713.

ADDITION TO MR ROWE'S MEMOIR ON ABEL'S THEOREM.

[From the Philosophical Transactions of the Royal Society of London, vol. 172, Part iII. (1881), pp. 751-758. Received May 27,-Read June 10, 1880.]

In Abel's general theorem y is an irrational function of x determined by an equation $\chi(y)=0$, or say $\chi(x, y)=0$, of the order n as regards y : and it was shown by him that the sum of any number of the integrals considered may be reduced to a sum of γ integrals; where γ is a determinate number depending only on the form of the equation $\chi(x, y)=0$, and given in his equation (62), [Euvres Complètes, (1881), t. I. p. 168]: viz. if, solving the equation so as to obtain from it developments of y in descending series of powers of x, we have*

$$
\begin{array}{ll}
n_{1} \mu_{1} \text { series each of the form } y=x^{\frac{m_{1}}{\mu_{1}}}+\ldots, \\
n_{2} \mu_{2} & " \\
\vdots & " \\
y=x^{\frac{m_{2}}{\mu_{2}}}+\ldots, \\
\vdots \\
n_{k} \mu_{k} & "
\end{array}
$$

* The several powers of x have coefficients: the form really is $y=A_{1} x^{\frac{m_{1}}{\mu_{1}}}+\ldots$, which is regarded as representing the μ_{1} different values of y obtained by giving to the radical $x^{\frac{1}{\mu_{1}}}$ each of its μ_{1} values, and the corresponding values to the radicals which enter into the coefficients of the series: and (so understanding it) the meaning is that there are n_{1} such series each representing μ_{1} values of y. It is assumed that the series contains only the radical $x^{\frac{1}{\mu_{1}}}$, that is, the indices after the leading index $\frac{m_{1}}{\mu_{1}}$ are $\frac{m_{1}-1}{\mu_{1}}, \frac{m_{1}-2}{\mu_{1}}, \ldots$; a series such as $y=A_{1} x^{\frac{4}{3}}+B_{1} x^{\frac{3}{5}}+\ldots$, depending on the two radicals $x^{\frac{1}{3}}, x^{\frac{1}{5}}$ represents 15 different values, and would be written $y=A_{1} x^{\frac{20}{15}}+\ldots$, or the values of m_{1} and μ_{1} would be 20 and 15 respectively : in a case like this where $\frac{m_{1}}{\mu_{1}}$ is not in its least terms, the number of values of the leading coefficient A_{1} is equal, not to μ_{1}, but to a submultiple of μ_{1}. But the case is excluded by Abel's assumption that $\frac{m_{1}}{\mu_{1}}, \frac{m_{2}}{\mu_{2}}, \ldots$, are fractions each of them in its least terms.
(so that $n=n_{1} \mu_{1}+n_{2} \mu_{2}+\ldots+n_{k} \mu_{k}$), then γ is a determinate function of n_{1}, m_{1}, μ_{1}; $n_{2}, m_{2}, \mu_{2} ; \ldots ; n_{k}, m_{k}, \mu_{k}$.

Mr Rowe has expressed Abel's γ in the following form, viz. assuming

$$
\frac{m_{1}}{\mu_{1}}>\frac{m_{2}}{\mu_{2}}>\ldots>\frac{m_{k}}{\mu_{k}},
$$

then this expression is

$$
\boldsymbol{\gamma}=\sum_{s>r} n_{r} m_{r} n_{s} \mu_{s}+\frac{1}{2} \sum n^{2} m \mu-\frac{1}{2} \sum n m-\frac{1}{2} \sum n-\frac{1}{2} n+1,
$$

or, what is the same thing, for n writing its value $\Sigma n \mu$,

$$
\gamma=\sum_{s>r} n_{r} m_{r} n_{s} \mu_{s}+\frac{1}{2} \Sigma n^{2} m \mu-\frac{1}{2} \Sigma n m-\frac{1}{2} \sum n \mu-\frac{1}{2} \sum n+1,
$$

where in the first sum r, s have each of them the values $1,2, \ldots, k$, subject to the condition $s>r$; in each of the other sums n, m, and μ are considered as having the suffix r, which has the values $1,2, \ldots, k$.

It is a leading result in Riemann's theory of the Abelian integrals that γ is the deficiency (Geschlecht) of the curve represented by the equation $\chi(x, y)=0$: and it must consequently be demonstrable $\grave{\alpha}$ posteriori that the foregoing expression for γ is in fact $=$ deficiency of curve $\chi(x, y)=0$. I propose to verify this by means of the formulæ given in my paper "On the Higher Singularities of a Plane Curve," Quart. Math. Jour., vol. viI., (1866), pp. 212-223, [374].

It is necessary to distinguish between the values of $\frac{m}{\mu}$ which are $>,=$, and <1; and to fix the ideas I assume $k=7$, and

$$
\begin{aligned}
& \frac{m_{1}}{\mu_{1}}, \frac{m_{2}}{\mu_{2}}, \frac{m_{8}}{\mu_{3}}, \text { each }>1, \\
& \frac{m_{4}}{\mu_{4}}=1 ; \text { say } m_{4}=\mu_{4}=\lambda, \text { and } n_{4}=\theta ; \\
& \frac{m_{5}}{\mu_{5}}, \frac{m_{6}}{\mu_{6}}, \frac{m_{7}}{\mu_{7}}, \text { each }<1,
\end{aligned}
$$

but it will be easily seen that the reasoning is quite general. I use Σ^{\prime} to denote a sum in regard to the first set of suffixes $1,2,3$, and $\Sigma^{\prime \prime}$ to denote a sum in regard to the second set of suffixes $5,6,7$. The foregoing value of n is thus

$$
n=\Sigma^{\prime} n \mu+\lambda \theta+\Sigma^{\prime \prime} n \mu .
$$

Introducing a third coordinate z for homogeneity, the equation $\chi(x, y)=0$ of the curve will be

$$
0=\left(y z^{\frac{m_{1}}{\mu_{1}}}-1-x^{\frac{m_{1}}{\mu_{1}}}\right)^{n_{1} \mu_{1}} \ldots\left(y-x^{\frac{\lambda}{\lambda}}\right)^{\lambda \theta}\left(y-x^{\frac{m_{s}}{\mu_{s}} z^{-\frac{m_{s}}{\mu_{s}}}}\right) \ldots
$$

where it is to be observed that ($)^{n_{1} \mu_{1}}$ is written to denote the product of $n_{1} \mu_{1}$ different series each of the form $y z^{\frac{m_{1}}{\mu_{1}}-1}-A_{1} x^{\frac{m_{1}}{\mu_{1}}}-\ldots$; these divide themselves into n_{1}
groups, each a product of μ_{1} series; and in each such product the μ_{1} coefficients A_{1} are in general the μ_{1} values of a function containing a radical $a^{\frac{1}{\mu_{1}}}$ and are thus different from each other: it is in what follows in effect assumed not only that this is so, but that all the $n_{1} \mu_{1}$ coefficients A_{1} are different from each other*: the like remarks apply to the other factors. It applies in particular to the term $\left(y-x^{\lambda}\right)^{\lambda \theta}$, viz. it is assumed that the coefficients A in the $\lambda \theta$ series $y=A x^{\frac{\lambda}{\lambda}}+\ldots$ are all of them different from each other. These assumptions as to the leading coefficients really imply Abel's assumption that $\frac{m_{1}}{\mu_{1}}, \ldots, \frac{m_{k}}{\mu_{k}}$ are all of them fractions in their least terms, and in particular that $\frac{\lambda}{\lambda}$ is a fraction in its least terms, viz. that $\lambda=1$: I retain however for convenience the general value λ, putting it ultimately $=1$.

In the product of the several infinite series, the terms containing negative powers all disappear of themselves; and the product is a rational and integral function $F(x, y, z)$ of the coordinates, which on putting therein $z=1$ becomes $=\chi(x, y)$. The equation of the curve thus is $F(x, y, z)=0$; and the order is

$$
=\frac{\dot{m}_{1}}{\mu_{1}} n_{1} \mu_{1}+\ldots+\lambda \theta+n_{5} \mu_{5}+\ldots,=m_{1} n_{1}+\ldots+\lambda \theta+n_{5} \mu_{5}+\ldots ;
$$

viz. if K is the order of the curve $\chi(x, y)=0$, then $K=\Sigma^{\prime} n m+\lambda \theta+\Sigma^{\prime \prime} n \mu$.
The curve has singularities (singular points) at infinity, that is, on the line $z=0$: viz.-

First, a singularity at $(z=0, x=0)$, where the tangent is $x=0$, and which, writing for convenience $y=1$, is denoted by the function

$$
\left(z-x^{\frac{m_{1}}{m_{1}-\mu_{1}}}\right)^{n_{1}\left(m_{1}-\mu_{1}\right)} \cdots ;
$$

where observe that the expressed factor indicates n_{1} branches $\left(z-x^{\left.\frac{m_{1}-\mu_{1}}{m_{1}}\right)^{m_{1}-\mu_{1}}}\right.$, or say $n_{1}\left(m_{1}-\mu_{1}\right)$ partial branches $z-x^{\frac{m_{1}}{m_{1}-\mu_{1}}}$, that is, $n_{1}\left(m_{1}-\mu_{1}\right)$ partial branches $z=A_{1} x^{\frac{m_{1}}{m_{1}-\mu_{1}}}+\ldots$, with in all $n_{1}\left(m_{1}-\mu_{1}\right)$ distinct values of A_{1} : and the like as regards the unexpressed factors with the suffixes 2 and 3.

Secondly, a singularity at $(z=0, y=0)$, where the tangent is $y=0$, and which, writing for convenience $x=1$, is denoted by the function

$$
\left(z-y^{\left.\frac{\mu_{5}}{\mu_{s}-m_{s}}\right)}{ }^{n_{5}\left(\mu_{s}-m_{s}\right.}\right)
$$

[^0]where observe that the expressed factor indicates n_{5} branches $\left(z-y^{\frac{\mu_{5}}{\mu_{5}-m_{5}}}\right)^{\mu_{5}-m_{5}}$, or say $n_{5}\left(\mu_{5}-m_{5}\right)$ partial branches $z-y^{\frac{\mu_{5}}{\mu_{5}-m_{5}}}$, that is, $n_{5}\left(\mu_{5}-m_{5}\right)$ partial branches $z=A_{5} y^{\frac{\mu_{5}}{\mu_{5}-m_{5}}}+\ldots$, with in all $n_{5}\left(\mu_{5}-m_{5}\right)$ distinct values of A_{5} : and the like as regards the unexpressed factors with the suffixes 6 and 7 .

Thirdly, singularities at the θ points $(z=0, y-A x=0), A$ having here θ distinct values, at any one of which the tangent is $y-A x=0$, and which are denoted by the function

$$
\left(y-x^{\frac{\lambda}{\lambda}}\right)^{\lambda \theta}:
$$

but in the case ultimately considered λ is $=1$; and these are then the θ ordinary points at infinity, $(z=0, y-A x=0)$.

According to the theory explained in my paper above referred to, these several singularities are together equivalent to a certain number $\delta^{\prime}+\kappa^{\prime}$ of nodes and cusps; viz. we have
hence

$$
\begin{aligned}
\delta^{\prime} & =\frac{1}{2} M-\frac{3}{2} \sum(\alpha-1), \\
\kappa^{\prime} & =\sum(\alpha-1), \\
\delta^{\prime}+\kappa^{\prime} & =\frac{1}{2} M-\frac{1}{2} \sum(\alpha-1) .
\end{aligned}
$$

Assuming that there are no other singularities, the deficiency

$$
\begin{aligned}
& \frac{1}{2}(K-1)(K-2)-\delta^{\prime}-\kappa^{\prime} \\
= & \frac{1}{2}(K-1)(K-2)-\frac{1}{2} M+\frac{1}{2} \Sigma(\alpha-1) .
\end{aligned}
$$

This should be equal to the before-mentioned value of γ; viz. we ought to have

$$
(K-1)(K-2)-M+\Sigma(\alpha-1)=\underset{s>r}{2 \sum_{r} m_{r} n_{s} \mu_{s} \div \Sigma n^{2} m \mu-\Sigma n m-\Sigma n \mu-\Sigma n+2, ~}
$$

or, as it will be convenient to write it,
which is the equation which ought to be satisfied by the values of M and $\Sigma(\alpha-1)$ calculated, according to the method of my paper, for the foregoing singularities of the curve.

We have as before

$$
K=\Sigma^{\prime} n m+\Sigma^{\prime \prime} n \mu+\theta \lambda .
$$

The term $\sum_{s>r} n_{r} m_{r} n_{s} \mu_{s}$, written at length, is

$$
\begin{aligned}
& =n_{1} m_{1}\left(n_{2} \mu_{2}+n_{3} \mu_{3}+\theta \lambda+n_{5} \mu_{5}+n_{6} \mu_{6}+n_{7} \mu_{7}\right) \\
& +n_{2} m_{2}\left(\quad n_{3} \mu_{3}+\theta \lambda+n_{5} \mu_{5}+n_{6} \mu_{6}+n_{7} \mu_{7}\right) \\
& +n_{3} m_{2}\left(\quad \theta \lambda+n_{5} \mu_{5}+n_{6} \mu_{6}+n_{7} \mu_{7}\right) \\
& +\theta \lambda\left(\quad n_{5} \mu_{5}+n_{6} \mu_{6}+n_{7} \mu_{7}\right) \\
& +n_{5} m_{5}\left(\quad n_{6} \mu_{6}+n_{7} \mu_{7}\right) \\
& +n_{6} m_{6}\left(\quad n_{7} \mu_{7}\right),
\end{aligned}
$$

which is

$$
=\Sigma_{s>r}^{\prime} n_{r} m_{r} n_{s} \mu_{s}+\theta \lambda\left(\Sigma^{\prime} n m+\Sigma^{\prime \prime} n \mu\right)+\Sigma^{\prime} n m \cdot \Sigma^{\prime \prime} n \mu+\sum_{s>r}^{\prime \prime \prime} n_{r} m_{r} n_{s} \mu_{s} .
$$

We have moreover

$$
\begin{aligned}
& \Sigma^{2} m \mu=\Sigma^{\prime} n^{2} m \mu+\theta^{2} \lambda^{2}+\Sigma^{\prime \prime} n^{2} m \mu, \\
& \Sigma n m=\Sigma^{\prime} n m+\theta \lambda+\Sigma^{\prime \prime} n m, \\
& \Sigma_{n \mu}=\Sigma^{\prime} n \mu+\theta \lambda+\Sigma^{\prime \prime} n \mu, \\
& \Sigma n=\Sigma^{\prime} n+\theta+\Sigma^{\prime \prime} n .
\end{aligned}
$$

We next calculate $\Sigma(\alpha-1)$.
For the singularity

$$
\left(z-x^{\frac{m_{1}}{m_{1}-\mu_{1}}}\right)^{n_{1}\left(m_{1}-\mu_{1}\right)} \cdots
$$

each branch $\left(z-x^{\frac{m_{1}}{m_{1}-\mu_{1}}}\right)^{m_{1}-\mu_{1}}$ gives $\alpha=m_{1}-\mu_{1}$, and the value of $\Sigma(\alpha-1)$ for this singularity is
which is

$$
n_{1}\left(m_{1}-\mu_{1}-1\right)+n_{2}\left(m_{2}-\mu_{2}-1\right)+n_{3}\left(m_{3}-\mu_{3}-1\right),
$$

For the singularity

$$
=\Sigma^{\prime} n m-\Sigma^{\prime} n \mu-\Sigma^{\prime} n
$$

$$
\left(z-y^{\frac{\mu_{s}}{\mu_{s}-m_{s}}}\right)^{n_{s}\left(\mu_{s}-m_{s}\right)} \ldots
$$

each branch $\left(z-y^{\frac{\mu_{s}}{\mu_{5}-m_{5}}}\right)^{\mu_{5}-m_{5}}$ gives $\alpha=\mu_{5}-m_{5}$, and the value of $\Sigma(\alpha-1)$ for this singularity is
which is

$$
n_{5}\left(\mu_{5}-m_{5}-1\right)+n_{6}\left(\mu_{6}-m_{6}-1\right)+n_{7}\left(\mu_{7}-m_{7}-1\right),
$$

$$
=\Sigma^{\prime \prime} n \mu-\Sigma^{\prime \prime} n m-\Sigma^{\prime \prime} n .
$$

For each of the θ singularities

$$
\left(y-x^{\lambda \lambda}\right)^{\lambda \theta},
$$

we have $\alpha=\lambda$ and the value of $\Sigma(\alpha-1)$ is $=\theta(\lambda-1)$: this is $=0$ for the value $\lambda=1$, which is ultimately attributed to λ.

The complete value of $\Sigma(\alpha-1)$ is thus

$$
=\Sigma^{\prime} n m-\Sigma^{\prime \prime} n m-\Sigma^{\prime} n \mu+\Sigma^{\prime \prime} n \mu-\Sigma^{\prime} n-\Sigma^{\prime \prime} n+\theta \lambda-\theta .
$$

Substituting all these values, we have

$$
\begin{aligned}
M= & \left(\Sigma^{\prime} n m+\Sigma^{\prime \prime} n \mu\right)^{2}+2 \theta \lambda\left(\Sigma^{\prime} n m+\Sigma^{\prime \prime} n \mu\right)+(\theta \lambda)^{2} \\
& -3\left(\Sigma^{\prime} n m+\Sigma^{\prime \prime} n \mu\right)-3 \theta \lambda \\
& +\Sigma^{\prime} n m-\Sigma^{\prime \prime} n m-\Sigma^{\prime} n \mu+\Sigma^{\prime \prime} n \mu-\Sigma^{\prime} n-\Sigma^{\prime \prime} n+\theta \lambda-\theta \\
& -2 \Sigma^{\prime} n_{r} m_{r} n_{s} \mu_{s}-2 \theta \lambda\left(\Sigma^{\prime} n m+\Sigma^{\prime \prime} n \mu\right)-2 \Sigma^{\prime} n m \cdot \Sigma^{\prime \prime} n \mu-2 \Sigma_{s>r}^{\prime \prime} n_{r} m_{r} n_{s} \mu_{s} \\
& -\Sigma^{\prime} n^{2} m \mu-(\theta \lambda)^{2}-\Sigma^{\prime \prime \prime} n^{2} m \mu \\
& +\Sigma^{\prime} n m+\theta \lambda+\Sigma^{\prime \prime} n m \\
& +\Sigma^{\prime} n \mu+\theta \lambda+\Sigma^{\prime \prime} n \mu \\
& +\Sigma^{\prime} n+\theta+\Sigma^{\prime \prime} n,
\end{aligned}
$$

C. XI.
or, reducing,

$$
\begin{aligned}
M= & \left(\Sigma^{\prime} n m\right)^{2}-\Sigma^{\prime} n m-\Sigma^{\prime} n^{2} m \mu-\underset{s>r}{2 \Sigma^{\prime} n_{r} m_{r} n_{s} \mu_{s}} \\
& +\left(\Sigma^{\prime \prime} n \mu\right)^{2}-\Sigma^{\prime \prime} n \mu-\Sigma^{\prime \prime} n^{2} m \mu-\underset{s>r}{2 \Sigma^{\prime \prime} n_{r} m_{r} n_{s} \mu_{s} ;}
\end{aligned}
$$

and it is to be shown that the two lines of this expression are in fact the values of M belonging to the singularities

$$
\left(z-x^{\frac{m_{1}}{m_{1}-\mu_{1}}}\right)^{n_{1}\left(m_{1}-\mu_{1}\right)} \ldots, \text { and }\left(z-y^{\frac{\mu_{s}}{\mu_{s}-m_{s}}}\right)^{n_{s}\left(\mu_{\sigma}-m_{s}\right)} \ldots,
$$

respectively. We assume $\lambda=1$, and there is thus no singularity $\left(y-x^{\lambda}\right)^{\lambda \theta}$.
I recall that, considering the several partial branches which meet at a singular point, M denotes the sum of the number of the intersections of each partial branch by every other partial branch: so that for each pair of partial branches the intersections are to be counted twice. Supposing that the tangent is $x=0$, and that for any two branches we have $z_{1}=A_{1} x^{p_{1}}, z_{2}=A_{2} x^{p_{2}}$ (where p_{1}, p_{2} are each equal to or greater than 1), then if $p_{2}=p_{1}$, and $z_{1}-z_{2}=\left(A_{1}-A_{2}\right) x^{p_{1}}$ where $A_{1}-A_{2}$ not $=0$ (an assumption which has been already made as regards the cases about to be considered), then the number of intersections is taken to be $=p_{1}$; and if p_{1} and p_{2} are unequal, then taking p_{2} to be the greater of them, the leading term of $z_{1}-z_{2}$ is $=A_{1} x^{p_{1}}$, and the number of intersections is taken to be $=p_{1}$; viz. in the case of unequal exponents, it is equal to the smaller exponent.

Consider now the singularity $\left(z-x^{\frac{m_{1}}{m_{1}-\mu_{1}}}\right)^{n_{1}\left(m_{1}-\mu_{1}\right)} \ldots$; and first the intersections of a partial branch $z-x^{\frac{m_{1}}{m_{1}-\mu_{1}}}$ by each of the remaining $n_{1}\left(m_{1}-\mu_{1}\right)-1$ partial branches of the same set: the number of intersections with any one of these is $=\frac{m_{1}}{m_{1}-\mu_{1}}$; and consequently the number with all of them is $=\frac{m_{1}}{m_{1}-\mu_{1}}\left[n_{1}\left(m_{1}-\mu_{1}\right)-1\right]$. But we obtain this same number from each of the $n_{1}\left(m_{1}-\mu_{1}\right)$ partial branches, and thus the whole number is

$$
n_{1}\left(m_{1}-\mu_{1}\right) \frac{m_{1}}{m_{1}-\mu_{1}}\left[n_{1}\left(m_{1}-\mu_{1}\right)-1\right],=n_{1} m_{1}\left[n_{1}\left(m_{1}-\mu_{1}\right)-1\right] .
$$

Taking account of the other sets, each with itself, the whole number of such intersections is

$$
n_{1} m_{1}\left[n_{1}\left(m_{1}-\mu_{1}\right)-1\right]+n_{2} m_{2}\left[n_{2}\left(m_{2}-\mu_{2}\right)-1\right]+n_{3} m_{3}\left[n_{3}\left(m_{3}-\mu_{3}\right)-1\right],
$$

which is

$$
=\Sigma^{\prime} n^{2} m^{2}-\Sigma^{\prime} n^{2} m \mu-\Sigma^{\prime} n m
$$

Observe now that $\frac{m_{1}}{\mu_{1}}>\frac{m_{2}}{\mu_{2}}$, that is, $\frac{\mu_{1}}{m_{1}}<\frac{\mu_{2}}{m_{2}}$, and that, these being each <1, we thence have $1-\frac{\mu_{1}}{m_{1}}>1-\frac{\mu_{2}}{m_{2}}$, that is, $\frac{m_{1}-\mu_{1}}{m_{1}}>\frac{m_{2}-\mu_{2}}{m_{2}}$: and we thus have

$$
\frac{m_{1}}{m_{1}-\mu_{1}}<\frac{m_{2}}{m_{2}-\mu_{2}}<\frac{m_{3}}{m_{3}-\mu_{3}} .
$$

Considering now the intersections of partial branches of the two sets

$$
\left(z-x^{\frac{m_{1}}{m_{1}-\mu_{1}}}\right)^{n_{1}\left(m_{1}-\mu_{1}\right)} \text { and }\left(z-x^{\frac{m_{2}}{m_{2}-\mu_{2}}}\right)^{n_{2}\left(m_{2}-\mu_{2}\right)}
$$

respectively, a partial branch $z-x^{\frac{m_{1}}{m_{1}-\mu_{1}}}$ gives with each partial branch of the other set a number $=\frac{m_{1}}{m_{1}-\mu_{1}}$; and in this way taking each partial branch of each set, the number is

$$
n_{1}\left(m_{1}-\mu_{1}\right) \cdot n_{2}\left(m_{2}-\mu_{2}\right) \cdot \frac{m_{1}}{m_{1}-\mu_{1}},=n_{1} n_{1} n_{2}\left(m_{2}-\mu_{2}\right) ;
$$

and thus for all the sets the number is

$$
=n_{1} m_{1} n_{2}\left(m_{2}-\mu_{2}\right)+n_{1} m_{1} n_{3}\left(m_{3}-\mu_{3}\right)+n_{2} m_{2} n_{3}\left(m_{3}-\mu_{3}\right),
$$

which is

$$
=\Sigma^{\prime} n_{r} m_{r} n_{s} m_{s}-\sum_{s>r}^{\prime \prime} n_{r} m_{r} n_{s} \mu_{s}
$$

where in the first sum the Σ^{\prime} refers to each pair of values of the suffixes. But the intersections are to be taken twice; the number thus is

$$
=2 \Sigma^{\prime} n_{r} m_{r} n_{s} m_{s}-\underset{s>r}{2 \Sigma^{\prime} n_{r} m_{r} n_{s} \mu_{s} .}
$$

Adding the foregoing number

$$
\Sigma^{\prime} n^{2} m^{2}-\Sigma^{\prime} n^{2} m \mu-\Sigma^{\prime} n m,
$$

the whole number for the singularity in question is

$$
=\left(\Sigma^{\prime} n m\right)^{2}-\Sigma^{\prime} n m-\Sigma^{\prime} n^{2} m \mu-\underset{s>r}{2 \sum_{r}^{\prime} n_{r}} m_{r} n_{s} \mu_{s} .
$$

Similarly for the singularity $\left(z-y^{\frac{\mu_{s}}{\mu_{s}-m_{s}}}\right)^{n_{s}\left(\mu_{s}-m_{s}\right)} \ldots$; taking each set with itself, the number of intersections is

$$
n_{5} \mu_{5}\left[n_{5}\left(\mu_{5}-m_{5}\right)-1\right]+n_{6} \mu_{6}\left[n_{6}\left(\mu_{6}-m_{6}\right)-1\right]+n_{7} \mu_{7}\left[n_{7}\left(\mu_{7}-m_{7}\right)-1\right],
$$

which is

$$
=\Sigma^{\prime \prime} n^{2} \mu^{2}-\Sigma^{\prime \prime} n^{2} m \mu-\Sigma^{\prime \prime} n \mu
$$

We have here $\frac{m_{5}}{\mu_{5}}>\frac{m_{6}}{\mu_{6}}$; each of these being less than 1 , we have $1-\frac{m_{5}}{\mu_{5}}<1-\frac{m_{6}}{\mu_{6}}$, that is, $\frac{\mu_{5}-m_{5}}{\mu_{5}}<\frac{\mu_{6}-m_{6}}{\mu_{6}}$, or $\frac{\mu_{5}}{\mu_{5}-m_{5}}>\frac{\mu_{6}}{\mu_{6}-m_{6}}$; and so

$$
\frac{\mu_{7}}{\mu_{7}-m_{7}}<\frac{\mu_{6}}{\mu_{6}-m_{6}}<\frac{\mu_{5}}{\mu_{5}-m_{5}} .
$$

Hence considering the two sets

$$
\left(z-y^{\frac{\mu_{\sigma}}{\mu_{s}-m_{s}}}\right)^{n_{s}\left(\mu_{s}-m_{s}\right)} \text { and }\left(z-y^{\frac{\mu_{\sigma}}{\mu_{G}-m_{s}}}\right)^{n_{g}\left(\mu_{\sigma}-m_{g}\right)},
$$

a partial branch of the first set gives with a partial branch of the second set $\frac{\mu_{6}}{\mu_{6}-m_{6}}$ intersections: and the number thus obtained is

$$
n_{5}\left(\mu_{5}-m_{5}\right) \cdot n_{6}\left(\mu_{6}-m_{6}\right) \cdot \frac{\mu_{6}}{\mu_{6}-m_{6}},=n_{5} n_{6} \mu_{6}\left(\mu_{5}-m_{5}\right) .
$$

For all the sets the number is

$$
n_{5} n_{6} \mu_{6}\left(\mu_{5}-m_{5}\right)+n_{5} n_{7} \mu_{7}\left(\mu_{5}-m_{5}\right)+n_{6} n_{7} \mu_{7}\left(\mu_{6}-m_{6}\right)
$$

or taking this twice, the number is

$$
=2 \Sigma^{\prime \prime} n_{r} \mu_{r} n_{s} \mu_{s}-\underset{s>r}{2 \Sigma^{\prime \prime \prime} n_{r} m_{r} n_{s} \mu_{s}, ~}
$$

where in the first sum the $\Sigma^{\prime \prime}$ refers to each pair of suffixes. Adding the foregoing value

$$
\Sigma^{\prime \prime} n^{2} \mu^{2}-\Sigma^{\prime \prime} n^{2} m \mu-\Sigma^{\prime \prime} n \mu,
$$

the whole number for the singularity in question is

$$
=\left(\Sigma^{\prime \prime} n \mu\right)^{2}-\Sigma^{\prime \prime \prime} n \mu-\Sigma^{\prime \prime} n^{2} m \mu-\underset{s>r}{\left.2 \Sigma^{\prime \prime} n_{r} m_{r} n_{s} \mu_{s} ; ;\right)}
$$

and the proof is thus completed.
Referring to the foot-note (ante, p. 31), I remark that the theorem $\gamma=$ deficiency, is absolute, and .applies to a curve with any singularities whatever: in a curve which has singularities not taken account of in Abel's theory, the "quelques cas particuliers que je me dispense de considérer," the singularities not taken account of give rise to a diminution in the deficiency of the curve, and also to an equal diminution of the value of γ as determined by Abel's formula; and the actual deficiency will be $=$ Abel's γ-such diminution, that is, it will be $=$ true value of γ.

[^0]: * This assumption is virtually made by Abel, (l. c.) p. 162, in the expression "alors on aura en général, excepté quelques cas particuliers que je me dispense de considérer: $h\left(y^{\prime}-y^{\prime \prime}\right)=h y^{\prime}$, \&c.". : viz. the meaning is that the degree of y^{\prime} being greater than or equal to that of $y^{\prime \prime}$, then the degree of $y^{\prime}-y^{\prime \prime}$ is equal to that of $y^{\prime \prime}$: of course when the degrees are equal, this implies that the coefficients of the two leading terms must be unequal.

