





Quantitative stability analysis
in vector problems of 0-1 programming'

Vladimir Emelichev? and Dmitry Podkopaev *

Abstract

We consider multiple objective 0-1 programming problems in the situation, where parameters of
objective functions and parameters of linear constraints are exposed to independent perturbations.
We study quantitative characteristics of stability (stability radii) of problem solutions. An approach
to deriving [ormulae and estimations of stability radii is presented. This approach is applied to
stability analysis of the linear 0-1 programming problem and problems with nonlinear objective
functions, namely absolute value of linear function and quadratic objective function.

Keywords: 0-1 programming, vector optimization, stability radius.

0 Introduction

Discrete optimization models of decision making are widespread in design. caunfrol.
economics and many other fields of applied research. One of researclh areas of clis-
crete optimization problems motivated by real-life applications is analysis of solution
stability under perturbations of initial data (of problem parameters). Various formu-
lations of stability concept give rise to numerous directions of research. Not touching
upon this wide spectrum of questions, we only refer to the extensive bibliography
by Greenberg [9).

In this work we address problem of deriving quantitative characteristics of solu-
tion stability of vector 0-1 progranuming problems with linear constraints. A quan-
titative characteristic called stability radius is defined as the limit level of perturba-
tions of the problem parameters, which preserve a giveu property of the solution set
(or of a single sohition) The pertnrhed parameters are nsnalle coofliciont 00
scalar or vector objective function, and also paramecters of constraints deternining,
the feasible solution set.

Investigations of stability radius are aimed at deriving its formal expressions and

building methods for its calculation or estimation. It the casc of a single objective

1Submitted to ”Discrete Optimization”
2Belarusian State University, emelichev@bsu.by
38ystem Research Institute, dmitry.podkopaev@ibspan. waw.pi




function, formulae of stability radius are obtained for problems of 0-1 programming,
problems on systems of subsets and on graphs (see the survey by Sotskov, Leontiev
and Gordeev [12]), and also for some scheduling problems (see the survey by Sot-
skov. Tanaev and Werner [13]). In the case of multiple ohjectives. analnoons vesults
are obtained for few types of problems (we refer to a short survey in Emelichev ot
al. [3]). Algorithms of calculating or estimating stability radii are built so far for
some scalar problems only. For example, Libura et al. [11] elaborated methods for
estimating stability radius of an optimal solution of the traveling salesman problem
based on information about k-best solution. Interrelation between solving a combi-
natorial problem and calculating its stability radius is investigated by Chakravarti,
Van Hoesel and Wagelmans (1}, [15]. In particular, they developed an approach
to building polynomial algorithm of calculating stability radius for some classes of
polynomially solvable problems.

All investigations mentioned above are conducted in the case, where perturbations
affect parameters of the objective function(s) only. The situation where parameters
of both objective function and constraints are perturbed is studied for 0-1 prograni-
ming problems. Leontiev and Mamutov [10] obtained a formula of stabilitv radins
for the linear single objective problem in the case of a unique optimal solution.
Emelichev et al. [4]-(7] derived some formulas and estimations of stability radii for
the linear 0-1 programming problem with multiple objective functions on the hasis
of technique proposed in {10].

In this work we present an approach to deriving formulae and estimations of
stability radii of vector 0-1 programming problems. This approach allows to obtain
results known before [4]-[7] and to characterize stability of problems with two types
of nonlinear objective functions. The paper is organized as follows. A formulation
of the vector 0-1 programming problem with linear constraints and linear objective
functions under uncertainty conditions is given in sub-section §.1. Stability radii are
defined in sub-section 0.2. Section 1 contains supplementary statements which are
used lately for deriving formulae and estimations of stability radii. These formulae
and estimations are ohtained in Section 2 for the prablem with linem objective

functions. In Section 3 we show how to extend the obtained results to probles with
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nonlinear objectives. And finally in Section 4 we discuss possibility of constructing,

algorithm of calculating stability radii on the basis of our formulae.

0.1 Vector problem of 0-1 programming with perturbed parameters
Consider the k-objective linear problem of 0-1 programming with m constraints:
C'z — max, (1)

Ax <b, z € E", (2)

where k,myn € Nyn > 2, C € R E = {0,1}, 4 = [@ij]mxn € R b =
(b1, bg, - 0T € R™, @ = (21, 2, ., 20) T

Deunote by X the set of feasible solutions of the problen, i. e. the set of vectors
satisfying (2). We assume that the problem is solvablei. e. N # .

Vector z € E™ is called Pareto optimal solution (or Pareto optimuwm. for short} of
problem (1)—(2), if this vector is its feasible solution and no other feasible solution

dominates it, i. e. there does not exist 2’ € X such that
Cz' > Cz, Ca’ # Ca.

The set of all Pareto optima (called Pareto set) of problem (1)—(2) is denoted by
P. Tt is evident that X # @ implies P # 0. In the case of a single objective (k = 1),
P denotes the set of optimal solutions of the problem.

If P = {z} then w is called ideal solution of problem (1)—(2).

The perturbation of problem parameters is understood as arbitrary independent
change of coefficients of objective functions (1) and also coeflicients and right-hand
sides of constraints (2). It is modeled by adding periwrbing munber arvays 4’ €
R O e RE*™ and O € R™ to matrices A, ¢ and vector b respectively. Thus a

perturbed problem is formulated as follows:
(C + C"z — max, (3)
(A+ Az < (b+ 1), v € B (4)

Denote by X(A’,0) the set of feasible solutions of problem (3)—(4) and by

P(A Y, C") the set of its Pareto optimal solutions.




The notation presented above is used to formulate a decision making problem
under uncertainty. Let (1)-(2) be a model of a real-life problem. But in fact the real-
life problem is described precisely by model (3)-(4), whose parameters are nnknown
and are different from the parameters of (1)-(2). This difference called perturbation
may be caused by inaccuracy of initial data, inadequacy of the model specification,
errors of rounding off and other factors. In this situation it is important not only to
solve problemi (1)—(2), but also to estimate a quantitative characteristic of "maximal
allowable uncertainty of parameters”, for which the solution of (1)—~(2) relates to the
solution of real-life problem (3)-(4). Such a characteristic called stability radius is
defined as the limit level of perturbations, such than for any perturbation below this
level a given relation between solutions of problems (1)-(2) and (3)—(4) is preserved.
If level of uncertainty in problem parameters is not greater than stability radius,
then we are guaranteed that solving problem (1)-(2) we obtain practically relevant
result.

The notion of stability radius can also be useful in the case, where one needs to
solve a series of instances of a computationally hard problem. Consider two couse-
quent instances, first of which is already solved and the second instance is unsolved
yet. Let (1)-(2) be formulation of the solved instance. Formulate the unsolved
instance as a problem with perturbed parameters (3)-(4), where perturbations are
differences between parameters of the unsolved and solved instances. If these dif-
ferences are small enough, then the latter instance may have the same solution as
the previous instance. So it males sense to find stability radius of (1)—(2) and be-
fore solving subsequent problem instances to check if they have the same solution
as (1)—(2). The described scheme was studied by Leontiev and Gordeev {8] by the

example of solving a series of traveling salesman problems.

0.2 Definition of stability radii

We define norms [y, and [, in space R¢ for any finite dimmension d € N :

Iy ll=max{|y; |: i€ N [y =D [w

1ENy
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where y = (1,92, .., ya)” € RY,
Ng={1,2,...,d}.
Uunder a norm of a matrix we understand the norm of the vector composed froi

all elements of the matrix.

The number
(ALY, C) = max {[| A, | O |l [F C7 I}

is called distance between problems (1)—~(2) and (3)—(4).

Put
0 = R™X" x R™ x kan.

We assuine that

nfd = 4o0. (5)
Definition 1 Let x be a Pareto optumuwm of problem (1)-(2). The number
(2, AL, C) = inf{r(AV,C") 0 v g P(AY.CT), (A 0.7 €}
is called stability radius of .

In other words, the stability racdius of r is the maximun level of paransetor
perturbations such that @ remains Pareto optinial. If & remains Pareto optimal for

any perturbations, then its stability radius is assumed to be infinite.

Definition 2 The number

PY(Ab,C) =inf{r(A"V,C"): P(AV,C")Z PV P(AV,C")=0, (AV,C) e}
15 called stability radius of problem (1)-(2).

By Definition 2, the stability radius of problem (1)-(2) is the maximum level
of parameter perturbations such that new Pareto optima do not appear and the

problem remains solvable.
Definition 3 The number
PE(A,b,C) = inf{r(A'V,C"): PZ PAV,C), (A V,C") € Q}

is called quasi-stability radius of problem (1)-(2).




By Definition 3, the quasi-stability radius of problem (1)-(2) is the maximum
level of perturbations of its parameters, at which all Pareto optimal solutions stay
Pareto optimal.

Remark 1 The problem is called stable (quasi-stable). if pF(Ab.C) > 0
(P5(A,b,C) > 0). It is easy to see that stability and quasi-stability are discrete ana-
logues of upper and lower Hausdorff semicontinuity respectively at point (A, b, C) of
the optimal mapping

P09,
which puts in correspondence the set of Pareto optima to each point of the space of
problem parameters.

We refer to the book by Tanino and Sawaragi [14] for more information about

notion of semicontinuity in stability analysis.

1 Supplementary statements

The proofs of our statements concerning stability radii are build on the basis of
supplementary statements presented in Section 1. In the beginning of this section
we state three simple lemmas about limit levels of perturbations of linear inequality
parameters under which the inequalities stay true. These lemmas help us to charac-
terize some aspects of behavior of problem solutions under perturbations of problem
parameters in Sub-sections 1.1-1.3.

For any p,qg € N, v, %' € E?, y # ¢/, we define two numbers

Gi -y
@y, y) = max {LJ—) L i€ N,,} .

H ¥y— !/I H‘
W(g)(y,y') = min {QM = Np} ,
ly—v 1

where G = {g,] G, is the -th row of matrix G, i. e. Gy = (gi1, gio, - - -, Gig)-

pxq?
For any number d € N, put

O = (0,0,...,07 € R4
Lemma 1 If M (y,y") > 0, then

mf{[| &' | ¢' € R, (G+G)y—v) < 0p} =N (y,y) (6)




The proof of Lemuma 1 is given in Appendix 1.

The next lenuna is proved analogously to Lemma 1.

Lemma 2 If @ (y, ) > 0, then

-J
~—

mf{[| " Jl: G'e R, Jie N, (Gi+ Gy —y) <0)} = P(y.y). (
Lemma 3 Lety € E9, YV CE?\ {y/} and
= max {ap(z)(y,y') CyeY}=o.
Then
mf{||G'[: ¢"e R™, VyeYHeN,(Gi+G)ly—v) <0} =w. (8
The proof of Lemmna 3 is given in Appendix 1.
Remark 2 It is easy to see that if we replace the inequality
(G+G)y~y) <0y
by the condition
(G+ Gy —y) < 0y &(G+ Gy = y) # 0
in formula (6) and replace the condition
Fie N, ((Gi + Gi)w—¥) < 0)

by
Je N (Gi+ Gy —y) <OVIG+CYWy —y') = O

in formulae (7) and (8), then statements of Lemmas 1-3 will remain true.

1.1 Feasible and unfeasible solutions under perturbations of parameters
of the problem constraints

In this section based on Lemmas 1 3 we characterize limit levels of perturbations

of the parameters of constraints (2) such that relations of mewmbership and non-

mewbership of 0-1 vectors to the set of feasible solutions are preserved.




Let us use following notation:
Q* — R’HIXTI X R]n
(A0 = max {|| A"l [V (I}

For any x € E*, put
afr) = min {E—ﬁ— i E N,,,} . {0)
e e +1
It is evident that «(z) > 0 if and only if 2 € X"
We will show that for any @ € X munber a(a) is the maximum level of perturba-
tions of parameters of (2) such that x remnains feasible solution. We will also prove

that if 2 € E"\ X, then —a(z) is the maximum level of mentioned perturbations

such that z remains unfeasibile.
Lemma 4 For any v € X we have
inf{r(4,0): v & X(4,V), (A V) € 0} = afa).

Proof. Set p=m, q=n+ 1, .U/ = (070, o0, l)T € E7 To cach vector

(21, %2,...,2,)7 € E® we put in correspondence vector y := (21,24, ...,3,.0)7 €
E%. Consider matrices G = [g,;]pxq and G = {g],],., with the elenzents defined T
—ai;, if (i,)) € Np, x NV, , —a;J, i (2, ) € Ny X DNy,
Jij = 9 =
—b;, i (i,5) € Ny x {n+ 1}, =, i (4,7) € Ny x {n +1}.

From this notation we have
Dy, = alx),
He N (Gi+ Gy —y) <0) == g X(A).
Therefore Lemma 4 follows directly from Lemma 2. O

Lemma 5 Ifz € E*\ X, then

inf{r(A’. VY: we X(AY), (A V) e} = ~ala).



Lemma 5 is proved analogously to Lenuna 4. The difference i that in the prond

of Lemma 5, elements of G and G’ are defined by

Ay, if (7'1]) S Mn X Nm a/gjy if (/ ) € N, x »Nu-
Gij = 9y =
by, if (1,7) € Ny x {n+1}, O, i (4,7) € Ny x {n+1}.
Then
¢y, y) = —alx),
(G+G)y~7) <0y = z € X(AV)

and Lenuna 5 follows directly from Lemma 1.

Lemma 6
inf{r(A".0): X(A 0)=0 (4.0)e Q} =max{n{r): s E"} =0 anr
Ta prove Lemmna 6 we use the same notation as in the proof of Lemma 1 In
addition we put ¥ = E" x {0}. Then we have ¥ C E?\ {y'},
VyeYIieN,(Gi+G)y—vy) <0) &= X =0,

nax {y(z)(y,y') sy €Y} =max{alx): v €E"} >0.

Now we see that Lennna 6 follows directiv from Lennna 3.

1.2 Domination relation under perturbations of objective function pa-

rameters

Let us define the binary relation of Pareto domination on set E* for any matrix
Ce kan .
reat == Ca > (& Ce#E O
-
In this sub-section we characterize the limit levels of perturbations of the pa-
rameters of (1) which preserve the domination relation and non-domination relation

between a given pair of vectors.

For two different vectors @, 2’ € E", denote

B (2, 21) = ma.x{” iz —’IH) e Nk}.,




B (x,2") = min {“C;(—i;/l'—,l) SRS Nk} . (11)

The following implications are evident:

Bz, ) > 0= 2 % x, 2 ? = A0 ) >0, (12)
Bz, 2> 0= > 2w ? 2’ = P2, 2) 2 0, (13)
where % is the negation of >C— .
Taking into account Remark 2 we can casily check that Lemmas 13 naply oo
respondingly Lemmas 7-9 stated below.
Lemma 7 Ifx # 2/, 2’ ;C-“ z, then
inf{]] C": C'e R 2/ » o} =p80(a,2).
e
Lemma 8 Ifx >C— 2, then
imf{j| C'l: ¢’ e RF* o ¥ 2/} =89, 2").
e v 5 o'} =99
Lemma 9 Let 2’ € E” and
B(2’) := max {,8(2)(:17,1") e EM\{2'}} >0 (14)

Then

inf {H C'|: e RP", Vo e EM\ {2’} (.’lf (_;(‘ ;1")} = 3(a").
S

1.3 Pareto optimal and ideal solutions under perturbation of constraint

and objective function parameters

In this sub-section we consider situations where a given Pareto optimal (ideal) solu-
tion of problem (1)—(2) loses its Pareto optimality (ideality) as a result of parameters
perturbation. Formulae for calculating limit levels of such perturbations are derived
from results of two previous sub-sections.

For any @ € P and any s € N, denote

_min max{B® (a2, —ala)}. if X £ E™
,),(s)(a.’) . J P EEMN (15)

+00, it X = E".
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Lemma 10 Let x € P. Then
inf {7‘(A’, V,C: 32" e EM\ X (rl;’ e X(A V)& CIC’ ;1:) , (ALY, C) € Q} =
HO(r).

The proof of Lemma 10 is given in Appendix 1.

Lemma 10 states that () (x) is the limit level of perturbations of the problen
parameters such that solution « € P loses its Pareto optimality when another vector
2’ € E™\ X becomes a feasible solution dominating 2 in the perturbed problem.

The case of ideal solution is cousidered in the next lemma.
Lemma 11 Let P = {z}. Then
inf {'z‘(A’, o, C"): J2' e EM\ X (at’ e X(A V)& ;( .r’) (A0 e Q} =

ey

Y ().

The proof of this lemma is given in Appendix 1.

According to Lenmma 11, v® (%) is the limit level of perturbations of the problem
paramneters, at which ideal solution x becomnes not ideal when another vector x' €
E™\ X becomes a feasible solution not dominated by @ in the perturbed problem.

For any x € P and s € N, denote

6(5)(.17) N 1nin{,@(s)(1" ) 2’ € X, o #:v}, it X # {;L'}, "
+o0, if X = {r}.

It is easy to see that 6 () > 0 for any v € P, and §®(2) > 0if P = {x}.
Lemmas 12 and 13 stated below are easy to prove resting upon Lenunnas 7 and 8
respectively.
Lemma 12 Let x € P. Then
inf{|| C"[l: & & P(Opnxmy.Ony.CN. C' € REY = §W (),
Lemma 13 Let P = {x}. Then
i11f{|| C' |l P(Opnxny, Oy, C") # {2}, C' € ka“} =8(a).

Lenima 12 (Lemma 13) says that §¢(z) (6 (2)) is the maxiimun level of pertur-
bations of objective fuuction parameters such that solution & remains to be Pareto

optimal (ideal).
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2 Stability radii the problem with linear objective functions

Now we are in a position to state results concerning quantitative characterization
of stability of problem (1)-(2). The assertions presented in this section have been
previously published by Emelichev, Krichko and Podkopaev in journals issued in C'1S
countries. We present these results to broader audience and use themn to demonstrate

how technique of stability analysis developed in the previous section works.

Theorem 1 ([5]) Stability radius of any Pareto optimum x of k-objective problem

(1) (2)is capressed by
Pz, A, b, C) = min{a(x), vV(2), 8N (2)}, (17)
where a(z), vV () and 6V () are defined by (9), (15) and (16) respectively.

Proof. Denote by 4 the right-hand side of (17). From definitions of a(a:), vV (2)
and §M(z) we have 7 > 0.

It follows from Lemmas 4, 10 and 12 that the stability radius of - does 1ot exceed
numbers (), 70 (e) and 30 respectively. Hepee nequaliny 7 e Lo
holds.

It remains to prove inequality p*(z, A,0,C) > 1 in the case ¥ > 0. Let
(A", C") € Q be an arbitrary triple such that »(A4", ¥, ") < ¢ Then #(A V) <
a(z), || ¢ |l< §(z) and r(A,Y,C") < ¥z} Lemma 4 implies 2 € XN (4, 0);
Lemmas 12 and 10 yield that there does not exist vector 2’ &€ E™ such thaf
e X(A V) and 2 CTCI 2. 1t follows that » € P(A 0, ") for anv (A 0. ") < .
(A0, C") < . Hence p*(z, 4,6,C) > ¢. O

Observe that stability radius of any Pareto optimum z is finite since a(2) < co.

Corollary 1 The quasi-stability radius of k-objective problem (1)-(2), k > 1, is

expressed by
ALY = mi}} min{ala). 8O~ Ny

Theorem 2 ([7]) Let P = E"\ P # {. Set

i = max {0, min max min{a(z), % (z, 1/)}} ,

o'ePreX\{a'}




¥ =min max max{—ca(2), 5, 2)},
' eP eeE"\{u'}

where a(&') wied 39 (6, 1) wre defined by (9) and (11) respectively.
The stability radius of k-objective problem (1)-(2) has following bounds:
PN NG (1,
Proof. First, let us prove the inequality

Y < pf(A,5,C). (20)

We assume that ¢ > 0 (otherwise (20) is trivial). Let (4’1, C") € §2 be an arbitrary
triple such that (A, ¥, C') < ¢. Then for any 2’ € P there exists @ € X\ {2/} such
that (A", ) < a(x) and || C' {|< #¥ (2, 2’). Combining these two inegualities with
Lemmas 4 and 8 respectively, we obtain x € X(A,0') aud > /. Thus we have
T ke
proved that P{A,¥/,C") #  and no one vector &/ € P becomes a Pareto optimal
solution of perturbed problem (3)-(4), if (4",¥',C") < ¢. This implies inequality
(20).
Further, let us prove that
PE(Ab,C) < 9. (21)
Let € > . Then there exists ' € P such that
g > —alx'), (22)
e > B2, (23)
where J(z") is defined by (14).
Inequality (22) and Lemuna 5 imply that there exists a pair (A 0) € @ such
that
r(AL ) <&,
e X(A V).
Inequality (23) and Lenuna 9 inply that there exists a matrix ¢’ € R**" satistying,

I C i<,

Yee E"\ {2} (& ¥ 2).
x € \{1}(16:0,1)




Summarizing the above we obtain that for any € > v there exists (A’ 0/, (") € Q
sich that
r(ALV,C) <&,
e P{ALY. ).
Hence inequality (21) holds. O
It is easy to build examples showing that the upper and lower bounds of the

problem stability radius stated by Theorem 2 are attainable.

The next two theorems provide formulas for the problem stability radius in two
particular cases.
Theorem 3 ([7]) Let P = E™. Then the stability radius of k-objective problem (1)-
(2) is expressed by

PE(A b, C) = max{a(z) : z € E"}. (24)

where a(x) is defined by (9).

Indeed, if P = E", then no one perturbation of the problem parameters can cause
appearance of new Pareto optima. Hence the definition of stability radius is reduced

to the following:
PEAL C) = inf{r(A V) X(A V) =0, (A ¥)ec}.
Applying Lemma 6 we obtain the assertion of Theorem 3.

Theorem 4 ([7]) If P = {a"}, then the stabulity radius of k-objective problem (1)

(2) is expressed by

9

(A, b, C) = min{a(2?), A (9, 63 (2"}, (25)
where a(2°), v (2%) and §@(2°) are defined by (9), (15) and (16) respectively.

Proof. Denote by ¢ the right-hand side of (25). From the definitions of
al@®), 3% and P (0) we have g > 0.

It follows from Lemmas 4, 11 and 13 that the stability radius does not exceed
numbers a(2%), v (20) and §(a?) respectively. Therefore pf(A,b. C) < 1.

1t remaius to prove the inequality p' (A, 0. C) = ¢ w e case o o 0 Cone

sider a triple (A" ¥, C') € Q such that (A" ¥/, C") < 4. Then »(A V) < a(2”).
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(ALY, C) < ¥ and || O [|< 6P (2). Cowmbining each of these inequalities

with Lemmas 4, 11 and 13 respectively, we obtain

2% € X(A ),

Vo e B\ X (:L‘ ZX(A V) va® - :L‘> )
e

e v [0 0 .
Ve e X\ {2°} (1 e .L) .

Thus we have
V(A Y, O e (1"(/1', U, 0N <o = PAY,C) = {a:o})

which implies p*(A4,b,C) > ¢. O
Note that Leontiev and Mamutov [10] derived a formula for the stability radius

of problem (1)-(2) with single objective function (k = 1) in the case of a nuique
optimal solution. But that formula differs from our formula obtained in Theorem 4.
Nanely, the number defined as below is used in [10] instead of (20}

min{—a(x): € D}, D #0,

t(2?) =

+00, if D=9,
where D = {z € E" : (2", ) + () < 0} and numbers a(2®) and §*(2°) arc
the sawe as in (25). The next example illustrates consequences of replacing v(2(2")

by #(a°).
Example 1 Consider the following single objective problem of 0-1 programming
z1 + 29 — 0.0523 — max,
r sty <29, v e EY
It has a unique optimal solution 2° = (1,1,0). Applying the formula frow [101 e
obtain
a(2®) =03, YY) =0525 ta')=oc
which means that the problem stability radius should be equal to 0.3. But the per-

turbed problem

1 + a9 + 0.05203 — max,




T+ ast+a3 <3, v € E‘S7

which is located on the distance 0.1 from the initial problem, has o unigque optimal
solution (1,1.1). It follows that the stability radius can not exceed 0.1. From Theovem
4 taking into account v*(2°) = 0.05 we obtain that the stability radius of the problem

is cqual to 0.05.
The following evident theorem gives a trivial upper bouud of stability vadii.

Theorem 5 The number || C' || is an upper bound for

- the stability radius of Pareto optimwm v in the case p # {r}:

— the stability radius of problem. (1)-(2) in the case P # X

- the quasi-stability radius of problem (1)-(2) in the case | X |» L

We conclude this section with a brief scheme of the framework for deducing

formulae and bounds of stability radii built in Sections 1-2.

3 Problems with nonlinear objectives

In this section we demonstrate how the apparatus developed in Sections 1T 2 can he
applied to quantitative stability analysis of U-1 programunng problens with nonbin-
ear objective functions. The system of supplementary statements is constructed in
such a way that only lemmas in Sub-section 1.2 depend on objective function specifi-
cation. In all the subsequent assertions relying on lemmas from Sub-section 1.2 (see
Picture 1), objective function specification is taken hito account not directly but via
"interface” represented by these lemmas. To adapt our results to a problemn with
nonlinear objective functions it is enough to modify the contents of Sub-section 1.2.
Namely, we need to change the definition of Pareto domination relation according
to the objective function specification, to re-define M (a, ') and ™ (2, 2"), and to
prove statements which are analogous to Lenunas 7-9.

Below we implenient described modification for the case of absolute value of linear

objective functions and for quadratic objective functions.

16




1. Supplementary statements

Leuunas 1 3

—

1.1. Feasible and unfeasible
solutions under perturbations of
parameters of the problem

constraints

Lemmas 4-6

“\

N

1.2, Domination relation under
perturbations of objective
function parameters

Lemmas 7-9

v

functions

1.3. Pareto optimal and
ideal solutions under
perturbations of parameters
of constraints and objective

Lemmas 10-13

2. Stability of the problem witl
linear objective functions

Picture 1. Scheme of deducing furmulae for stability radii
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3.1 Problem with absolute value objective functions

Consider k-objective problem
f@,Cy=( Ciz || Cox |,...,| Crx |) — max, (26G)
Ax <D, x € E", (27
where C; is the i-th row of matrix C € R¥*™ Ae¢ R"™™ be R™ km > 1, n> 2.
The binary relation of Pareto domination is detined by
T >C— ¥ = f(2,C)2 f,C) & f(z,C) £ f(,C).
Further we define numbers () (x,27) and B (2, 2') which will be used instead
of AWz, 2"y and AP (x,2’) in analogues of Lemmas 7-9.

Let
Klz,2)={i e Nv.: | Cv |2] Ciz' |}

Tt is evident that I((x,2’) # @ if 2 % @

For any x, 2" € E™ such that
y

xFal, K(ya')#0,

set,
(L) o if 2/
Ay =& BTk S O, (25)
+o00, if 2" = Oy,
@)(q o it 2
A, ay = 4 © O O, (20)
EW (2,2, if 2 = Oy,
where

ED(x, 2y = max {&(2,2") . i€ K(x,2)},
(2, 2") = min {&(z,2") : i€ K(z,2)},
Ei(x, ') = min {w(x, 2", ) he {-1;1}},
| Ci(a + ha') |

o+ ha ||,

If i'(z,2") = @ then by definition we assune

vi(z, ', h) =

A 2’y = AP a2") = 0.
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Theorem 6 ([1}) The stability radeus of optimal x 45 the maximum number . for
which the following inequality holds:
Ilé}i\‘}z} {1;\/ (=i~ wdi)l‘é} > LEZN (= + ) 2y (37)

Tt was shown in [1] that the function in left-hand side of (37) is a concave piecewise
linear function with the number of pieces polinomial to n. This veilds polvnomial
algorithm of its construction on the segment [0; 7], where p* = max{| ¢; | + € N,}
is the upper bound of stability radius. When the function is constructed it is easy
to find the maximal 2 for which (37) holds.

Let us show that Theorem 6 can be obtained as a corollary of our results. For
this purpose we modify formula of stability radius of a Pareto optimum 1 so that it
will be applied to problem (34), i. e. to the case where k' = 1 and the parameters
of constraints are not perturbed. When X is fixed. optinial solation - looses s
optimality only if another feasible solution starts dominating it as a result of per-
turbation of objective function coefficients. According to Lemina 12 the stabilitv
radius of optimal solution z is equal to 63 (z) in this case. Taking into account

k =1 we write down this in the following theorem.

Theorem 7 Let 2 be an optimal solution of problem (34), X # {x}. Then stability

radius of x is expressed by

> il — )
. iEN,

r,c) = min —
o) = mi e =aTn

We will need the following evident lemna.
Lemma 20 Let z,2' € E" 2 #£ 2. Then

|z—2"|= Z (@ + dial),

iEN,
Where d; is defined by (36).
1t follows from Theorem 7 that stabilsty vadius of v w5 the murunal ¢ selsfyiry
inequality
> el — )

P < min L
2'eX\{z} & —a .
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Inequality o > @'V (y, y') implies
) o> Gily—vy
vie n, (228 =y)y
o=y Il
It follows that when for any 1 € N, elements of G’ are defined by

, o, ify; =1,
95 =
—g

ify; =0,

)

then for any 7 € N, we have

G+ Gy —v) =Gy —y)+CGily—v) =Gy —¢) —o lly —y .<Gily -
y) = Gily—y') =0

Thus required matrix G’ is obtained. [J

Proof of Lemma 3. Denote the left-hand side of (8) by w. The definition of ¢
implies that for any matrix G’ € RP*? such that || G’ || < p there exists y € Y such
that || G ||< @ (y, ). Using Lemma 2 we have (G + G')(y — ') > 0y,,). Recalling
the definition of w we obtain ¢ > w.

Further let us prove that ¢ < w. For any o0 > ¢ and any y € Y there exists i € N,
such that o > Gi(y —v')/ || v — ¥ ||+ - Then consider perturbing matrix G’ € R?™¢

with the elements defined by (40), repeat the reasoning below (40) and conclude
Vo> pIG e R (|G |l=0 & VyeYIieN,{(Gi+G)y—vy)<0).

This yields ¢ < w.

Proof of Lemma 10. If X = E", then infimum in the lemma statement is taken
over the empty set. The assertion of Lemma 10 follows from (5) in this case.

Further we assume X 7 E". Observe that «(2’) < U for any &' € E" \ A which
implies v{Y(z) > 0.

Denote by w the left-hand side of equality in the lemma statenment.

First, let us prove that

w > yW(2). ()

Suppose that v (2) > 0 (inequality (41) is trivial if 47V (e) = 0). Consider am

triple (A4, ', C") € Q2 such that

(A, N < A (). (12}

[
=



It follows from (15) that for any @ € E®"\ X at least oue of the next two conditions

holds:
(ALY < r(ALY, ) < —af2!), (43)
|| C" i< (ALY, CY) < 8P (2, 2). (44)
If (43) takes place, then o' ¢ X (A, V') by Lemma 5. If (44) takes place, then (12)
yields ¥ % 2, which allows us to apply Lenuua 7 to get o > .
J 40

Thus for any (A, 0/, C") € Q satisfying (42) we have

Ayl e EM\ X (:1:' eX(A VYL - AL:) .

e
Hence (41) is true.
Further, we prove that w < yU(x). Let € > ¥ (z). Then there exists 2/ € E*\ X

such that
e > —a(x), oy

e > AUz, 1"). (46)
It follows from (45) and Lemma 5 that there exists a pair (A%, 6°) € €2” such that

(A% 1°) < ¢,

2 e X (A% 10).

Inequality (46) and Lemma 7 imply that there exists a matrix ¢ = R satislving,
conditions
C¥l<e.

I/ .
CHCY

Thus we obtain that for any & > v{J(2) there exists (A% 0%, C%) € Q such that

(A% 0, C0%) < ¢ and

Ja' e E"\ X (;v' c X(AO, ) &' . - .T).

0
Hence w < vW(z). O
Proof of Lemma 11. The assertion of the lemma is trivial in the case X = E".
Therefore we assumne X # E". [t is easy to check that v (x) > 0 in this case.

Denote by w the left-hand side of equality in the lemma statement.
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First, let us prove the inequality w > 7 (2) in the case 7% () > 0 (the inequality

is trivial when y®(2) = 0). Let (4, ¥, C") € Q be a triple such that
r(ALY, C) < A (). (47)

According to (15), for any 2’ € E*\ X at least one of the following inequalities

holds:

r(4 ) < —a(a'), (48)
I ¢ ll< B9 (2, ). (49)

If (48) takes place, then o’ & X (A’, V') follows from Lemma 5.
If (49) is true, then 8™ (z,2') > 0. From (13) we obtain x > 2'. This allows ns

to apply Lemma 8 to get @ r'>—r- 2

+

Thus for any (A", V', C") € Q satisfying (47) we have
A e E"\ X (.1" e XA V) & (,; . ﬂ"> .

Hence w > ) (2).
Further, we prove that w < 4 (). Let € > v (2). Then there exists ¥’ € E*\ X

such that

e > —a(2'), (50)
e > B3z, 2'). (51)

It follows from (50) and Lemma 5 that there exists a pair (4°,5°%) € * such that
(A% %) < ¢,
2 e X(4%09).
Inequality (51) and Lemma 8 imply that there exists a matrix € € R¥ " satis
fying conditions

fCl<e, 2 = 2
C+Co

Thus we obtain that for any ¢ > ~®(x) there exists (4°0°C% € Q,

(A% B0, C% < g, such that

4+

P cE"\ X (.T’ XA g ¥ 1") .

Hence w < v (). O



Proofs of two lemmas for the problem with

Appendix 2.
absolute value of linear objective functions

Hereinafter we use the following evident equivalence valid for any =, € R
| 2>z <= 3Jhe{-11} v e{-1,1} (hz>n'z"), (52)
For any z € R, set
1, if z >0,

sg iy =
-1, ifz <0

Proof of Lemma 14. Let &' # O, (the lemma is trivial in the contrary case
in view of (5)). Then 89 (xz,2’) = éW(x,2”). Denote by w the left-hand side of the

equality in lemma statement.
First, we prove inequality w > £M(x, 2') in the case £ (2, ") > 0 (this inequality

is trivial if £ (z,2') = 0). Let C' € R, || C" ||< €8)(2,2"). By the definition of

EM (2, "), there exists ¢ € Ny such that
Vhe {~1.1} (| C" I< vi(a. 2’ h)).

Therefore &(xz,2") > 0 which implies

| Gz |>] Ciz' | .
Denote o = sg Cyx. Taking into account (54), it is easy to check that for any

h € {—1,1} the following equality holds:
Ci{ow + ha') = C(v + oha') |

Applying (53), for any & € {—1,1} we deduce
(C; + C)(ox + ha') =| Ci(z + oha!) | +¢Cl(x + oha') 2| Ci{a + gha') | — (55)
55

HC -l x+cha' |l.>] Ci(x + oha') | — | Ci(w + oha’) |= 0.
Thus for any i € {—1,1} we have o(C; + Cj)a > h(C; + C))a’. Taking into acconnt
(OG0

(n72) we obtain
| (Ci + CHx |>[ (Ci + Ca’ |

which implies 2 > z.
ccr
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Summarizing the above we conclude that a’ Ci‘l x for any 7 € R " such that
I C" ||< €32, 2’). Hence w > €M (x, 2').
It remains to prove that w < £M(z, x').
Denote
o =sgCix, 0 =sgCia’.
Set,
N, o) ={{j € Ny ay =182 =0} .
Observe that since 2’ # Q,y, the following inequality holds:
Nz, 2y <[z +2" .. (57)
Take an arbitrary number £ > £W(x,2’). From the definition of €M) (x, 2') we
have
Vie N(v, o) (g > &(w,0")). (O%)
For any i € NV, we will consider four possible cases:
i€ K(z,2'), vy(a, 2/, =1) <y, 2, 1), | G | + | Cia’ |> 0;
1€ Kz, 2'), vz, o, =1) <ylz, 2, 1), | Cx | + | Cia’ |=0;
i€ I{{x,2'), vl ~1) > v, 2, 1),

i1 K(x,2’)
/ v ol pertchine

and in each of these cases we will huild vow O — (/. /, o
matrix C” such that max{| ¢/, | j, € N} << and

| (Ci+ Ca’ |2 (Ci+ CJa ] (59)
Case 1: 1 € N(z,2'), vl !, =1) <y, 2, 1) | Cor | 4+ | Ci’ > 0. Taking hno
account. (58) we obtain that there exists number & such that

vilz,a', ~1) <6 < e (GO

In addition, we impose the following coudition on d:

SN(z,2') <|Cx | + | Cia’" | . (61)
Note that in the case N{z,a') = 0 inequality {61) follows; if N{x,2) > 0 then (61)

does not contradict to (60) since taking into account (57) we have
Cy Cia!
a4 (G

22l 1) < vl -
v(e,a, =1) < wlva N
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Put
-6, ifa; = 1&1?3 =0,
¢ =06, if = 0&a) =1,
0 in the rest of cases.
Using (60) we derive
d(Ci+ CH' — o(Ci + Cl)x =| Ciz | ~ | Cia’ | 40N x) + dN(a,2") > — |
Cilw =) | +0 | v =2’ [l.> = | Cifw = &) [ +s(a?, =1) |« = 2’ .= 0.
Using (61) and taking into account N(x,2’) > 0 we derive
d(C,+CDa +o(Ci +Cx =] Cix | + | Cox’ | 46N (' ) — SN(vo ") > Cr | + |
Cia' | =6 || x+a' > Ca | + | Ga' | —vi(a,2’, 1) [[ @ + 2 |l.> 0. Taking into
account, (52) we get (59).
Case 2: ¢ € K(u,2"), vz, 2, ~1) < y(z,2,1), | Cie | + | G’ |= 0. Put
0 < ¢ < € and define the elements of C! by the following way.
If & > a' then take u, v € N, such that z, =2/, =1, 2, = 1, 2, = 0 and put
hy = 0, &y = —38/2, cj; = 0 for any j € N, \ {u,v}. Otherwise take u € N, such

that x, = 0, 7, = L and put ¢, = &. ¢f, = 0 for any j € N, \ {u}.

Using evident inequalities | (C; + C))a |=| Cla | and | (C; + C)a’ |=| Cla’ | it is
easy to verify that (59) holds.

Case 3: ¢ € K(x,a"), ya,2',—1) > v(w,2’,1). Then by (58) there exists a

number ¢ satisfying inequalities
v(z, 2’ 1) < § <k, (62)
§ < vz, 2, —1). (63)
Observe that since ¢ € K («,2') we have 0Cix > oCjx’ which inplies
oCixz—2")=| Ci(z =2} | . (64)

Put ¢j; = —o6 for any j € N,,. Using (62) we derive
—0(Ci+CHx' —o(Ci+Ca = —oCi(z+2)+0(fl x| + || " |l.) > — | Ci(x +27) |
v 2, D(lf 2l + [F2 1) 2 0.
Using (63) and (64) we derive
—o(Ci+ Ot + (Gy + Cl)a = oCi(z — ') = 8() @ I — I & ) >} Gila — ) |
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—y(r, 2, -}z — 2" |l.) =0.
Applying (52) we obtain (59).

Case 4: i € N}, \ K(x,2'). Then assuming C] = O, we have (59).

Thus for any € > £€3 (2, 2') we have a matrix C” € R¥** such that || C’ ||< € and
i e T Hence w < €W (x, 2'). O

Proof of Lemma 15. Denote by w the left-hand side of the equality in lemma
statement. First, consider the case 2’ # 0¢,;y. Then B(z)(x, @) = @ (a,2).

To prove inequality w > €@ (2, 2') in the case £@(x,2') > 0 (the inequality is
trivial in the contrary case) we consider an arbitrary matrvix ¢ € R**" sneh thiat
| € 1< € (2, 2"). Taking into account the definition of £ (., ') aud the rvelation
> @' it is easy to see that inequalities (54) and (53) hold for any i € N,. Using
the argumentation below inequalities (54) and (53) in proof of Lemma 14, we get
inequality (56). Since it holds for any ¢ € N, we obtain 2 c:(:' 2'. Thus we conclude
w > Az, a'y).

Further let ns prove that w < (2 2). Let = > £ (a2, By definition of
€ (2, 2), there exists 7 € K(x,2') such that € > &{x, ). Then one of cases 1.
2 or 3 considered in the proof of Lemma 14 is possible. Build i-th row of matrix
C' ¢ R¥" using the same argumentation as wlen considering these three cases in
the proof of Lemma 14 and set the rest of rows to be zero. Then we have | ¢’ ||< ¢
and | (C; + C))a’ |>] (Cy + C))a | . Hence Ciﬂ a’. Thus we liave proved inequadiy
w < B (x, 2.

Now consider the case 2/ = 0¢,y. Then A e ) = Y T i evidens that
a CE(;' 2" if and only if (C' 4 C")a = Oy,.

If €W (2, 2') > 0, then for any matrix C' € R¥*" such that || ' ||< £1(r, 2") there
exists ¢ € /((x, ") satisfying (54) and (53). From here using the same argumentation

as in the proof of Lemma 14 we derive | (C;+ C})x |> 0 which nmeans that v > 27

e
Hence w > AW (x,2").
On the other hand. if each elemient ¢f, of perturhing matvix €7 = (rj/)} seroal
to ~Cyz/ || a ||+, then || €' ||= €W (2, 2’) and (C+C")x = 0gy. Hence w < &V, 4").

O
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