937.

NOTE ON THE ORTHOTOMIC CURVE OF A SYSTEM OF LINES IN A PLANE.

[From the Messenger of Mathematics, vol. xxiI. (1893), pp. 45, 46.]
Considering in plano a singly infinite system of lines, then to each point of the plane there corresponds a line (not in general a unique line), and we can therefore express in terms of the coordinates (x, y) of the point the cosine-inclinations α, β of the line to the axes. The differential equation of the orthotomic curve is then $\alpha d x+\beta d y=0$, and it is a well-known and easily demonstrable theorem that $\alpha d x+\beta d y$ is a complete differential, say it is $=d V$; the integral equation of the orthotomic curve is therefore $V=\int(\alpha d x+\beta d y),=$ const., and we see further that V is a solution of the partial differential equation $\left(\frac{d V}{d x}\right)^{2}+\left(\frac{d V}{d y}\right)^{2}=1$.

If the lines are the normals of the ellipse $\frac{X^{2}}{a}+\frac{Y^{2}}{b}=1$, then, writing the equation of the normal at the point X, Y in the form

$$
\frac{a}{X}(x-X)=\frac{b}{Y}(y-Y),=\lambda
$$

suppose, we have

$$
X=\frac{a x}{a+\lambda}, \quad Y=\frac{b y}{b+\lambda}
$$

and therefore

$$
\frac{a x^{2}}{(a+\lambda)^{2}}+\frac{b y^{2}}{(b+\lambda)^{2}}-1=0,
$$

which last equation determines λ as a function of x, y. We have α, β proportional to $\frac{X}{a}, \frac{Y}{b}$; or say we have

$$
\alpha=M \frac{x}{a+\lambda}, \quad \beta=M \frac{y}{b+\lambda},
$$

whence

$$
\frac{1}{M^{2}}=\frac{x^{2}}{(a+\lambda)^{2}}+\frac{y^{2}}{(b+\lambda)^{2}}
$$

or, writing for convenience

$$
\frac{x^{2}}{(a+\lambda)^{2}}+\frac{y^{2}}{(b+\lambda)^{2}}-\frac{k^{2}}{\lambda^{2}}=0,
$$

(viz. this equation defines k as a function of x, y and λ, that is, of x and y), we have

$$
\alpha=\frac{\lambda x}{k(a+\lambda)}, \quad \beta=\frac{\lambda y}{k(b+\lambda)} ;
$$

and we ought therefore to have

$$
\frac{\lambda}{k}\left(\frac{x d x}{a+\lambda}+\frac{y d y}{b+\lambda}\right)
$$

a complete differential, $=d V$.
This is easily verified, for from the assumed value

$$
k=\lambda\left(\frac{x^{2}}{a+\lambda}+\frac{y^{2}}{b+\lambda}-1\right)
$$

we deduce

$$
d k=2 \lambda\left(\frac{x d x}{a+\lambda}+\frac{y d y}{b+\lambda}\right)+d \lambda\left(\frac{a x^{2}}{(a+\lambda)^{2}}+\frac{b y^{2}}{(b+\lambda)^{2}}-1\right),=2 \lambda\left(\frac{x d x}{a+\lambda}+\frac{y d y}{b+\lambda}\right)
$$

and we have therefore

$$
d V=\frac{\lambda}{k} \frac{d k}{2 \lambda},=\frac{1}{2} \frac{d k}{k}
$$

where k denotes a function of (x, y) defined as above; hence the equation $V=$ const. gives $k=$ const., or the equation of the orthotomic curve is given by the system of equations

$$
\begin{aligned}
& \frac{a x^{2}}{(a+\lambda)^{2}}+\frac{b y^{2}}{(b+\lambda)^{2}}-1=0, \\
& \frac{x^{2}}{(a+\lambda)^{2}}+\frac{y^{2}}{(b+\lambda)^{2}}-\frac{k^{2}}{\lambda^{2}}=0,
\end{aligned}
$$

where k is a constant; these equations (eliminating λ) give, in fact, the equation of the parallel curve of the ellipse, and k denotes the normal distance of a point on the curve from the ellipse. I recall that the first equation may be replaced by

$$
\frac{x^{2}}{a+\lambda}+\frac{y^{2}}{b+\lambda}-\frac{k}{\lambda}-1=0
$$

and since the derived equation hereof in regard to λ is the second equation, we have the equation of the parallel curve in the known form

$$
\text { Disct. }\left\{(\lambda+k)(\lambda+a)(\lambda+b)-(b+\lambda) x^{2}-(a+\lambda) y^{2}\right\}=0 \text {. }
$$

I notice further that, considering k a function of x, y as above, we have

$$
\left(\frac{d V}{d x}\right)^{2}+\left(\frac{d V}{d y}\right)^{2}=\frac{1}{4 k^{2}}\left\{\left(\frac{d k}{d x}\right)^{2}+\left(\frac{d k}{d y}\right)^{2}\right\},=\frac{\lambda^{2}}{k^{2}}\left\{\frac{x^{2}}{(a+\lambda)^{2}}+\frac{y^{2}}{(b+\lambda)^{2}}\right\}
$$

that is,

$$
\left(\frac{d V}{d x}\right)^{2}+\left(\frac{d V}{d y}\right)^{2}=1
$$

as it should be.

