
Raport Badawczy 

Research Report 
RB/44/2008 

Quantitative stability analysis 
in vector problems 

of 0-1 programming 

V. Emelichev, D. Podkopaev 

Instytut Badań Systemowych 
Polska Akademia Nauk 

Systems Research Institute 
Polish Academy of Sciences 



POLSKA AKADEMIA NAUK 

Instytut Badań Systemowych 

ul. N ewelska 6 

O 1-44 7 Warszawa 

tel.: (+48) (22) 3810100 

fax: (+48) (22) 3810105 

Kierownik Pracowni zgłaszający pracę: 
Prof. dr hab. inż. Janusz Kacprzyk 

Warszawa 2008 



Quantitative stability analysis 

m vector problems of 0-1 programming1 

Vladimir Emelichev2 and Dmitry Podkopaev 3 

Abstract 

We consider multiple objective 0-1 programming problems in the situation, where pa.rameters of 
objective functions and parameters of lineai· constraints are exposed to independent perturbat,ions. 
We study quantitative characteristics of stability (stability radii) of problem solutions. An approflch 
to deriving formulae and estimations of stability radii is presented. This approach is applied to 
stability analysis of the linear 0-1 programming problem and problems with nonlinear objective 
functions, namely absolute value of linear function and quadratic objective function. 

Keywords: 0-l programming, vector optimization, stability radius. 

O Introduction 

Discrete optimization models of decision making are widespreacl iu design. co11trc,I. 

economics and many other fields of applied research. One of research areas of dis

crete optimization problems motivated by real-life applications is analysis of solution 

stability under perturbations of initial data ( of problem parameters). Various fornm

lations of stability concept give rise to numerous directions of research. Not touching 

upon this wicie spectrum of questions, we only refer to the extensive bibliogrnph,· 

by Greenberg [9]. 

In this work we address problem of deriving quantitative characteristics of solu

tion stability of vector 0-1 programming problems with linear constraints. A quan

titative characteristic called stability mdius is defined as the limit level of perturba

tions of the problem parameters, which preserve a given property of the solut,ion set 

(or of n sin.gł<' solntion) Tlw p<'rtnrh<'d pnrnnwhT, ,1r,· 11 ,1 1,,lh· , . .,,,ffi, i,·111 < ., r ,J .. 

scalar or vector objective function , and also pa.rn111(•t.ers uf n,11strni11ts d,·t, ·1111i11i11.~ 

the feasible solution set. 

Investigations of stability radius are a imecl at deriving its forma! expressions nnrl 

building methods for its calculation or estimation. In the case of a single object.ive 
1Submitted to "Discrete Optim ization" 
2 Belarusian State University, emelichev@bsu.by 
3 System Research Institute, dmitry.µodkopaev@ibspau.waw.pl 



function, fonnulae of stability radius are obtained for problems of 0-1 programming, 

problems on systems of subsets and on graphs (see the survey by Sotskov, Leont.iev 

and Gordeev [12]), and also for some scheduling problems (see the survey bv Sot.

skov. Tanaev aml \,Verner [13]). In t.lw case of nrnltip!P ohjPrtiv('s . mrnJ0Qrn1s rrs1ilts 

a.re obtained for few typ es of problems ( we refer to a short smvey iu Ernelic!H'I' ,., 

al. [3]). Algorithms of calculating or estimat.ing stability raclii are bllilt so for for 

some scalar problems only. For example, Libura et al. [11] elaborated methods for 

estimating stability radius of an optima! solution of the traveling salesman problem 

basecl on information about k-best solution. Interrelation between solving a combi

natorial problem and calculating its stability radius is investigatecl by Chakravarti, 

Van Hoesel and Wagelmans [l], [15]. In particular, they developed an approach 

to building polynomia.l algorithm of calculating st.abilit.y radius for some classPs of 

polynomially solvable problems. 

All investigations mentioned above a.re conducted in the case, where perturbations 

affect parameters of the objective function(s) only. The sit.uation where parametPrs 

of both objective function and constraints are perturbecl is studied for 0-1 program

ming problerns. Leontiev and Mamut.ov [JO] oht.ai1wd a fornmlA of stAhilitv rnrli11s 

for the linear single objective problem in the case of a unique optima! sol11t.iou . 

Emelichev et a.I. [4]- [7] derived some formulas and estimations of stability raclii for 

the linear 0-1 programming problem with multiple objective functions on the basis 

of techniąue proposed in [10]. 

In this work we present an approach to deriving formula.e and estima.tions of 

stability radii of vector 0-1 programming problems. This approach allows to obtain 

results known before [4]- [7] and to cha.racterize sta.bility of problems with two types 

of nonlinear objective functions. The pa.per is organized as follows. A formulation 

of the vector 0-1 programming problem with linear constraints and linear objective 

functions under uncertainty conditions is given in sub-section 0.1. Stability radii are 

defined in sub-section 0.2. Section 1 contains supplementary statements which are 

used lately for deriving formulae and estimations of stability radii. These formulae 

and est.imations are obt.ained in Section 2 for thr prnhlrm with linr;,r <>hj, •di,·, , 

functions. In Section 3 we show how to extend the obtained results to problems wit.h 
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nonlinear objectives. And finally in Section 4 we discuss possibility of coust.rm-tiug 

algoritlun of calculating stability raclii on the basis of our formulae. 

0.1 Vector problem of 0-1 programming with perturbed parameters 

Consider the k-objective linem· problem of 0-1 programming with m constraints: 

Cx--+ max, 

Ax :S b, x E E", 

where k,m,n EN, n 2". 2, CE Rkxn, E = {0,1}, A 

(b1, b2, ... , b,,.)T E Rm, x = (x1, X2, ... , x,.)T. 

(1) 

(2) 

[aij Jmxn E Rmxa, b = 

Denote by X the set of feasible solutions of the problem, i. e. the set of vpctors 

satisfying (2). We assume that the problem is solvable i. e. X f 0. 

Vector x EE" is called Pareto optima/ solution (or Pai·eto optimum for short.) of 

problem (1)- (2), if this vector is its feasible solution and no other feasible solution 

dominates it, i. e. there does not exist x' E X such that 

Cx' 2". Cx, Cx' f Cx. 

The set of all Pareto optima (called Pareto set) of problem (1)- (2) is denotecl by 

P. It is evident that X f 0 implies P f 0. In the case of a single objective (k = 1), 

P clenotes the set of optima! solutions of the problem. 

If P = { x} then x is called ideał solution of problem (1 )- (2). 

The perturbation of problem parameters is understood as arbitrary independent 

change of coefficients of objective functions (1) and also coefficients and right-hand 

sides of constraints (2). It is modeled by adding pfftnrbing number ,uTa)'S A' E 

R"'x", C' E Rkxn and b' ER"' to mat.rices A, C and vc-,ct.or b respect.in·ly. Thus a 

perturbed problem is fonnulatecl as follows: 

( C + C').1: --+ max, 

(A+ A')x :S (b + b'), x EE". 

(3) 

(4) 

Denote by X(A', b') the set of feasible solutions of problem (3)- (4) and by 

P(A', b', C') the set of its Pareto optima! solutions. 

3 



The notation presented above is used to formulate a decision making problem 

under uncertainty. Let (1)- (2) be a model of a. rea.I-life problem. But in fact tlw rP>li

life problem is described precisely by model (3)- (4), whose pa.ra.met.ers ,u-P 11nknow11 

and are different from the pa.ra.meters of (1)- (2). This difference called pert.nrhat.io11 

may be ca.used by inaccuracy of initial data, inadequacy of the model specifica.tion. 

errors of rounding off and other factors. In this situation it is important not only to 

salve problem (1)- (2), but a.lso to estima.te a. qua.ntitat.ive cha.ra.cteristic of "nrnxirnnl 

allowable uncertainty of pa.ra.meters", for which the solution of (1)-(2) relates to the 

solution of real-life problem (3)-( 4). Such a characteristic called stability radius is 

clefined as the limit level of perturbations, such than for any perturbation below t.his 

level a given relation between solutions of problems (1)- (2) and (3)-(4) is preserved. 

If level of uncertainty in problem parameters is not greater than stability radius, 

then we a.re guaranteed that solving problem (1)- (2) we obt.a.in prnct.icallv relewmt 

result. 

The notion of stability ra.dius can also be useful in the case, wherc onP ncPcls to 

salve a series of instances of a computationally hard problem. Consider two cm1sc•

quent instances, first of which is already solved and the second inst.a.net> is 1111sohwl 

yet. Let (1)- (2) be formulation of the solvecl instance. Formulate the unsolved 

instance as a problem with perturbecl parameters (3)- (4), where perturbat.io11s arP 

differences between parameters of the unsolved and solved instances. If these dif

ferences are small enough, then the latt.er instance may have the same solut.ion AS 

the previo us instance. So it makes sense to find stability rad ius of ( 1 )- (2) and be

fore solving subsequent problem instances to check if they have the same solut.ion 

as (1)-(2). The described scheme was studied by Leontiev and Gorcleev [8] by the 

example of solving a series of traveling salesman problems. 

0.2 Definition of stability radii 

We define norms ł00 and 11 in space R" for any finite dimension d E N : 

li Y li= max{I Yi I: i E N,i}, li Y li,= ~ I Y, I 
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Nd={l,2, ... ,d}. 

Under a norm of a matrix we understand the norm of the vect.or c01aposcd fru111 

all elements of the matrix. 

The number 

r(A', b', C') = max {li A' li, li b' 11,11 C' li} 

is called distance between problems (1)-(2) and (3)- (4). 

Put 

We assume that 

inf0 = +oo. 

Definition 1 Let x be a Pareto optimum of problem. (1) - (2). Thr, n11.111hr-1 

pk(x,A,b,C) = inf{r(A',b',C'): :i: ,f. P(A',1/,C'), (A',1/,C') EU} 

is called stability mdius of x. 

(5) 

Iu other words, the stability radius of x is the maximum lcl'el of pnrnrnl'i c'l" 

perturbations such that x remains Pareto optima!. If x remains Pareto optima! for 

any perturbations, then its stability radius is assumed to be infinite. 

Definition 2 The num.ber 

p}(A,b,C) = inf{r(A',b',C'): P(A',b',C') g; P V P(A',b',C') = 0, (A',b',C') EO} 

is called stability mdius of problem (1) - (2). 

By Definition 2, the stability radius of problem (1)-(2) is the maximum level 

of parameter perturbations such that new Pareto optima do aot appcar nad tlw 

problem remains solvable. 

Definition 3 The number 

p~(A,b,C) = inf{r(A',b',C'): P g; P(A',b',C'), (A',b',C') EO} 

is called quasi-stability radius of problem. (1)-(2). 
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By Definition 3, the quasi-stability radius of problem (1)- (2) is the maximum 

level of perturbations of its parameters, at which all Pareto optima! solutions stay 

Pareto optima!. 

Remark 1 The problem is called stable (quasi-stable} , if pf(A. b. C) > O 

(p~(A, b, C) > OJ. ft is easy to see that stability and quasi-stability are discrete ana

logues of upper and lower Hausdorff semicontinuity respectively at point (A, b, C) of 

the optima/ mapping 

which puts in correspondence the set of Pareto optima to each point of the space of 

problem parameters. 

We re.fe,, to the book by Tanino and Sawaragi /14} for mare information about 

notion of semicontinuity in stability analysis. 

1 Supplementary statements 

The proofs of aur statements concerning stability raclii are build on the basis of 

supplementary statements presentecl in Section 1. In the beginning of this sert.ion 

we state three simple lemmas about limit levels of perturbations of linear inequality 

parameters uncler which the inequalities stay true. These lemmas help us to charac

terize some aspects of behavior of problem solutions under perturbations of problc0 1n 

parameters in Sub-sections 1.1- 1.3. 

For any p, q EN, y, y' EE\ y # y', we define two numbers 

(1)(. ') - { G;(y - y') 
cp y, y - max li li y - y' • 

(2)( ') - . { G;(y - y') 
cp Y, y - mm li li y -y' • 

i EN,,}. 

i E NP}, 
where G = [g;1 )pxą, G; is the i-th row of matrix G, i. e. G; = (g;1, g;2, ... , g;ą)

For any number d EN, put 

o(d) = (o, o, ... , of E Rd. 

Lemma 1 ff cp(ll(y, y') 2: O, then 
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The proof of Lemma 1 is given in Appendix 1. 

The next lemma is provecl analogously to Lemma 1. 

Lemma 2 ff rp<2l(y, y') 2: O, then 

inf{IIG'II: G'ERpxą, 3iENp ((G;+c:)(y-y')<O)}=<p( 2l(y.y'). (7) 

Lemma 3 Let y' E Eą, Y s;;= Eą \ {y'} and 

rp := max { rp<2l(y, y') : y E Y} 2: O. 

Then 

inf{II G' li: G' E wxą, Vy E Y3i E Np((Gi + c:)(y-y') <O)}= rp. (8) 

The proof of Lemma 3 is given in Appendix 1. 

Remark 2 ft is easy to see that if we replace the inequality 

(G + G')(y - y') :S O(p) 

by the condition 

(G + G')(y - y') :S O(p) &(G + G')(y - y') ie O<vJ 

in formula {6) and replace the condition 

:li E NP ((Gi + c;)(y - y') < O) 

by 

:li E Np ((Gi + c;)(y - y') < O) v(G + G')(y - y') = O(p) 

in formulae {7) and (8), then statements of Lemmas 1-3 will remain tnie. 

1.1 Feasible and unfeasible solutions under perturbations of parameters 

of the problem constraints 

In this section based on Leuunas 1-3 we diara.cteri,:c liiuit levcb uf pc·tt mlJatiu11~ 

of the parameters of constraints (2) such that relations of membership and nun

membership of 0-1 vectors to the set of feasible solutions are preservecl. 
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Let us use following notation: 

r(A', b') = max {li A' li, li b' li}• 

For any :r E E", put 

{ b-Ax 
a(:r) = min 11 '.r li, :1 

It is evident that a(x) 2: O if and only if x EX. 

iEiV,,,}. /()) 

We will show that for any x EX number a(x) is the maximum level of perturba-

tions of parameters of (2) such that x remains feasible solution. We will also prove 

that if x E E" \ X, then -a(x) is the maximum level of mentioned perturbations 

such that :r remains unfeasibile. 

Lemma 4 For any x E X we have 

inf{r(A',b'): x (/. X(A',b'), (A',b') E !1*} = a(x). 

Proof. Set p = ni, q = n+ 1, y' = (O, O, ... , O, l)T E E". T" ,·,wl1 ,·,·, ·I 111 ,,. -

(x 1 , :r2, ... , x,,)r E E" we put in corresponclence vector y := (x 1 , x 2, ... , J:,,, 0)1' E 

Ef/. Consicler matrices G = [!l;J]px,, a11d G' = [y;)v«, \\·ith li1C · c•lc•11,,·1ils d,·li1ll'd 1,, 

-{-aiJ, 9;j-

-b;, 

if (i,j) E Nm X N,., 

if (i,j) E Nm x {n+ l} , 

if (i, J) E 1Vm x J'v,,, 

if (i,j) E Nm x {n+ l}. 

F\·om this notation we have 

cp(2>(y, y') = a(x) , 

3i E Nv ((Ci+ c;)(y - y') < O) ~ :r (/. X(A' , b'). 

Therefore Lemma 4 follows clirectly from Lemma 2. O 

Lemma 5 lf x EE" \ X , then 

inf{r(A',b'): x E X(A'.b'), (A'.b') E !1*} = -n/r) 
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of Lemma 5, elements of G and G' are defined by 

{
aij, 

9ij = 
b;, 

if (i,j) E N111 x N,,, 

if (i,j) E N111 x {n+ l}, 

if (i,j) EN,,, x N,,. 

if(i,j)EN,,,x{n+l} 

Then 

vJ(ll(y, y') = -a(x), 

(G + G')(y - y') :S O(m) = x E X(A', b') 

and Lemma 5 follows directly from Lemma 1. 

Lemma 6 

inf{r(A',b'): X(A',b') = 0, (A',b') E D*} = 11iax{n(.r): ., EE"}? li 11111 

To prove LPmma 6 w<' 11sP tlH' samP notntion as in t!ir pronf of T,,,111111n 111 

aclclition we put Y = E" x {O}. Then we have Y <:;; E,, \ {y'}, 

Vy E Y3i E NP ((G; + c;)(y - y') <O)= X= 0, 

max fr<2l(y, y'): y E Y} = max{a(:r) : .TE E"} 2 O. 

Now Wf' SPP t.hat. Lenmrn. 6 follows dirPrtly fro111 L,·111111,i J. 

1.2 Domination relation under perturbations of objective function pa

rameters 

Let us clefine the binary relation of Pareto domination on set E" for any matrix 

CE Rkxn: 

:r ~ .i:' = C'.r 2 C.,' & C'., # C'.,' 
C 

In this sub-section we chara.cterize the limit levels of pertmbations of the pa

ra.meters of (1) which preserve the clomination relation and non-clomination relat.ion 

between a given pair of vectors. 

For two clifferent vectors x, :r' EE", clenote 

(!)( . . . .,) _ { C;(x - x') } 
f3 x,.t -max li._ ·'li: iENk , 

J. J. * 
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/3(2)( _ .,) _ . { Ci(x - x') . . } 
x, x - mm li x _ x' li •. i E Nk . 

The following implications are eviclent: 

f3(1l(x, x') >O=> x' >=" x, x' >=" x => f3(1l(x, x') 2'. O, 
C C 

13<2l(x,x') >O=> 1: >-- x', x >-- x' => 13< 2\x,x') 2'. O, 
C C 

where >=" is the negation of >-- . 
C C 

(11) 

(12) 

( 13) 

Taking into account Rernark 2 we urn casily d1t•,-k tlwt L,·1111,1"·' I :; i1111,l_1 , ,,t 

responclingly Lemmas 7-9 statecl below. 

Lemma 7 lf 1: i :r', x' >=" x, then 
C 

inf{IIC'II: C'ERkx", x' >-- x}=/3(1\x,.1:'). 
C:+C:' 

Lemma 8 lf 1: >-- x', then 
C: 

inf{II C' li: C' E Rkxn, X >=" x'} = 13<2l(x,1:'). 
C+C' 

Lemma 9 Let x' E E" and 

/3(.1:') := max {13< 2\x, x') : x EE"\ {x'}} 2: O. 

Then 

inf {11 C' li: C' E Rkxn, 'h.: EE"\ {x'} (1: _">=° .1:')} = fl(.1:'). 
G+('I 

(14) 

1.3 Pareto optima! and ideał solutions under perturbation of constraint 

and objective function parameters 

In this sub-section we consicler situations where a given Pareto optima! (idea!) solu

tion of problem (1 )-(2) loses its Pareto optimality (icleality) as a result of parameters 

perturbation. Formulae for calculating limit levels of such perturbations are clerivecl 

from results of two previous sub-sections. 

For any x E P and any s E N2 clenote 

{ 
min max{/3(sl(1:. 1:'), -a(.10')}. 

1,(s)(x) = x'EE"\X 

+oo, 

IO 

(15) 

ifX =E". 



Lemma 10 Let x E P. Then 

inf{r(A',b',C'): :lx'EE"\X(x'EX(A',b')&x' >- x), (A',b',C')EO} 
C+C' 

'Y(l)(x). 

The proof of Lemma 10 is give11 in Appendix 1. 

Lemma 10 states that -y( 1 ł(:i:) is the limit level of perturbations of the problem 

parameters such that solution x E P loses its Pareto optimality when another vector 

x' E E" \ X becomes a feasible solution dominating x in the pert.urbed problem. 

The case of ideał solution is considered in the next lemma. 

Lemma 11 Let P = {x}. Then 

inf {r(A', b', C') : :lx' EE"\ X (:i:' E X(A', b') & x _;::- :r') . (.4'. b'. C") E o} 
C+C' 

')'(2) (X). 

The proof of this lemma is given in Appendix 1. 

According to Lemma 11, -y(2l(x) is the limit level of perturbations of the problem 

parameters, at which idea! solution x becomes not ideał when another vector x' E 

E" \ X becomes a feasible solution not clominatecl by :i: in the pertmbecl problem. 

For auy x E P and s E J\T2 denote 

{
min{f3(•l(x,x'): 

J(•l(x) = 
+oo, 

x' E X,x' cf x}, if X cf {x}, 

if .Y = {.r} 
(16) 

It is easy to see that J(Jl(x) 2: O for any x EP, and J(2>(x) 2: O if P = {:i:}. 

Lemmas 12 and 13 stated below are easy to prove resting upon Lemmas 7 and 8 

respectively. 

Lemma 12 Let :r E P. Then 

inf{jj C' il: 1: (/ P(O(mxn)· O(m),C'), C' E R' x" } = J(ll(.,-) 

Lemma 13 Let P = {1:}. Then 

inf{II C' jj: P(O(mxn) , O(m), C') cf {x} , C' E Rkx"} = J(2ł(:i:). 

Lemma 12 (Lemma 13) says that J(Jl(x) (J(2l(x)) is the maximum level ofpertur

bations of objective function parameters such that solution x remains to he Pmet.o 

optima! (idea!). 
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2 Stability radii the problem with linear objective functions 

Naw we are in a position to state resuit.R roncerning qmrnt.it.ativP chArnc-tr-•rizi'ltin11 

of stability of problem (1)-(2). The assertions presented in this sect ion have bt•c11 

previously published by Emelichev, Krichko and Podkopaev in journals issued in CIS 

countries. We present these results to broader audience and use them to demonst.rat.P 

how technique of stability ana.lysis developed in the previous section works. 

Theorem 1 ([5]) Stability radius of any Pareto optimum x of k-objective problem 

(1) (2) is r.1 prPssPd hy 

( 17) 

where a(x), --y(ll(x) and J(Jl(x) are defined by (9), (15) and (16) respectively. 

Proof. Denote by 1/; the right-hand side of (17). From definitions of a(x), --y(Jl(.1:) 

and J(ll(:z:) we have 1/; ~ O. 

It follows from Lemmas 4, 10 and 12 that the stabilit_v raclins of .r cloes not ,•xr-C'Pd 

numbers n(.t), ·/ 11 (.r) and J11 \rJ rcspccl.1\·L'ly. H,·tH<· 111,·cp1"!11 _1 / 1., .. \ ./,.(, 

holds. 

It remains to prove inequality pk(x, A, b, C) ~ 1/; in the case V' > O. Let 

(A', b', C') E D be an a.rbitrary triple such that r(A', b', C') < 1)· Tlwn 1(A'. h') < 

ac(.1:), 11 C' 11< 5(x) and r(A',b',C') < --y(ll(.1:). Lemma 4 implies :r E X(A',1/J; 

Lemmas 12 and 10 yielcl that there cloes not exist vector :z:' E E" such t.hat 

x' E X(A', b') and x' >- :z:. It follows t.hat .1: E P(A' , b', C") for any (A'. I/. C') E I/. 
C+C' 

r(A', b', C') < 1/J. Hence l(x, A, b, C) ~ 1/J. • 
Observe that stability radius of a.ny Pareto optimum x is finite since ac(:z:) < oo. 

Corollary 1 The quasi-stability radius of k-objective problem (1)-(2), k ~ 1, is 

expressed by 

p~'(A. h. C) = min min{n{T). J(!l/r) _,(l)(r)} 
- .rei' 

(]"I 

Theorem 2 ([7]) Let P := E" \ P =I- 0 Set 

1/; = max{o, mig 11!a..x, min{ac(x),,6(2l(x,.1:')}}, 
- x'EPXE.,\{x} 
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°0=min max max{-o:(x'), ;J<2l(J.:,:i:') }, 
x'EPxEE"\{x'} 

when; u\.i:') arni µPl\.c,,i:') we dejined by 1Y) and 111) ,ujµedi udy. 

The stab·ility radius of k-objective problem (1)-(2) has following bo11.nds.· 

Proof. First, Jet us prove the inequality 

'!I!_::; p~(A, b, C). (20) 

We assume that '!I!_> O (otherwise (20) is trivia!). Let (A', 1/, C') En be an arbitrary 

triple such that r(A', b', C') < '!!!_. Then for any 1:' E 7.5 there exists :i: E X\ {:i:'} sud1 

that r(A',b') < o{r) and li C' li< (J<2l(x,:i:'). Combining these two i1wqunlit.ies witl1 

Lemmas 4 and 8 respectively, we obtain x E X(A', b') and x >- ,i:'. Thus we baw 
C+C' 

proved that P(A', b', C') c/c 0 and no one vector :r' E 7.5 becomes a Pareto optima! 

solution of perturbed problem (3)-( 4), if r(A', b', C') < '!I!_. This implies inequality 

\2U). 

Further, let us prove that 

p}(A, b, C) ::; 1{; 

Let c > 1{;. Then there exists x' E 7.5 such that 

where f](x') is defined by (14). 

E > -o:(x'), 

E > f](x'), 

(21) 

(22) 

(23) 

Inequality (22) and Lenuna 5 imply that there exists a pair (A', b') E (Y sud1 

that 

r(A', b') < E, 

x' E X(A', b'). 

lnequality (2J) and Lemma!;) imply that there ex1sts a matrix l," E R ' "' sat1s!y1u1; 

li C' li< c, 

\lx EE"\ {x'} (x '>=' x'). 
C+C' 
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Summarizing the above we obtain that for any € > ~ there exists (A', b', C') E !l 

snrh that. 

r(A', b', C') < E, 

1:' E P(A', b', C'). 

Hence inequality (21) holds. D 

It is easy to buikl examples showing that the upper and !ower bounds of t.Ja, 

problem stability radius stated by Theorem 2 are attainable. 

The next two theorems provide formulas for the problem stability radius in two 

pa.rticula.r ca.ses. 

Theorem 3 ([7]) Let P = E". Then the stability radius of k-objective problem (J)~ 

(2) is expressed by 

Pi(A,b,C) = max{a(x): x EE"}. 

where a(x) is defined by (9). 

(24) 

Indeed, if P = E", then no one perturba.tion of the problem parameters ca.n ca.use 

appea.ra.nce of new Pareto optima. Hence the definition of sta.bility radius is reduced 

t.o the following: 

Pi(A,b,C) = inf{r(A',b'): X(A',b') = 0, (A',b') E !l*} 

Applying Lemma 6 we obtain the assertion of Theorem 3. 

Theorem 4 ([7]) ff P = {,r0 }, then the stab-il-ity mdius uf k-uUJectwe pruule111. ( 1) 

(2) is expressed by 

Pi(A, b, C) = min{a(x0 ), ')'( 2ł(x0), (5( 2 ł(x0 )}, (25) 

where a(x0 ), ,,( 2J (x0 ) and 5(2) (x0 ) are defined by (9), (15) and (16) respectively. 

Proof. Denote by 'if; the right-hand sicie of (25). Prom the definitions of 

n(.c0 J, 5<2l(.r0J and ,(2l(.r0 ) we havc 4, 2'. O. 

It follows from Lemmas 4, 11 and 13 tha.t the stability radius does not. exceed 

numbers a(x0 ), , ,(2l(x0 ) and ,5(2l(1:0 ) respectively. Therefore p}(A , b, C) ~ ,!• . 

lt remai110 to prove the i11equality 1/'\.rl, /J. L') :::'. ,,- 111 tli,· rn" ' ,. · "' 11. l u1, 

sider a triple (A',b',C') E !l such that r(A',b',C') < 1/J. Then r(A',b') < n(1:0). 
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1·(A1 ,b1 ,C1) < 1<2>(:i:0 ) and li C' li< (5C 2>(x0 ). Combining each of these inequalities 

with Lemmas 4, 11 and 13 respectively, we obtain 

x0 E X(A' , b') , 

Vx EE"\ X (x rt X(A',b') V:1:° >- x), 
C+C' 

VxEX\{x0 } (x 0 >- x). 
C+C" 

Thus we have 

V(A',b',C') E l1 (r(A 1,b1,C1) < 1/; • P(A',b',C') = {x0 }) 

which implies pk(A, b, C) 2: 1/;. O 

Note that Leontiev and Mamutov [10] derivecl a formula for the stability radiu:; 

of problem (1)-(2) with single objective function (A: = 1) in the c,~,E' uf a 1111iqm' 

optima! solution. But that formula differs frorn our fonuub ubtaiueJ iu Tlwun:rn -I. 

Namely, the number clefinecl as below is usecl in [10) insteacl of ,·<2l(:r0 ): 

{
min{-a(x) : x E D}, if D =/ 0, 

t(x0 ) := 

+oo, if D = 0, 

where D = {x EE": /3(2>(:r0 ,:i;) +a(x) < O} and numbers a(x0 ) and (5(2l(x0 ) me 

the same as in (25). The next example illustrates consequences of replacing „c2J (:r0 ) 

by t(x0 ). 

Example 1 Consider the following single objective problem of 0-1 program:m:inq 

x1 + x2 - 0.05:r:1 --> max. 

ft has a ·unique optima/ solution 1·0 = (1, 1, O). Applying the .formu.lo. frmn //Ol. 11·1 · 

obtain 

a(x0) = 0.3, (5( 21 (:i:0 ) = 0.525, t( :i:0 ) = oo 

which means that the prnblem stability radius sh01dd be equal to O. 3. But the pe1·

turbed problem 

·"I + 1:2 + 0.05:i:3 --> max , 
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which is located on the distance 0.1 from the initial problem, has a uniq·ue optima/ 

solution (1,1,1). Itfollows that the stability radius can not exceed 0.1. Frnm Thf'on'm 

4 taking into account 1'(2) (:i:0 ) = O 05 we obtain that the stahility rndiu.s of thr 11robl1'111 

is eqnal to O. 05. 

The following evident theorem gives a trivia! upper bouucl of si abilitY rndii . 

Theorem 5 The num.ber li C li is an upper bound fo1· 

- thr stability rn.dius of Pareto optimum. .1' in the rnsP JJ f- {r}: 

- the stability radius of problem (1)- (2) in the case P f- X; 

- the quasi-stability radius of problem (1) - (2) in the case I X I> 1. 

We conclude this section with a brief scheme of the framework for deducing 

fonnulae and bounds of stability raclii built in Sections 1- 2. 

3 Problems with nonlinear objectives 

In this section we demonstrate how the apparatus dPvelopPd i11 Ser-tions l '.? 1·n11 IH' 

applied to quantitative stability analysis of U-1 prugrnawaug pruble1m; wi1!1 uuu/111-

ear objective functions. The system of supplementary statements is const.ructed in 

sucha way that only lemmas in Sub-section 1.2 depend on objective function sperifi

cation. In all the subsequent assertions relying on lenunas from Sub-section 1.2 (see 

Picture 1), objective function specification is taken into account nut directly but via. 

"interface" representecl by these lemmas. To adapt our results to a problem with 

nonlinear objective functions it is enough to modify the contents of Sub-section 1.2. 

Namely, we need to change the clefinition of Pareto clomination relation accorcling 

to the objective function specification, to re-define ,e(ll(x, x') and ,e(2l(:i:, :r'), and to 

prove statements which are analogous to Lemmas 7- 9. 

Below we implement described modification for the case of absolute value of linear 

objective functions and for quadratic objective functions. 
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1. Supplementary statements 

Lt>Ullll<.l:j 1 -3 

1.1. Feasible and unfeasible 
solutions under perturbations of 

parameters of the problem 
constraints 

1.2. Domination relation uucler 

perturbations of objective 
function pararneters 

Lemmas 4- 6 

1.3. Pareto optima! and 

ideał solu tions under 
perturbations of parameters 
of constraints and objective 

functions 

Lemma.s 10- 13 

2. Stability of the problem with 

linear objective functions 

Lenunas 7-9 

Picture 1. Scheme of deducing furmulae for stability raclii 

17 



3.1 Problem with absolute value objective functions 

Consider k-objective problem 

(26) 

Ar::;b, xEE", (27) 

where C; is the i-th row of matrix CE R"'n; AE R"ix"; b ER"'; k, m 2'. 1, n 2'. 2. 

The biuary relation of Pareto domiuatiuu is dehued by 

x >- x' ę==:, f(x, C) 2'. f(x', C) & f(x, C) =J f(:r', C). 
C 

Further we define numbers j3(Il(x, x') and j3<2l(x, x') which will be used instead 

of fJ(Il(x, :r') and !3< 2l(.1:, :r') in analogues of Lemmas 7- 9. 

Let 

l((x,x') = {i E Nk: I C;x 12:I Cd I}. 

It is evident that l((x, x') =J 0 if x' ~ x. 
C' 

For any x, x' E E" such that 

set 

where 

:r =J x', I<(:r, :i:') =J 0, 

_( ) {Ę(ll(x, 1:'), 
/3 1 (x, x') = 

+oo, 

~c·) , {Ę(2l(x, x'), 
/J 2 (x, X) = 

Ę(Il(x, :r'), 

if 1:1 ie D(n), 

if x' = O(n), 

if x' =J O(n), 

if x' = D(n), 

Ę( 1 )(x, x') = max { Ęi(:r, x') : i E J((x, x')}, 

Ę(2l(x, x') = min { Ę;(x, x') : i E l((:r, x')}, 

Ę;(1:,x') = mi11{11;(x,x',h): h E {-1; l}}, 

( , ) I C;(.1: + h:r') I 
V; X, X 'h = li h li . . 1: + :r' • 

If K(x, x') = 0 then by clefinition we assume 

j3(Il(:r, x') = 13<2l(.1:,:r') = O. 

18 
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Inequalities iJ(•l(x, x') 2 O, s E N2 are evident. It is easy to check that implirn

tions (12) and (13) remain true when replacing /3 by i]. 

The next two lemmas applied to problem (26)-(27) are substitutes for Lemmas 

7 and 8 respectively. 

Lemma 14 ff x =f x', x' j:" x, then 
C 

inf{IIC'II: C'ERkx",1:' >-- :r}=iJ(!l(1:,x'). 
C+C' 

Lemma 15 ff x >-- x', then 
C 

inf{II C' li: C' E Rkx", x j:" 1:'} = iJ(2l(x,.r'). 
C+C' 

The proofs of Lemmas 14 and 15 are given in Appendix 2. 

The next lemma replaces Lemma 9 in the case of objective functions (26). It 

follows from the evident fact tha.t if C' = -C then x j:" ,r' for a.ny .r, .r' E E". 
C+C' 

Lemma 16 For any x' E E" we have 

inf {li C' /1: C' E Rkxn, Vx EE"\ {x'} (1: j:" x')} :SIi Cli. 
C+C1 

Summing up, Theorems 1-4 and Corolla.ry 1 are va.lici for problem (26)- (27), if 

we replace f3(!l(x, x') and f3(2l(x, ,r') with i](ll(x, x') and iJ(2l(x, 1:') defined by (28) 

and (29) respectively, and a.lso in Theorem 2 repla.ce the upper bound of st.a.bility 

radius with 

miQmax{-a(x'),11 C /I}. 
x'EP 

The latter replacement is ca.usecl by clifference between Lemma Hi ami Leu11na !) 

statements. 

3.2 Problem with quadratic objective functions 

Consider k-objective problem 

g(x, D) = ( (D1x, x), (D2x, x), ... , (Dk.1:, x)) __, max, (30) 

Ar :S b, .r E E'" , (l I I 

where Di= [diiilnxn E R"x"; D = [dijlhxnxn; (-, ·) is the scalar product of vectors. 
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The set of parameters of objective function is giveu as tlm·e-indc·x 111 ,11rix /) 

Perturbations of these parameters are defined by perturbiug uiatrix D' E R 1 ·" · ". 

whose norm is defined as the maximum of absolute values of its elements (by aualogv 

with norms of perturbing arrays A' ami b'). 

To obtain definitions and statements for problem (30)- (31), analogous to those 

formulated in Sections 0.1- 2 for linear problem (1 )- (2), it is enough to rep lace C bv 

D, C' by D' and to redefine 

n= Rmxn X Rm X Rkxnxn. 

By this technical manipulation we get definitions of perturbed problem and distance 

between initial and perturbed problems; definitions of stability radii analogous to 

Definitions 1-3; formulations and proofs of all assertions in Sections 1.1, 1.3 and 2 in 

terms of quadratic problem (which are independent on objective function specifirn

tion). As it was explainecl in the beginning of Section 3, we have to moclif_y coutt•11ts 

of Section 1.2 which clepends on function specification, in particular to fonnulate 

and prove lemmas for the quaclratic problem, which are analogous to Lemmas 7- 9. 

This building błock insertecl into our framework makes the main results presented 

in Section 2 valid for problem (30)- (31). 

The relation of Pareto domination is now defined as followR: 

x >- x' {=> g(x, D) 2'. g(x', D) & g(x, D) c/ g(x', D). 
D 

The following values play role of analogues for (J(ll(x, x') and (3<2l(x, x') respec

tively: 

(3'(1)(· -')- { (D;(1:-x'),x-x1
) • } x, x - max 2 2 . i E Nk , 

(li x li.) + (li :r' li.) - 2(x , x') 2 

(3'(2)( . -') _ . { (D;(x - x'), x - x') 
X,X - l1llll 2 ? 

(li x li.) + (li x' 11.J- - 2(x, :i;') 2 

The next three lemmas are analogs for Lemmas 7- 9 respectively. 

Lemma 17 ff :i; c/ x' and ,i;';;::- x, then 
D 

inf{II D' li: D' E Rk xnxn, x' >- X}= ,B(ł)(x,x'). 
D+D' 
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Lemma 18 If 1: >-- x', then 
D 

inf{JJ D' JJ: D' E Rkxn, x 5=" x'} = ,13(2)(x,x'). 
D+D' 

Lemma 19 Let x' E E" and 

,6(x') := max {,13(2l(x, x') : x EE"\ {x'}} 2: O. 

Then 

inf { li D' li D' E R "'", 'v'.r E E" \ {.1'} (.r :'=" .r')} - i(,') 
D+D' 

To prove Lemmas 17- 19, we use following simple manipulat.ion. To each vPc

tor x E E" we put in correspondence vector i: = (:f:11 , :f:12 , ... , i:111,) E E» xn with 

elements 

-. _ { 1, if X;Xj = l, 
Xij -

O, if X;Xj = O; 

to each matrix Di= [d;1i]n xn E R" x", i E Nk, we put in corresponclence row vector 

D; = (d;11, di12,.,,, dim,) ER"". 

Then we have 

(D;x, x) = D;(i;, 

(li x 11,)2 + (li 1:' ll,J2 - 2(x, x')2 =li i: - .i' Jl, . 

Therefore Lemmas 17- 19 directly follow from Lemmas 7 -9 cmTc-•sponcli11µ;l1 ·. 

Thus replacing f](ll(x, x') and ;3<2)(x, x') with ,6(l)(x, x') and ;Jt2!(:1;, :r') cletinecl 

by (32) and (33) respectively, we transform Theorems 1-4 and Corollary 1 into 

analogous statements which are valid for problem (30)-(31). 

4 Algorithmic aspects of quantitative stability analysis. 

Discussion 

Formulae and estimations of stability radii obtained in Section 2 imply full enumer

ation of subsets of E" whose cardinality may depend exponentially on n. So far, 

no pol31nomial algorithms of calculating or estimating stability radii for multiple 

objective problems have been built. The question whether such a!gorithms exist. for 
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any class of multiple objective problems is stili open. In this section we describe 

an approach which, in our opinion, can be used for developing polvnominl nl_go

rithms of calculating and estimating stability raclii of problems (1 )- (2), (26 )-· ( 27) 

and (30)- (31). We conclude this section outlining a roadmap for future research in 

this direction. 

The approach of calculating stability radius of a €-optima] solution of a linear 

scalar 0-1 programming problem in polynomial time is presented by Chakravarti 

and Wagelmans [l]. In the case E = O, the problem from [l] takes the form 

ex--+ min, 
xEX 

where, X<:;; E", n EN, n 2: 2; c = (c1,c2, .. ,c11 ) ER". 

It is mare convinient for us to consider (34) as maximizat.iuu pruble1u wltid1 

brings it into accordance with terminology of the present work: 

ex--> max, 
xEX 

(35) 

where c = -c. The difference between problems (35) and (1)- (2) consists in the 

fact that (35) is scalar problem and its feasible solution set is fixec\. 

Chakravarti and Wagelmans studied the stability raclius of optima] sulutiuu tu 

perturbations of a given sub-set of objective function coefficients. We restrict our 

ronsiclPrnt.ion t.o tllf' rasP whPrP all t.llf' ropflkiPnt.s of ohjrrtivP f1111din11 Mr prr

turbecl. Then the clefinition of stability raclius of optima! solutiuu uf (35) JX<'S<'lttl·d 

in [l] is reducecl to the following: 

p(x, c) = inf {/I c' 11: :lx' E X((c + c'):r' > (c + c') .1 ), c' E R"}. 

where x is an optima! solution of (35). Observe that the aboVP is a sin1plihPd 

Definition 1 when there is only one objective function and only its coefficirnt.s iu<' 

perturbecl. 

The approach to calculating stability radius presented in [l] relies on the followiug 

theorem. 

Let x be an optima! solution of (35). For any i EN" put 

di= {
1• 
-1, 

Xi= 0, 
(36) 

X;= l, 
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Theorem 6 ([1]) The stability radius of optima/ :r is the m.a.1:inw.rn nur11/w1 l'. jin · 

which the f ollowing inequality holds: 

min { L (-c; -'I/Jd;)x:} 2". L (-c, + 1/J) :r; . 
~EX\~} . . 

iENn iENn 

(37) 

It was shown in [1] that the function in left-hancl sicie of (37) is a concave piec<'wis<' 

linem· function with the number of pieces polinomial to n. This yeilcls polvnomial 

algoritlun of its construction on the segment [O; p'], where p' = max{ I C; I i E N,,} 

is the upper bouncl of stability raclius. When the function is constructed it is easy 

to find the maxima! 'ljJ for which (37) holds. 

Let us show that Theorem 6 can be obtainecl as a corollary of our results. For 

this purpose we moclify formula of stability radius of a Pareto optimum 1 so that it 

will be appliecl to problem (34), i. e. to the case where k = l and the parnn1<'ł<•rs 

of constraiuts are not perturbed. vVhen X is fixcd. upti111al s"li1ti"11 .r !"'"''' 11 ., 

optimality only if another feasible solution starts dominating it as a result of per

turbation of objective function coefficient.s. Accorrlin.e; t.o Lemm11 12 tllf' st11hilit1· 

radius of optima! solution x is equal to c5(ll(.1:) in this case. Taking into account 

k = 1 we write down this in the following theorem. 

Theorem 7 Let x be an optima/ solution of problem (34), X f { :r}. Then stability 

radius of x is expressed by 

p(x, c) = min ieNk . { 
L c;(x; - x:)} 

x'eX\{x) li X - x' li, 

We will need the following evident lemma. 

Lemma 20 Let x, x' EE", 1.: f x'. Then 

11-T - x' li= L (x; + d;1.:;), 
iEN,, 

Where d; is defined by (36). 

lt follows from Theorem 7 that stab·dtty rwliw; uf :r ·t, the ·1na:n11iul ·I/) ,u-l't,jymy 

inequality 

1/; < min i ENk . { 
L c;(x;-x';)} 

- x'EX\{x} li X - X 1 li, 
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Let us rewrite this inequality in the following form: 

min {""°"'ci(xi-x;)-1/Jllx -1:' JJ,} 2:0 
x'EX\{x) _L..., 

tENk 

Using Lemma 20 we obtaiu 

which is equivalent to (37). 

Thus Theorem 7 yeilds Theorem 6. 

Vie clemonstratecl that formula of sabi li ty raclius can be easi l_y transformecl int.o 

inequality which cletermines stability raclius as proposecl by Chakravarti and Wagel

mans. By analogous way such inequalities can be derivecl for multiple objective 0-1 

programming problems. 

Let us clescribe a possible scheme of research aimecl at building algorithm of 

calculating a stability raclius for multiple objective problem (1)-(2), (26)-(27) or 

(30)- (31) . 

1) To clerive inequalit_y analogous to (37) such that. the st.abilit.v radi11s is dditlt'd 

as the maxima! value of a parameter for which the inequality holds . This , ,111 IH' 

clu1te l.,y trn11bfun11iug a formul" ul'sl-aL,ilily r"diu, itt 1l1t· 11«_1 ,1'11n>11-•l:.,1, ,! .,!,,.-, , 

2) To study properties of the function in left-hancl sicie of the inequality for 

answering questions "is this function concave?"; "is the number of function segments 

polinomial with respect to n?". 

3) To clevelop an algorithm of constructing the function on segment [O. p') wher<' 

p' is a trivia! upper bo und of stability raclius (see for example Theo rem o). Hav

ing this function clescribecl explicitely, one can easily fincl the maximum value of 

parameter mentioned above which provicles the value of stability raclius. 
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Appendix 1. Proofs of some supplementary statements 

Proof of Lemma 1. First, let us prove inequality 

w 2'. cp(ll(y, y'), (38) 

where w is the left-haucl sicie of (b ). v\iithout Ius,; of ge11erality, as,;ume <?' 1' lY, .Y) -> u 

(inequality (38) is evident in the case <p(ll(y, y') = O). 

Consicler a matrix G' E Rpxą such that <T :=li G' li< cp(ll(11. ,/). By definit.ion of 

<p(1l(y, y'), we have <T < Gi(Y - y')/ li y - y' Jl. for some i E NP. Then we derive 

(G;+G;)(y-y') = G;(y-y')+G;(y-y') 2: G;(y-y')-<r li y-y' Jl.> G;(y-y')-Gi(y-y') = O. 

(:]•)) 

Thus for any G' E Rpxą, 11 G' 11< ,p(ll(y,y'), we lmve 

3i E NP ((G; + G;)(y - y') >O). 

This implies inequality (38). 

To prove inequality w::; <p( 1l(y, y'), it suffices to prove that w::; <T for any number 

<T > ,p(ll(y, y'). This can be clone by building a matrix G' = [g;1 ] E Rpxq such t.hat 

li G' li= <T and Vt EN,, (\G', + u;)(y - y'J <UJ. 
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Inequality a> <p(ll(y, y') implies 

w· i\/, (a >Gi(y-y')) 
vi E 1 P li li . y-y' • 

It follows that when for any i E NP elements of G' are defined by 

.' {a, ify;=l, 
9ij = 

-a, if u;= O, 

then for any i E NP we have 

( -10) 

(G; + G:)(y - y') = G;(y - y') + c;(y - y') = G;(y - y') - a li y - y' li.< G;(Y -

y') - G;(y - y') = O. 

Thus required matrix G' is obtained. • 
Proof of Lemma 3. Denote the left-hand side of (8) by w. The definition of <p 

implies that for any matrix G' E Rpxą such that li C' 11 :S <p there exists y E Y such 

that li G' 11:S <p(2l(y, y'). Using Lemma 2 we have (C + G')(y - y') ~ o,,,1. Riecallinp; 

the definition of w we obtain <p ~ w. 

Further Jet us prove that <p :S w. For any a > <pandany y E Y there exists 'i E NP 

such that a > G;(y - y')/ li y - y' li •. Then consider perturbing matrix C' E R"x,, 

with the elements defined by (40), repeat the reasoning below (40) and conclude 

Va> <p 3G' E Rpxą (li C' li= a & 'efy E Y:li E Np ((G; + c;)(y - y') < O)). 

This yields <p :S w. • 
Proof of Lemma 10. If X = E", then infimum in the lemma statement is taken 

over the empty set. The assertion of Lemma 10 follows from (5) in this case. 

Further we assume X =J E". Observe that a(x') :S U for a11y .1:' E E " \ .X whid1 

implies 1'(1l(1:) ~ O. 

Denote by w the left-hand side of equality in the lemma st.atement.. 

First, Jet us prove t.hat 

(-Jl I 

Suppose that 1'(1l(x) > O (inequality (41) is trivia! if 1 <1l (_,:) = U). Cu11sirler ;i11_1 

triple (A', b', C') E fl such that 

1 (A', b', C') < 1'(1l( ,c). (-12) 
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It follows from (15) that for any x' E E"\X at least one of the nex t t.wo conditio11s 

holds: 

1·(A1 , b') ::; 1·(A1 , b', C') < -o{T'), 

li C' li::; r(A', b', C') < 13C 1)(x, x'). 

( 41) 

( 44) 

If ( 43) takes place, then x' rf. X(A', b') by Lemma 5. If ( 44) takes place, then (12) 

yields :i;'>=" x, which allows us to a.pply Lemma 7 t.o get .r' >=" .,. 
C ('H'' 

Thus for any (A', b', C') E !1 satisfying (42) we have 

,lh:' EE"\ X (x' E X(A', b') &:i:' >- .t:\ . 
(' Lr'' ) 

Hence ( 41) is true. 

Further, we prove that w::; 1'(1J(x). Let c: > l'(l)(x). Then there exists x' EE" \X 
such that 

c: > -ct(.r'), 

c: > 13( 1)(:r, x'). (46) 

It follows from (45) and Lemma 5 that there exists a pair (A0 , b0 J Eli' such that 

r(A0, b0 ) < c:, 

Inequality (46) and Lemma 7 imply that there exist~ a 111atrix ( ·11 t: R '· ·" '"t 1,f1111," 

conditions 

li co li<€, 

X 1 >- X. 
c+c0 

Thus we obtain that for any c: > 1'(1)(1:) there exists (A0 , b0 , C 0 ) E !1 such tlrnt 

r(A0 , &0 , C 0 ) < c: and 

3x'EE"\X (x'EX(A 0 ,b0 )&x' >- x). 
C+C" 

Hence w::; 1'(!J(x). O 

Proof of Lemma 11. The assertion of the lemma is trivia! in the case X= E". 

Therefore we assume X cp E". It is easy to check that ,·<2)(:i;) 2". O in this case. 

Denote by w the left-hand sicle of equality in the lemma statempnt 
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First, Jet us prove the inequality w 2': 1'(2)(x) in the case 1,(2)(,i:) > O (the inequality 

is trivia! when „t2)(x) = O). Let (A', b', C') En be a triple such that 

r(A', b', C') < 1,<2\i:). (47) 

According to (15), for any x' E E" \ X at least one of the following inequalities 

holds: 

r(A', b') < -a(x'), 

li C' li< f3( 2)(x,x'). 

If (48) takes place, then x' ff. X(A', b') follows from Lemma 5. 

(48) 

(49) 

If (49) is true, then f3(2)(x,x') > O. From (13) we obtain :r >-- :r'. This allows 11s 
(' 

to apply Lemma 8 to get :r >-- x'. 
1'+('1 

Thus for any (A', b', C') E n satisfying ( 4 7) we have 

,23:r' EE"\ X (x' E X(A', b') & :r _">=' 1:') . 
C+C." 

Hence w 2': 1'(2)(x). 

F\1rther, we prove that w~ 1'(2)(x). Let E > ')'(2)(x). Then there exists x' E E"\X 

such that 

E > -a(x'), 

E > 13(2)(x,:r'). 

(50) 

(51) 

It follows from (50) and Lemma 5 that there exists a pair (A0 , b0 ) E n• such that 

r(A0 , b0 ) < E, 

x' E X(A 0 , b0 ). 

Inequality (51) and Lemma 8 imply that there exists ,i rnat1ix C 0 E R 1· '• " s;1ti,

fying conditions 

11c0 11< 1::, 
- I 

X >-- X. 
c+c0 

Thus we obtain that for any E > 1'(2)(x) there exists (A0 ,b0 ,C0 ) En, 

r(A0 , b0 , C0 ) < E, such that 

:h'EE"\X (x'EX(A 0 ,b0 )&x ">=' x'). 
c+c0 

Hence w ~ 1,(2)(1:). O 
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Appendix 2. Proofs of two lemmas for the problem with 

absolute value of linear objective functions 

Hereinafter we use the following eviclent equivalence valicl for any z, z' E R : 

izl>l z'I ,;c=> :lhE{-l,l}\ih1 E{-l,l} (hz>h'z'), ([,2) 

For any z E R, set 

{
l, 

sgz = 
-1, 

if z 2 o, 

if z< O. 

Proof of Lemma 14. Let x' =J O(n) (the lemma is trivia! in the contrary case 

in view of (5)). Then ;j(l)(x,x') = Ę< 1 )(1:,:r'). Denote by w the left-hancl sicie of the 

equality in lemma statement. 

First, we prove inequality w 2 Ę(!)(x , x') in the case Ę(l)(x, x') > O (this inequality 

is trivia! if Ę(li(x,.1:1 ) = O). Let C' E Rk xn, li C' li < Ę(l)(x,x'). By the clefinition of 

Ę(l\r,:r'), there exists i E Nk such that 

\ih E {-1, 1} (li C' 11 < v;(:r, 1:', h)). (5:J) 

Therefore Ę;(x, ,r') > O which implies 

I C,x l>I C;X' 1- (54) 

Denote er = sg C;x. Taking into account (54) , it is easy to check that for any 

h E {-1, l} the following equality holcls: 

C;(cr.t + h:11
) =I C;(.t + crl!.t') I. 

Applying (53) , for any h E {-1, l} we clecluce 

(C; + C:)(crx + hx') =I C;(x + crhx') I +crC:(:r + crhx') 21 Ci(:r + crh:r') I -
li C' li · li x + crhx' 11.>I C;(x + crh:r') I - I C;(:r + cr/11') I= O. 

(55) 

Thus for any h E {- 1, l} we have cr(C; + C:):i: > h(C; + C;):r'. Taking into c1 n o111J1· 

(52) ,n, uhtai11 

I (C; + C;J:r l>I (C; + c;)l:' I (:ib i 

which implies x' >=" x. 
C+C' 
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Sununarizing the above we conclude that :r' ;;::- x for any C'' E R1,, ,, sll('li tliilt 
C+C' 

li C' li< (( 1l(x, x'). Hence w 2: (Ol(x, x'). 

It remains to prove that w::; ĘOl(1:, x'). 

Denote 

a= sg C;x, a' = sg C;x'. 

Set 

N(:i:,:r') =I {j EN,,: x1 = l&;:rj = O} f. 

Observe that since :r' cl O(n), the following inequality holds: 

N(x, 1:') <li x + :r' li •. (:,7) 

Take an arbitrary number E > (Ol(x, x'). From the definition of Ę( 1 l(1;, x') we 

have 

Vi E X(:i:, :i:') (E > (;(:r, :t:')). 

For any i E Nk we will consider four possible cases: 

i E K(x, x'), v.;(:r, x', -1) :':: v.i(x, x', 1), I C;x I + I C;x' I> O; 

i E K(x, x'), v.Jx, x', -1) ::; v;(x, x', 1), I C;x I + I C;x' I= O; 

i E K(x,x'), v.;(x,x', -1) > v;(x,x', l); 

i 1/. K(x, x') 

and in each of thesP rasPs wr will lrnild row c; - (,;,., ;, 
matrix C' such that max { I c'.1 I j„ E N,,} < E ,mel 

I (C; + c;Jx' l>I (C; + C;J1: I. 

('iKJ 

Case 1: i E l\·(x ,:r'), 1J;(x,:i:',-l)::; 1J;(1·,:i:1,l), I C';J· I+ I C',.r' I> IL Tilki11g inr" 

account (58) we obtain that there exists number osuch that 

11;(:r, .1:', -1) < O < E. (GO) 

In addition, we impose the following condition on o: 

oN(x,x') <I C;x I+ I C;X' 1. (61) 

Note that in the case N(1:, x') = O inequality (61) follows; if N(x, :r') > O then (61) 

does not contradict to (60) since taking into account (57) we have 

( , ) ( , ) I C;x I + I C.;1.:' I 
1J1:,1:,-l :'::111·, :r.- l < , . 

;\ (.r .. r') 
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Put 

{

-uó, jf Xj = 1 & Xj = 0, 

c;j = u'ó, if :i;j = O& :r1 = 1, 

O in the rest of cases. 

Using (60) we derive 

u'(C; + C:)x' - u(C; + C:)x =/ Cix / - / C;X' / +óN(x',x) + óN(x,:r') 2 - I 

C;(x - :i;')/ +ó II x - x' 11,> - / C;(x - x') / +v;(x,x', -1) /I :r - x' li,= O. 

Using (61) and taking into account N(x , .x') 2 O we derive 

u'(Ci + C:)x' + u(C; + C:)x =/ C;x / + / C;.1:' I +óN(i:', x) - óN(.1. :r') >/ C'; .r / + I 
C;x' / -ó li x + :i;' li,>/ C;.x / + / C;x' / -v;(x, :i;', 1) /I x + :i;' 11,2 O. Takiuµ; i11to 

account (52) we get (59). 

Case 2: i E K(x,x'), T/;(x,x',-1)::; v;(x,:r',l), I C;x I+ I C;x' /= O. Put 

O < ó < E and define the elements of c; by the following way. 

If x 2 x' then take u, v E N„ such that Xu = x;, = 1, :ru = 1, < = O and put 

c;u = ó, C:v = - ó /2, c;J = O for any j E N,, \ { 11 , v}. Otherwise take u E N„ such 

that 1:,. = O, .r;, = 1 and put c;,, = ó, c;J = O for anv j E N,, \ {u}. 

Using evident iuequalities / (C; + C:).x l=I c;x I and I (C; + C:)x' I=/ c;:c' I it is 

easy to verify that (59) holds. 

Case 3: i E K(x,1:1 ), v;(x,x',-1) > v;(:i:,.x',l). Then by (58) there exists a 

number ó satisfying inequalities 

v(x,x', 1) < ó < € , 

ó < v(x , x', -1). 

Observe that since i E K(x, x') we have uC;x 2 uC;x' which implies 

uCi(x - x') =/ C;(:i: - :i:') / . 

Put c;j = -uó for any j E N,,. Using (62) we derive 

(b:2) 

(63) 

(64) 

-u(C; + c;):i:' - u(C; + C:)x = -uC;(x + x') + b(II x 11, + li x' li,) > - I C;(x + :i:') / 

+v(x,:i:', 1)(11 x li,+ li x' li,) 2 O. 

Using (63) and (64) we clerive 

-u(C; + C:)x' + u(C; + c;)x = uC;(x - x') - b(II x li, - li x' 11,) >I C;(x - x') I 

32 



-v(x, x', -1)(11 x - x' ff.) = O. 

Applying (52) we obtain (59). 

Case 4: i EN,\ I<(x, .1:1). Then assuming c; = Dcn) we have (59). 

Thus for any c: > 1;<JJ(x, x') we have a matrix C' E R"rn such that li C' li< c: and 

x' >-- x. Hence w ś 1;(Il(x, x'). • 
C+C' 
Proof of Lemma 15. Denote by w the left-hand sicie of the equality in lemma 

statement. First, consider the case x' cf O(n)· Then [3<2l(x, 1:') = 1;C2l(.1:, x'). 

To prove inequality w ?: 1;<2l(x, x') in the case 1;<2l(x, x') > O (the inPq11RlitY is 

trivia! in the contrary case) we consicler an arbitrnrv mMrix ('' E R.""" swl1 tli;il 

/I C' fi< 1;<2l(x, :i:'). Taking into account the clefinition of 1;(:!l(.r, .i:') aucl the rt•latiu11 

x >-- x' it is easy to see that inequalities (54) and (53) hold for a.ny i E N,. Using 
C 

the argumentation below inequalities (54) and (53) in proof of Lemma 14, we get 

inequality (56). Since it holds for any i EN,, we obtain x >-- x'. Thus we conclucle 
C+C' 

w?: {3<2l(x,x'). 

F\irther !et ns proVP t.hat. w ś (<2l(T. :r'). LPt c > (<2l(y .T1) . Bv drfinitinn nf 

1;C2l(,i:, x'), there exists i E I<(x, :i:') such that E > 1;,(1:, :i:'). Then one of cases 1, 

2 or 3 consiclered in the proof of Lemma 14 is possible. Builcl i-th row of matrix 

C' E Rkxn using the same argumentation as when consiclering these three cases in 

the proof of Lemma 14 and set the rest of rows to be zero. Then we have li C' li< c: 

and I (C; + C:)x' [>I (C; + Ci):i: I. Hence :i: :S:- :i:'. Tim~ we ltave pruved i1wqu,d11.1· 
C+C' 

w ś [3< 2l(x,x1 ) 

Now consicler t!JP case .T1 = O(,,)· Then 1ł( 2 '( :1 .. r') = ( ł 1 ł( . r .,·'\ Tt is ,•1·icl,·11I I 11,11 

1: :S:- x' if and only if ( C + C'):i: = o,,J. 
C+C' 

If Ę(ll(x, x') > O, then for any matrix C' E Rkxn such that li C' li< 1;< 11 (.1' . . r') tlierP 

exists i E K(x, x') satisfying (54) and (53). From here using the same argument.ation 

as in the proof of Lemma 14 we clerive I (C; + C;)x [> O which means that. :r >-- .i:' . 
( ' + ('' 

Hence w?: /3(Il(.1:, x'). 

On the ot hrr hand. if rach Plrrn011t r-'._, of prrtmhinµ; 1nntrix ('' - ( r-'.,) 1 .,, i, ,,, p 111 I 

to -C;x/ li x ff„ then li C' li= 1;<1l(x, J:1) and (C+C'):r = O(ą Hence w ś Ę( 1 l(.r , .r') 

• 
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