933.

TABLES OF PURE RECIPROCANTS TO THE WEIGHT 8.

[From the American Journal of Mathematics, t. xv. (1893), pp. 75-77.]
In the tabulation of Pure Reciprocants it is convenient to write $a=1$; we thus have for all the reciprocants of a given weight a single column of literal terms which (as in the Seminvariant Tables) I arrange in alphabetical order $A O$, and the several reciprocants have then each of them its own column of numerical coefficients: the form of the table is thus similar to that of the seminvariant table, the only difference being that for reciprocants the final terms are not in general power-enders: as in the seminvariant table, the columns of the table are arranged inter se with their final terms in $A O$. As remarked in my paper, "Corrected Seminvariant Tables for the Weights 11 and 12," Amer. Math. Journ., t. xiv. (1892), pp. 195-200, [926], it is not in every case the top term of a column which should be regarded as the initial term; but to the extent 8 , to which the reciprocant tables are here carried, this remark has no application.

I recall that the notation is the modified one employed by Halphen, and by Sylvester* in his 12th and subsequent lectures, viz. a, b, c, d, \ldots denote

$$
\frac{1}{2} \frac{d^{2} y}{d x^{2}}, \frac{1}{6} \frac{d^{3} y}{d x^{3}}, \frac{1}{24} \frac{d^{4} y}{d x^{4}}, \frac{1}{120} \frac{d^{5} y}{d x^{5}}, \ldots
$$

respectively. As already noticed, a is put $=1$, but it is to be in the several terms restored in the proper powers so as to obtain for the reciprocant a homogeneous expression of a degree equal to the original degree of the final term; thus $d-3 b c+2 b^{3}$ is to be read as standing for $a^{2} d-3 a b c+2 b^{3}$.

The ultimate verification of the expression for a pure reciprocant consists (as is known) in its annihilation by the operator

$$
V=2 a^{2} \partial_{b}+5 a b \partial_{c}+\left(6 a c+3 b^{2}\right) \partial_{d}+(7 a d+7 b c) \partial_{e}+\left(8 a e+8 b d+4 c^{2}\right) \partial_{f}+\& c .,
$$

or, say

$$
\begin{gathered}
V=2 \partial_{b}+5 b \partial_{c}+\left(6 c+3 b^{2}\right) \partial_{d}+(7 d+7 b c) \partial_{e}+\left(8 e+8 b d+4 c^{2}\right) \partial_{f}+\& c . ; \\
\text { [* American Journal of Mathematics, t. ix. (1887), p. 7.] }
\end{gathered}
$$

thus for the reciprocant $50 e-175 b d+28 c^{2}+105 b^{2} c$, the result obtained is

$$
2(-175 d+210 b c)+5 b\left(56 c+105 b^{2}\right)+\left(6 c+3 b^{2}\right)(-175 b)+(7 d+7 b c)(50)
$$

or, collecting, this is
$=0$, as it should be.

d	-350	+350
$b c$	$+420+280-1050+350$	± 1050
b^{3}	$+525-525$	$\pm 525 ;$

The tables are

g	+ 14			
$b f$	- 63			
ce	- 1350	$+800$		
d^{2}	+ 1470	- 875	$+125$	
$b^{2} e$	+ 1782	- 1000		
$b c d$	-4158	$+2450$	- 750	
c^{3}	+2130	- 1344	+ 256	+ 64
$b^{3} d$			+ 500	
$b^{2} c^{2}$		$\begin{array}{r}\text { + } \\ + \\ \hline\end{array}$	+ 165	-240
$b^{4} c$			- 300	$+300$
h^{6}				-125
	+ 5576	+ 3250	± 1018	$+364$
	- 5508	-3254		-365

i bh cg $d f$ e^{2} $b^{2} g$ bef bde $c^{2} e$ $c d^{2}$ $b^{3} f$ $b^{2} c e$ $b^{2} d^{2}$ $b c^{2} d$ c^{4} $b^{4} e$ $b^{3} c d$ $b^{2} c^{3}$ $b^{5} d$ $b^{4} c^{2}$ $b^{6} c$ b^{8}	+ 420						
	- 2310						
	- 32704	+ 1176					
	+ 57750	- 8085	+ 20433				
	- 20460	+ 7040	- 21542	+ 625			
	+ 45500	- 1470					
	- 28392	+ 18963	- 61299				
	- 90900	- 16940	+ 69062	- 4375			
	+ 103740	- 27160	+ 80248	+ 49700	$+3200$		
	- 38320	+ 26460	- 85554	+ 55125	-3500	$+500$	
	- 69615	- 9555	+ 40866				
	+ 83538	+ 28098	- 106218	+ 128625	- 8000		
	+ 92820	+ 12740	- 54782	- 61250	+ 4375	- 625	
	-102102	- 52822	+ 191590	-156800	+ 9800	-3000	
		+ 21560	- 73304	+ 84868	-5376	+ 1024	+ 256
			378	-78750	$+5000$		
			$\begin{array}{r} \\ +\quad 1176 \\ \hline\end{array}$	+ 183750	-12250	+ 5750	
				-102165	+ 6580	- 620	-1280
						-2500	
					+ 175	-2025	$+2400$
						$+1500$	-2000
							+ 625
	+ 383768	+ 116037	+403375	+ 452993	+ 29130	+ 8774	+ 3281
	- 384803	- 116032	- 403077	- 453040	- 29126	-8750	-3280

I remark that in the last of these tables the first column, say $i \infty b c^{2} d$, which ends in $b c^{2} d$, is a more simple form than Sylvester's $P_{8},=i \infty c^{4},($ Amer. Math. Journ., t. IX. p. 35), which ends in $c^{4} ; P_{8}$ is in fact a linear combination, first col. +6 second col. of the first and second columns of the table: the second column, say $\operatorname{cg} \infty c^{4}$ is Sylvester's $\left(a^{2} c g\right)$, t. IX. p. 124.

