, Part III. (1881), pp. 751-758. Received May 27,-Read June 10, 1880.]

In Abel's general theorem y is an irrational function of x determined by an equation $\chi(y)=0$, or say $\chi(x, y)=0$, of the order n as regards y: and it was shown by him that the sum of any number of the integrals considered may be reduced to a sum of γ integrals; where γ is a determinate number depending only on the form of the equation $\chi(x, y)=0$, and given in his equation (62), [*Œuvres Complètes*, (1881), t. I. p. 168]: viz. if, solving the equation so as to obtain from it developments of y in descending series of powers of x, we have*

* The several powers of x have coefficients: the form really is $y = A_1 x^{\frac{m_1}{\mu_1}} + \dots$, which is regarded as representing the μ_1 different values of y obtained by giving to the radical $x^{\frac{1}{\mu_1}}$ each of its μ_1 values, and the corresponding values to the radicals which enter into the coefficients of the series: and (so understanding it) the meaning is that there are n_1 such series each representing μ_1 values of y. It is assumed that the series contains only the radical $x^{\frac{1}{\mu_1}}$, that is, the indices after the leading index $\frac{m_1}{\mu_1}$ are $\frac{m_1-1}{\mu_1}$, $\frac{m_1-2}{\mu_1}$, \dots ; a series such as $y = A_1 x^{\frac{4}{3}} + B_1 x^{\frac{3}{6}} + \dots$, depending on the two radicals $x^{\frac{1}{3}}$, $x^{\frac{1}{3}}$ represents 15 different values, and would be written $y = A_1 x^{\frac{20}{16}} + \dots$, or the values of m_1 and μ_1 would be 20 and 15 respectively: in a case like this where $\frac{m_1}{\mu_1}$ is not in its least terms, the number of values of the leading coefficient A_1 is equal, not to μ_1 , but to a submultiple of μ_1 . But the case is excluded by Abel's assumption that $\frac{m_1}{\mu_1}$, $\frac{m_2}{\mu_2}$, ..., are fractions each of them in its least terms. (so that $n = n_1\mu_1 + n_2\mu_2 + \ldots + n_k\mu_k$), then γ is a determinate function of n_1 , m_1 , μ_1 ; n_2 , m_2 , μ_2 ; ...; n_k , m_k , μ_k .

Mr Rowe has expressed Abel's γ in the following form, viz. assuming

$$\frac{m_1}{\mu_1} > \frac{m_2}{\mu_2} > \ldots > \frac{m_k}{\mu_k},$$

then this expression is

$$\gamma = \sum_{s>r} n_r m_r n_s \mu_s + \frac{1}{2} \sum n^2 m \mu - \frac{1}{2} \sum n m - \frac{1}{2} \sum n - \frac{1}{2} n + 1,$$

or, what is the same thing, for n writing its value $\sum n\mu$,

$$\gamma = \sum_{\substack{s>r}} n_r m_r n_s \mu_s + \frac{1}{2} \sum n^2 m \mu - \frac{1}{2} \sum n m - \frac{1}{2} \sum n \mu - \frac{1}{2} \sum n + 1,$$

where in the first sum r, s have each of them the values 1, 2, ..., k, subject to the condition s > r; in each of the other sums n, m, and μ are considered as having the suffix r, which has the values 1, 2, ..., k.

It is a leading result in Riemann's theory of the Abelian integrals that γ is the deficiency (Geschlecht) of the curve represented by the equation $\chi(x, y) = 0$: and it must consequently be demonstrable à *posteriori* that the foregoing expression for γ is in fact = deficiency of curve $\chi(x, y) = 0$. I propose to verify this by means of the formulæ given in my paper "On the Higher Singularities of a Plane Curve," Quart. Math. Jour., vol. VII., (1866), pp. 212-223, [374].

It is necessary to distinguish between the values of $\frac{m}{\mu}$ which are >, =, and < 1; and to fix the ideas I assume k = 7, and

$$\begin{split} & \frac{m_1}{\mu_1}, \ \frac{m_2}{\mu_2}, \ \frac{m_3}{\mu_3}, \ \text{each} > 1, \\ & \frac{m_4}{\mu_4} = 1 \ ; \ \text{say} \ m_4 = \mu_4 = \lambda, \ \text{and} \ n_4 = \theta \ ; \\ & \frac{m_5}{\mu_5}, \ \frac{m_6}{\mu_6}, \ \frac{m_7}{\mu_7}, \ \text{each} \ < 1, \end{split}$$

but it will be easily seen that the reasoning is quite general. I use Σ' to denote a sum in regard to the first set of suffixes 1, 2, 3, and Σ'' to denote a sum in regard to the second set of suffixes 5, 6, 7. The foregoing value of n is thus

$$n = \Sigma' n \mu + \lambda \theta + \Sigma'' n \mu.$$

Introducing a third coordinate z for homogeneity, the equation $\chi(x, y) = 0$ of the curve will be

$$0 = \left(yz^{\underline{m_1}} - 1 - x^{\underline{m_1}}\right)^{\underline{n_1}\mu_1} \dots \left(y - x^{\overline{\lambda}}\right)^{\lambda\theta} \left(y - x^{\underline{m_5}} z^{1 - \underline{m_5}}\right) \dots,$$

where it is to be observed that $()^{n_1\mu_1}$ is written to denote the product of $n_1\mu_1$ different series each of the form $yz^{\frac{m_1}{\mu_1}-1} - A_1x^{\frac{m_1}{\mu_1}} - \dots$; these divide themselves into n_1 groups, each a product of μ_1 series; and in each such product the μ_1 coefficients A_1 are in general the μ_1 values of a function containing a radical a^{μ_1} and are thus different from each other: it is in what follows in effect assumed not only that this is so, but that all the $n_1\mu_1$ coefficients A_1 are different from each other*: the like remarks apply to the other factors. It applies in particular to the term $(y - w^{\bar{\lambda}})^{\lambda\theta}$,

viz. it is assumed that the coefficients A in the $\lambda\theta$ series $y = Ax^{\overline{\lambda}} + ...$ are all of them different from each other. These assumptions as to the leading coefficients really imply Abel's assumption that $\frac{m_1}{\mu_1}, \ldots, \frac{m_k}{\mu_k}$ are all of them fractions in their least terms, and in particular that $\frac{\lambda}{\lambda}$ is a fraction in its least terms, viz. that $\lambda = 1$: I retain however for convenience the general value λ , putting it ultimately = 1.

In the product of the several infinite series, the terms containing negative powers all disappear of themselves; and the product is a rational and integral function F(x, y, z) of the coordinates, which on putting therein z = 1 becomes $= \chi(x, y)$. The equation of the curve thus is F(x, y, z) = 0; and the order is

$$= \frac{m_1}{\mu_1} n_1 \mu_1 + \ldots + \lambda \theta + n_5 \mu_5 + \ldots, = m_1 n_1 + \ldots + \lambda \theta + n_5 \mu_5 + \ldots;$$

viz. if K is the order of the curve $\chi(x, y) = 0$, then $K = \Sigma' nm + \lambda \theta + \Sigma'' n\mu$.

The curve has singularities (singular points) at infinity, that is, on the line z = 0: viz.—

First, a singularity at (z = 0, x = 0), where the tangent is x = 0, and which, writing for convenience y = 1, is denoted by the function

$$\left(z-x^{\frac{m_1}{m_1-\mu_1}}\right)^{n_1(m_1-\mu_1)}\dots;$$

where observe that the expressed factor indicates n_1 branches $\left(z - x^{\frac{m_1}{m_1 - \mu_1}}\right)^{m_1 - \mu_1}$, or say $n_1 (m_1 - \mu_1)$ partial branches $z - x^{\frac{m_1}{m_1 - \mu_1}}$, that is, $n_1 (m_1 - \mu_1)$ partial branches $z = A_1 x^{\frac{m_1}{m_1 - \mu_1}} + \dots$, with in all $n_1 (m_1 - \mu_1)$ distinct values of A_1 : and the like as regards

the unexpressed factors with the suffixes 2 and 3.

Secondly, a singularity at (z=0, y=0), where the tangent is y=0, and which, writing for convenience x=1, is denoted by the function

$$\left(z-y^{\frac{\mu_{5}}{\mu_{5}-m_{5}}}\right)^{n_{5}(\mu_{5}-m_{5})}\dots;$$

* This assumption is virtually made by Abel, (*l. c.*) p. 162, in the expression "alors on aura en général, excepté quelques cas particuliers que je me dispense de considérer: h(y'-y'')=hy', &c.": viz. the meaning is that the degree of y' being greater than or equal to that of y'', then the degree of y'-y'' is equal to that of y'': of course when the degrees are equal, this implies that the coefficients of the two leading terms must be unequal.

ADDITION TO MR ROWE'S

713

where observe that the expressed factor indicates n_5 branches $\left(z - y^{\frac{\mu_5}{\mu_5 - m_5}}\right)^{\mu_5 - m_5}$, or say $n_5 (\mu_5 - m_5)$ partial branches $z - y^{\frac{\mu_5}{\mu_5 - m_5}}$, that is, $n_5 (\mu_5 - m_5)$ partial branches $z = A_5 y^{\frac{\mu_5}{\mu_5 - m_5}} + \dots$, with in all $n_5 (\mu_5 - m_5)$ distinct values of A_5 : and the like as regards the unexpressed factors with the suffixes 6 and 7.

Thirdly, singularities at the θ points (z=0, y-Ax=0), A having here θ distinct values, at any one of which the tangent is y - Ax = 0, and which are denoted by the function

 $\left(y-x^{\lambda}_{\bar{\lambda}}\right)^{\lambda\theta}$:

but in the case ultimately considered λ is =1; and these are then the θ ordinary points at infinity, (z = 0, y - Ax = 0).

According to the theory explained in my paper above referred to, these several singularities are together equivalent to a certain number $\delta' + \kappa'$ of nodes and cusps; viz. we have

$$\begin{split} \delta' &= \frac{1}{2}M - \frac{3}{2}\Sigma \ (\alpha - 1), \\ \kappa' &= \qquad \Sigma \ (\alpha - 1), \end{split}$$

hence

$$\delta' + \kappa' = \frac{1}{2}M - \frac{1}{2}\Sigma (\alpha - 1).$$

Assuming that there are no other singularities, the deficiency

$$\frac{1}{2}(K-1)(K-2) - \delta' - \kappa'$$

is

 $= \frac{1}{2} (K-1) (K-2) - \frac{1}{2}M + \frac{1}{2} \Sigma (\alpha - 1).$

This should be equal to the before-mentioned value of γ ; viz. we ought to have

$$(K-1)(K-2) - M + \Sigma (\alpha - 1) = 2\Sigma n_r m_r n_s \mu_s \div \Sigma n^2 m \mu - \Sigma n m - \Sigma n \mu - \Sigma n + 2,$$

or, as it will be convenient to write it,

$$M = K^2 - 3K + \Sigma \left(\alpha - 1\right) - 2\sum_{s \ge r} m_r n_s \mu_s - \Sigma n^2 m \mu + \Sigma n m + \Sigma n \mu + \Sigma n,$$

which is the equation which ought to be satisfied by the values of M and $\Sigma(\alpha-1)$ calculated, according to the method of my paper, for the foregoing singularities of the curve.

We have as before

$$K = \Sigma' nm + \Sigma'' n\mu + \theta \lambda.$$

The term $\sum n_r m_r n_s \mu_s$, written at length, is

$$= n_1 m_1 (n_2 \mu_2 + n_3 \mu_3 + \theta \lambda + n_5 \mu_5 + n_6 \mu_6 + n_7 \mu_7) + n_2 m_2 (n_2 \mu_3 + \theta \lambda + n_5 \mu_5 + n_6 \mu_6 + n_7 \mu_7) + n_3 m_3 (\theta \lambda + n_5 \mu_5 + n_6 \mu_6 + n_7 \mu_7) + \theta \lambda (n_5 \mu_5 + n_6 \mu_6 + n_7 \mu_7) + n_5 m_5 (n_6 \mu_6 + n_7 \mu_7) + n_6 \mu_6 (n_7 \mu_7) + n_7 \mu_7)$$

www.rcin.org.pl

which is

$$= \sum_{s>r} n_r n_s \mu_s + \theta \lambda \left(\sum' nm + \sum'' n\mu \right) + \sum' nm \cdot \sum'' n\mu + \sum'' n_r m_r n_s \mu_s$$

We have moreover

$$\begin{split} \Sigma n^2 m \mu &= \Sigma' n^2 m \mu + \theta^2 \lambda^2 + \Sigma'' n^2 m \mu, \\ \Sigma n m &= \Sigma' n m + \theta \lambda + \Sigma'' n m, \\ \Sigma n \mu &= \Sigma' n \mu + \theta \lambda + \Sigma'' n \mu, \\ \Sigma n &= \Sigma' n + \theta + \Sigma'' n. \end{split}$$

We next calculate $\Sigma(\alpha-1)$.

For the singularity

$$\left(z-x^{\frac{m_1}{m_1-\mu_1}}\right)^{n_1(m_1-\mu_1)}\cdots$$

each branch $\left(z - x^{\frac{m_1}{m_1 - \mu_1}}\right)^{m_1 - \mu_1}$ gives $\alpha = m_1 - \mu_1$, and the value of $\Sigma (\alpha - 1)$ for this singularity is

$$n_1(m_1 - \mu_1 - 1) + n_2(m_2 - \mu_2 - 1) + n_3(m_3 - \mu_3 - 1),$$

which is

$$=\Sigma'nm-\Sigma'n\mu-\Sigma'n$$

For the singularity

$$\left(z-y^{\frac{\mu_{5}}{\mu_{5}-m_{5}}}\right)^{n_{5}(\mu_{5}-m_{5})}\dots,$$

each branch $\left(z - y^{\frac{\mu_s}{\mu_s - m_s}}\right)^{\mu_s - m_s}$ gives $\alpha = \mu_s - m_s$, and the value of $\Sigma(\alpha - 1)$ for this singularity is

$$n_5(\mu_5-m_5-1)+n_6(\mu_6-m_6-1)+n_7(\mu_7-m_7-1),$$

which is

$$= \Sigma'' n\mu - \Sigma'' nm - \Sigma'' n.$$

For each of the θ singularities

$$\left(y-x^{\hat{\lambda}}\right)^{\boldsymbol{\lambda}\theta},$$

we have $\alpha = \lambda$ and the value of $\Sigma(\alpha - 1)$ is $= \theta(\lambda - 1)$: this is = 0 for the value $\lambda = 1$, which is ultimately attributed to λ .

The complete value of $\Sigma(\alpha-1)$ is thus

$$= \Sigma' nm - \Sigma'' nm - \Sigma' n\mu + \Sigma'' n\mu - \Sigma' n - \Sigma'' n + \theta \lambda - \theta.$$

Substituting all these values, we have

$$\begin{split} M &= (\Sigma'nm + \Sigma''n\mu)^2 + 2\theta\lambda \left(\Sigma'nm + \Sigma''n\mu\right) + (\theta\lambda)^2 \\ &\quad - 3\left(\Sigma'nm + \Sigma''n\mu\right) - 3\theta\lambda \\ &\quad + \Sigma'nm - \Sigma''nm - \Sigma'n\mu + \Sigma''n\mu - \Sigma'n - \Sigma''n + \theta\lambda - \theta \\ &\quad - 2\Sigma'n_rm_rn_s\mu_s - 2\theta\lambda \left(\Sigma'nm + \Sigma''n\mu\right) - 2\Sigma'nm \cdot \Sigma''n\mu - 2\Sigma''n_rm_rn_s\mu_s \\ &\quad s > r \\ &\quad - \Sigma'n^2m\mu - (\theta\lambda)^2 - \Sigma''n^2m\mu \\ &\quad + \Sigma'nm + \theta\lambda + \Sigma''nm \\ &\quad + \Sigma'n\mu + \theta\lambda + \Sigma''n\mu \\ &\quad + \Sigma'n + \theta + \Sigma''n, \end{split}$$

C. XI.

5

713]

or, reducing,

$$\begin{split} M &= (\Sigma' nm)^2 - \Sigma' nm - \Sigma' n^2 m\mu - 2\Sigma' n_r m_r n_s \mu_s \\ &+ (\Sigma'' n\mu)^2 - \Sigma'' n\mu - \Sigma'' n^2 m\mu - 2\Sigma'' n_r m_r n_s \mu_s; \end{split}$$

and it is to be shown that the two lines of this expression are in fact the values of M belonging to the singularities

$$\left(z - x^{\frac{m_1}{m_1 - \mu_1}}\right)^{n_1(m_1 - \mu_1)} \dots, \text{ and } \left(z - y^{\frac{\mu_\delta}{\mu_\delta - m_\delta}}\right)^{n_\delta(\mu_\delta - m_\delta)} \dots$$

respectively. We assume $\lambda = 1$, and there is thus no singularity $\left(y - x^{\lambda}\right)^{\lambda\theta}$.

I recall that, considering the several partial branches which meet at a singular point, M denotes the sum of the number of the intersections of each partial branch by every other partial branch: so that for each pair of partial branches the intersections are to be counted *twice*. Supposing that the tangent is x=0, and that for any two branches we have $z_1 = A_1 x^{p_1}$, $z_2 = A_2 x^{p_2}$ (where p_1 , p_2 are each equal to or greater than 1), then if $p_2 = p_1$, and $z_1 - z_2 = (A_1 - A_2) x^{p_1}$ where $A_1 - A_2$ not = 0 (an assumption which has been already made as regards the cases about to be considered), then the number of intersections is taken to be $=p_1$; and if p_1 and p_2 are unequal, then *taking* p_2 to be the greater of them, the leading term of $z_1 - z_2$ is $= A_1 x^{p_1}$, and the number of intersections is taken to be $=p_1$; viz. in the case of unequal exponents, it is equal to the smaller exponent.

Consider now the singularity $\left(z - x^{\frac{m_1}{m_1 - \mu_1}}\right)^{n_1(m_1 - \mu_1)} \dots$; and first the intersections of a partial branch $z - x^{\frac{m_1}{m_1 - \mu_1}}$ by each of the remaining $n_1(m_1 - \mu_1) - 1$ partial branches of the same set: the number of intersections with any one of these is $= \frac{m_1}{m_1 - \mu_1}$; and consequently the number with all of them is $= \frac{m_1}{m_1 - \mu_1} [n_1(m_1 - \mu_1) - 1]$. But we obtain this same number from each of the $n_1(m_1 - \mu_1)$ partial branches, and thus the

whole number is

$$n_1(m_1-\mu_1)\frac{m_1}{m_1-\mu_1}[n_1(m_1-\mu_1)-1], = n_1m_1[n_1(m_1-\mu_1)-1].$$

Taking account of the other sets, each with itself, the whole number of such intersections is

$$n_1m_1[n_1(m_1 - \mu_1) - 1] + n_2m_2[n_2(m_2 - \mu_2) - 1] + n_3m_3[n_3(m_3 - \mu_3) - 1],$$

which is

$$= \Sigma' n^2 m^2 - \Sigma' n^2 m \mu - \Sigma' n m.$$

www.rcin.org.pl

713]

Observe now that $\frac{m_1}{\mu_1} > \frac{m_2}{\mu_2}$, that is, $\frac{\mu_1}{m_1} < \frac{\mu_2}{m_2}$, and that, these being each < 1, we thence have $1 - \frac{\mu_1}{m_1} > 1 - \frac{\mu_2}{m_2}$, that is, $\frac{m_1 - \mu_1}{m_1} > \frac{m_2 - \mu_2}{m_2}$: and we thus have

$$\frac{m_1}{m_1-\mu_1} < \frac{m_2}{m_2-\mu_2} < \frac{m_3}{m_3-\mu_3}$$

Considering now the intersections of partial branches of the two sets

$$\left(z - x^{\frac{m_1}{m_1 - \mu_1}}\right)^{n_1(m_1 - \mu_1)}$$
 and $\left(z - x^{\frac{m_2}{m_2 - \mu_2}}\right)^{n_2(m_2 - \mu_2)}$

respectively, a partial branch $z - x^{\frac{m_1}{m_1-\mu_1}}$ gives with each partial branch of the other set a number $= \frac{m_1}{m_1-\mu_1}$; and in this way taking each partial branch of each set, the number is

$$n_1(m_1-\mu_1) \cdot n_2(m_2-\mu_2) \cdot \frac{m_1}{m_1-\mu_1}, = n_1m_1n_2(m_2-\mu_2);$$

and thus for all the sets the number is

$$= n_1 m_1 n_2 (m_2 - \mu_2) + n_1 m_1 n_3 (m_3 - \mu_3) + n_2 m_2 n_3 (m_3 - \mu_3),$$

which is

$$= \Sigma' n_r m_r n_s m_s - \sum' n_r m_r n_s \mu_s,$$

where in the first sum the Σ' refers to each pair of values of the suffixes. But the intersections are to be taken twice; the number thus is

$$= 2\Sigma' n_r m_r n_s m_s - 2\Sigma' n_r m_r n_s \mu_s.$$

Adding the foregoing number

$$\Sigma' n^2 m^2 - \Sigma' n^2 m \mu - \Sigma' n m,$$

the whole number for the singularity in question is

$$= (\Sigma' nm)^2 - \Sigma' nm - \Sigma' n^2 m\mu - 2\Sigma' n_r m_r n_s \mu_s.$$

Similarly for the singularity $\left(z - y^{\frac{\mu_s}{\mu_s - m_s}}\right)^{n_s(\mu_s - m_s)}$...; taking each set with itself, the number of intersections is

$$n_5\mu_5[n_5(\mu_5-m_5)-1] + n_6\mu_6[n_6(\mu_6-m_6)-1] + n_7\mu_7[n_7(\mu_7-m_7)-1],$$

which is

$$= \Sigma'' n^2 \mu^2 - \Sigma'' n^2 m \mu - \Sigma'' n \mu$$

5 - 2

www.rcin.org.pl

We have here $\frac{m_5}{\mu_5} > \frac{m_6}{\mu_6}$; each of these being less than 1, we have $1 - \frac{m_5}{\mu_5} < 1 - \frac{m_6}{\mu_6}$, that is, $\frac{\mu_5 - m_5}{\mu_5} < \frac{\mu_6 - m_6}{\mu_6}$, or $\frac{\mu_5}{\mu_5 - m_5} > \frac{\mu_6}{\mu_6 - m_6}$; and so

$$\frac{\mu_7}{\mu_7 - m_7} < \frac{\mu_6}{\mu_6 - m_6} < \frac{\mu_5}{\mu_5 - m_5}.$$

Hence considering the two sets

$$\left(z-y^{rac{\mu_{\delta}}{\mu_{\delta}-m_{\delta}}}
ight)^{n_{\delta}\left(\mu_{\delta}-m_{\delta}
ight)} ext{ and } \left(z-y^{rac{\mu_{\theta}}{\mu_{\theta}-m_{\theta}}}
ight)^{n_{\theta}\left(\mu_{\theta}-m_{\theta}
ight)},$$

a partial branch of the first set gives with a partial branch of the second set $\frac{\mu_6}{\mu_6 - m_6}$ intersections: and the number thus obtained is

$$n_5 (\mu_5 - m_5) \cdot n_6 (\mu_6 - m_6) \cdot \frac{\mu_6}{\mu_6 - m_6}, = n_5 n_6 \mu_6 (\mu_5 - m_5)$$

For all the sets the number is

$$n_5 n_6 \mu_6 (\mu_5 - m_5) + n_5 n_7 \mu_7 (\mu_5 - m_5) + n_6 n_7 \mu_7 (\mu_6 - m_6)$$

or taking this twice, the number is

$$= 2\Sigma'' n_r \mu_r n_s \mu_s - 2\Sigma'' n_r m_r n_s \mu_s$$

where in the first sum the Σ'' refers to each pair of suffixes. Adding the foregoing value

 $\Sigma'' n^2 \mu^2 - \Sigma'' n^2 m \mu - \Sigma'' n \mu,$

the whole number for the singularity in question is

$$= (\Sigma'' n \mu)^2 - \Sigma'' n \mu - \Sigma'' n^2 m \mu - 2\Sigma'' n_r m_r n_s \mu_s;$$

and the proof is thus completed.

Referring to the foot-note (ante, p. 31), I remark that the theorem $\gamma =$ deficiency, is absolute, and applies to a curve with any singularities whatever: in a curve which has singularities not taken account of in Abel's theory, the "quelques cas particuliers que je me dispense de considérer," the singularities not taken account of give rise to a diminution in the deficiency of the curve, and also to an equal diminution of the value of γ as determined by Abel's formula; and the actual deficiency will be = Abel's γ -such diminution, that is, it will be = true value of γ .