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Chapter 1 

Problem formulation 

Let D c IR2 be a bounded domain with a piecewise regular boundary 8D con
sisting of two sub-domains D1 and D2 , as shown in Fig.1.1 . The boundary of the 
interior part of the domain 8D1 is denoted by Cnt U r 1 and the exterior boundary 
8D2 is denoted by fext = fin U fout Ur wall· In the interior subdomain D1 we con
sider a problem of linear elasticity for elastic body, and in the exterior subdomain 
D2 we consider a problem of Navier-Stokes for motion of fluid. 
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Figure 1.1: Domaine D = D1 LJ D2 with its boundary rin LJ rout LJ f wall• 
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6 CHAPTER 1. PROBLEM FORMULATION 

Linear elasticity. The equilibrium equations for a linear elastic body occupy
ing D1 are given as follows. 

-diva(u) = 0 in D1, (1.1) 

a(u) = Ac(u) in D1, (1.2) 

u =0 on r1, (1.3) 

a(u) · no1 = t(u, p) on Cnt, (1.4) 

where u = (u1 ,u2 ) is the displacement field, a= {aij},i,j 1,2 are the 
stress tensor components.Elasticity tensor A= {aijkt},i,j,k,l = 1,2 is given 
and satisfies the usual properties of symmetry and positive definiteness 

%kl~klfo :::: eol~l 2 , Vfo, fo = ~ji, Co= canst, 

aijkl = aklij = ajikl, aijkl E L00 (D1). 
(1.5) 

OU 
Relation (1.1) are equilibrium equations, and (l.2) is the Hooke's law, U;j = ~, 

UXj 

(x1 , x2 ) E D1. All functions with two lower indeces are symmetric in these inde
ces, i.e. CT;j = CTji etc. Summation convention is assumed over repeated indices 
throughout the paper. Here t( u, p) is the traction force depending on the pressure 
in the fluid and displacement on the surface rint· 

Transformation of the domain. Suppose that an incompressible viscous flow 
occupies D2. One of the difficulties in the paper is modification of the interior 
boundary rint· We propose the following procedure for the boundary displace
ment. Let the interior boundary be the set defined as follows: 

(l.6) 

where u = (u1, u2)T. We define the transformation of the domain D2(0) by 

6 ¢1 0 in D2(u), 
¢1 U1 on Cn1(u), (1.7) 

¢1 0 011 r1, 

and 
6 ¢2 0 m D2(u), 

¢2 U2 on rint(u), (1.8) 

¢2 0 011 r1, 

and <P(x) = x + q;(x) = x + [ :~~:j ] . 



7 

Then 0 2(u) = il>(02 (0)). Observe that if derivatives U;jj are small, so are the 
derivatives of cp1 , cp2 . Such defined <I> is the smoothest possible transformation of 
the domain 0 2(0) and 0 2(0) = <J> - 1 (02(u)). Denote the coordinates in 0 2(u) as 
y, i.e. 

y = if>(x), X E 02(0). (1.9) 

Navier-Stokes equation. The state equation for the flow is given in the above 
coordinates by the following system of stationary Navier-Stokes equations: 

-vf'iyw + (w · Vy)w + Vyp = 0 in 02(u), (1.10) 

divyw = 0 m 02(u) , (1.11) 

w = 0 on rint(u), (1.12) 

w = 0 on f wall , (1.13) 

8nw+p-n=0 on foul· (1.14) 

Here w = ( w1 , w2f is a velocity field, p the pressure, v the kinematic viscosity 
of the fluid (v = ).e > 0, where Re is the Reynolds number). The non-linear term 
( w · V)w in (1.10) is a symbolic notation for the vector 

8w1 8w2 8w2 8w1 T 
(w1-a +w2 -a ,w1 -a +w2-a ) · 

Y1 Y2 Y1 Y2 

A parallel flow in a channel is considered. 
After transformation y = <T>(x), this system is defined in 0 2 (0), but has vari

able coefficients: 

(1.15) 

Here A(u) = A(x), K(u) = K(x) and H(u) = H(x) are complicated expres
sions depending on <Pi/j · Our idea is to linearise them, leaving only first powers of 
<Pih· This facilitates both numerical computations and theoretical analysis of the 
whole coupled system. 

Coupling ofN-S equations and elasticity. The coupling of velocity and dis
placement fields acts through the expression 

t(u,p) = p · B(¢) · nn1 . 

For illustration, the linearised version is as follows 

B = (1 - ~n T Bn)I + C = (1 - n T Cn)/ + C, (1.16) 
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where 

(1.17) 

and 

C = C(<jJ) = [ ¢2;2 -¢2;1 ] , 
- ¢1;2 ¢1;1 

so that B = C + CT. The solution of a coupled system is done using the fixed 
point iteration. 

The ultimate goal of the research is to study the effect of small holes inside 
the elastic body on the hydrodynamic drag. The shape functional that we consider 
here is the integral functional describing the aerodynamic resistance and written 
in the following form 

I= J p · nn,(u) · e1ds, 

r,n,(u) 

where e 1 is a unit vector directed to the right. 

1.1 Wellposedness of nonlinear problem 

(1.18) 

The first step toward optimization is a good understanding of wellposedness of 
the system with respect to existence, uniqueness and continuous dependence on 
the data in the respective topologies. This will amount showing that with given 
boundary data (g1, g2) = ( W1 lr,n, w2lr,J which are "small" with respect to suit
able topology on the boundary, one obtains existence of the solutions in a suitable 
state space. The choice of topology is critical-as in all quasilinear problems. In 
the present case we shall consider ws,v spaces for suitable values of p, s . 

Theorem 1.1.1 Assume that g = (g1 , g2 ) E w 1-i,v(Cn) with suitably small 
norm. For dimension n equal 2 we take p > 2 and for dimension n equal 3, 
we take p > 3. Then, there exists unique solution u E W 2,P(f21), (w,p) E 
W2,P(f22) x W1,P(f22). which depends continuously on the data in the topologies 
listed above. 

Proof. We shall carry the proof for n = 2. In the case of n = 3 the numerology 
can be easily adjusted. In order to carry out the proof we shall rewrite the original 
system as follows; 

u = Nt(u,p), (1.19) 
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Where the map N : ws,P(fint) --+ ws+l+;; ,P(D1) is Neuman solver for the system 
of elasticity. The flow map transforming variable domain into static domain is 
given by: 

<I>(u) = I+ D(ulr;J, in D2(u) (1.20) 

where Dis a standard Dirichlet harmonic extension. Thus, D2(u) = <I>(D2(0)) 
The traction force t(u, p) is determined by pn in the reference domain given by 

t(u, p) = p.B(<I>(u))nln1 

where .B is obtained via change of variables 

.B(•) = (I - n T Cn)/ + C 

(1.21) 

and C ( ¢) is given above. The elastic system u is fed by the force t, hence the pres
sure p obtained from quasilinear Stokes equation defined on a reference domain 
D2(0). 

z/\7 x(A(u)'v xW) + w(K(u)'v x)w + H(u)'v xP = 0 

diVA(u)W = 0 

W = g,I'in 

OA(u)W --- + pn = 0, rint 
I.I 

(1.22) 

The above formulation leads to a fixed point determined from the chain of impli
cations 

u--+ <I>(u)--+ (w(u,g),p(u,g))--+ t(u,p)--+ Nt(u,p) = u 

The equation for fluid is quasilinear and will be treated as a perturbation of the 
linear part. This leads to a map T(u , w, p) --+ (u, w, p) 

(ii, w, p)--+ (u, w,p) 

where for a given ii, w, pone solves the linear problem for (u, w , p). 

v'v x('v xw) + Vp = v'v x((-A(u) + I)'v xw) 

+w((-K(u))Vx)w - (H(u) - /)'vxP 

div w = div(J- A(u))W 

w = g,on f;n 

aw OA(u) - JW 
Oll + pn = - Oll , 011 rint (1.23) 
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where (ii, w , p) are taken from Br(X) where 

Br(X) denotes a ball in X with a radius equal tor > 0. 
Step 1. We shall show that the map T takes a ball into a ball for sufficiently 

small r. 
The above choice of X leads to the estimates 

I IA(U) - JI IL= S I IUI li.=.rh S I IUI I2,p,n, S Cxr 

IIK(U)lli= S C(IIUlb,n1 + 1) S Cx 

IIH(U) - Illi= S CIIUlb,n1 S Cxr 

llv'x(A(U)v'xwllo,p,!12 s l lwll1,=I IUlb,n1 s llwll2,p,n2IIUll2,p,l11 s Cxrll~%,JJ,l12 

I lw(K(U)v' X w)l lo,p,!12 s I IK( u)I IL= llwv' xi lo,p,!12 s I IK(U)I IL= I lwl IL= I IV xwl lo,p,!12 s 
I IuI l2,p,l11 I lwl l1,p,l12 I lwl b ,JJ,lo .24) 

By maximal regularity corresponding to the refemce Stokes problem one obtains 
the estimate 

llwll2,p,n2 + IIPlh,o,n2 S Cl9li+1/JJ,JJ,r,n + Cxrllwlb,,n2 + 
8A(u) - TW _ . _ 

II av lh ;JJ,JJ,rint + CxrllPlli.JJ,l12 + lldivr- A(il)wlli,JJ,l12 + 
IIUlb,n, llwlh,JJ,n2llwll2,p,n2 (1.25) 

The above estimate along with (1.24) leads to 

llwll2,p,n2 + IIPlli.JJ,n2 s Clgli+¼,JJ,r;, + llullw1.=cni llwlb,n + llwllw1.=cn) 

llu.II2,1,,n + llulb,JJ,n,llrilli,JJ,n2 + llull2,p,n,llwll1,p,n2llwll2,p,n2 

S Clgli+i/JJ,JJ,r,,. + Cxr + Cx(1.26) 

The force t has the estimate 

lt(u, P)l1 - 1/JJ,JJ,r S IIPll1,n + ll<f:>(u)llw1,=(n) 

which gives back 

llull2,pn, S Clgli+11rw,r + Cxr 

where Cx and Care generic constants depending only on D1, D2(0). Taking the 

boundary data l9li+i/JJ,JJ,r,,. sufficiently small (with respect to 1/2r) one shows 
that the map T for small r takes Br into itself. 
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Step 2. Showing that the map T is contractive. We show that for tu and tJ we 
have 

IITtu - Toi Ix :S Kjj tu - oilx 

Let us denote ii = u1 - u2 , w = w 1 - w 2 , and p = p1 - p2 . Then, according to 
(1.24) we get: 

IIA(ii) - IIIL= :S lliill1,oo,rl1 :S ll iill2,,,,ri1 :S Cxr, 

IIK(ii)IIL= :S C(lliill2,,,,ri1 + 1) :S Cx, 

IIH(ii) - IIIL= :S Clliilb,n1 :S Cxr, 

IIVx(A(u1)'vxW1 - 'vx(A(u2)'vxw2IIL= 

:S IIVx(A(ii)Vxw1llo,p,rl2 + IIVx(A(u)Vxwllo,p,fl2 

:s: llw1ll1,oo,ri2llulb,ri1 + llwlli,oo,ri2llu2ll2,,,,n1 
:S Cxrllw1l'2,,,,n2 + Cxrllwll2,p,n2, 

llw1(K(u1)'vx(w1)) - w2(K(u2)Vx(w2))IIL= 
'.S llwK(u1)'vxW1 +w2K(ii)Vxw1 +w2K(u2)Vxwll 

:S I lwl IL= I lu1 I l2,p,rl2 I lw1 I l1,oo,fl2 
+I lw2I IL= I Iii I l2,p,fl1 llw1 I l1 ,oo,n2 

+llw2IIL=ilu2lb,n1llwll1,oo,n2 
:S Cr2llu1lb,n2 + Cr2llw1ll2,,,,n2 + Cr2llwl'2,,,,n2 (1.27) 
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