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Abstract 

We consider so-called generic combinatorial optimization problem, 
where the set of feasible solutions is some family of nonempty subsets 
of a finite ground set with specified positive initial weights of elements, 
and the objective function represents the total weight of elements of 
the feasible solution. We assume that the set of feasible solutions is 
fixed, but the weights of elements may be perturbed or are given with 
errors. All possible realizations of weights form the set of scenarios. 
A feasible solution, which for a given set of scenarios guarantees the 
minimum value of the worst-case relative regret among all the feasible 
solutions, is called a robust solution. 

In this paper we deal with so-called robustness analysis for the 
generic combinatorial optimization problem. Its main goal consists in 
finding subsets of scenarios for which an initially optima! solution of 
the problem remains robust. Thus, the robustness analysis may be 
considered as a natura! extension of the standard sensitivity analysis 
in combinatorial optimization. Main results of the paper concern the 
robustness region, robustness radius and robustness tolerances, which 
are introduced as direct analogues of the stability region, stability 
radius and stability tolerances considered in the sensitivity analysis. 

Keywords: combinatorial optimization, sensitivity analysis, robustness 
analysis, robustness region, robustness radius, robustness tolerances. 



1 Introduction 

We consider a combinatorial optimization problem in the following generic 
form: 

v(F,c) = min{w(P,c): PE F}, (1) 

where the set of feasible solutions F is a family of nonempty subsets of a 
given ground set E = {e1, ... , en} and c = (c(e1), ... , c(en))T E !Rn denotes 
the vector of weights of the elements of E. For c E IR" and P E F , the 
objective function in (1) represents the total weight of this solution, i.e., 

w(P, c) = L c(e) 
eEF 

Numerous discrete optimization problems, like e.g. the traveling salesman 
problem, the minimum spanning tree problem, the shortest path problem, 
the linear 0-1 programming problem, can be stated in this generał form. 

We will assume that the set of feasible solutions Fin problem (1) is fixed 
but the vector of weights can change or it is given with errors. Let C ~ !Rn be 
the set of all possible realizations of the vector c, called scenarios. Consider 
an initial scenario c0 EC and Jet !1(c0 ) = arg min{ w(P, c0 ) : P EF} denote 
the set of optima! solutions in (1) for c = c0 • 

Given an optima! solution P 0 E !1(c0 ) an important question concerns 
the stability of this solution on the set of possible scenarios C. This ques
tion belongs to so-called sensitivity ( stability) analysis, which is regarded an 
essential step of any optimization procedure (see e.g. Greenberg [5], Libura 
[9], Sotskov et al. [18]). The nmin goal of the sensitivity analysis consists in 
finding a subset of scenarios, for which the solution F 0 remains optimal. 

In this paper we consider a natura] extension of the standard sensitivity 
analysis, which we will call the robustness analysis of initially optima] solu
tions. Namely, as main goal of this analysis, we will consider a problem of 
determining a subset of scenarios for which the solution P 0 remains robust. 

There are various concepts of the robustness of solutions in optimization 
and there are many possible robustness measures as well (see e.g. Averbakh 
[l], Ben-Tal, Niemirowski [2], Bertsimas, Sim [3], Kouvelis, Yu [7], Mulvey 
et al. [15), Roy [16]). In this paper we will use as a robustness measure the 
maximum relative error ( worst case relative regret) of the solution considered, 
over the set of all scenarios. 

In standard sensitivity analysis one seeks for the maxima! under inclusion 
subset S(P0 ) ~ !Rn of the weights vectors in problem (1) for which the 
solution P 0 remains optima!. Such a set is called the optimality ( or - stability) 
region of the solution P 0 . It is obvious that an optima! solution P 0 E !1(c0 ) 
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is robust for arbitrary scenario c E S(F0 ). But this solution may remain 
robust for significantly larger set of scenarios. This motivates studying an 
analogue of the stability region which we will call a robustness region of the 
feasible solution F and denote R(F). Formally, R(F) denotes the maxima! 
subset of scenarios in IR" for which F is a robust solution. 

Moreover, in case of multiple optima! solutions it may happen, that the 
solutions belonging to the set l1(c0 ) are quite different from the robustness 
point of view. The following simple example illustrates this situation. 

Consider an undirected graph G = (V, E), where V = {l, 2, 3, 4, 5} and 
E = {e1 , . .. , e7 } = {{1,2},{1,3},{1,4},{2,4},{3,4},{3,5},{4,5}}. Let F 
be a family of subsets of E corresponding to all spanning trees in G, and 
Jet c0 = (2, 2, 2, 2, 1, 2, 2)r be a vector of the initial weights of edges in G. 
Then the combinatorial optimization problem (1) for c = c0 is the minimum 
spanning tree problem in the weighted graph G. 

Figure 1: Graph G with indicated weights of edges. 

The graph G with indicated weights of its edges is shown in Fig. 1. In 
Fig. 2 all of the spanning trees in G with corresponding weights for c = c0 are 
presented. It is easy to check that the set of optima! solutions contains ten 
spanningtrees: l1(c0 ) = {T3,T4 ,Ts,Tg,T11 ,T12, T16 ,T17 ,T19,T20}. Allofthem 
are, obviously, robust for a set of scenarios C = { c0 }. But only two optima] 
solutions, namely T11 and T12 , appear robust for an neighborhood of the 
initial vector c0 . For all other optima! solutions we can construct arbitrarily 
small nonzero perturbations of weights which destroy their robustness. Such 
a solutions may be regarded unacceptable from the robustness point of view. 
It is therefore importa.nt to ask for a method of selecting the optima! solutions 
which preserve its robustness in a neighborhood of an initial vector of weights. 
In the following will call such solutions robust optimal solutions. N ext section 
describes a characterization of optima! robust solutions obtained in Liburn 
[12]. 
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~~~ 
w(c 0 ,T1 ) = 8 w(c 0 ,T2 ) = 8 w(c 0 ,T3 ) = 7 

w(c 0 ,T4 ) = 7 w(c 0 ,T5 ) = 8 w(c 0 ,T6 ) = 8 

w(c 0 ,T7 ) = 8 w(c 0 ,T8 ) = 7 w(c 0 ,T9 ) = 7 

w(c 0 ,T10 ) = 8 

w(c",T13 ) = 8 w(c 0 ,-i;,) = 8 w(c 0 ,T15 ) = 8 

w(c",T16 ) = 7 w(c 0 ,T18 ) = 8 

w(c",T19 ) = 7 w(c 0 ,T20 ) = 7 

Figure 2: All the feasible solutions of the problem from Example 1. 
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2 Robust optima! solutions 

We recall that an optima! solution F 0 E !1( c0 ) is called a robust optima/ 
solution in c = c0 if and only if it remains a robust solution in some neigh
borhood of c0 . Let us denote a subset of robust optima! solutions by !1r(c0 ). 

The following theorem (Libura [12]) characterizes a subset !1,.(c0 ). 

Theorem I Let 
b = max min w(X n Y, c0 ). 

XEl1(c0 ) YEl1(c0 ) 

(2) 

Then 

!1r(c0
) ={FE !1(c0

): minw(FnF1,c0
) = b}. 

F 1En 
(3) 

The main drawback of the above characterization is that it requires using 
the whole set of optima! solutions of the considered optimization problem. 
It is an open question, whether this can be avoided. 

3 Optimality and robustness regions 

In the following will assume that for any F E F and c E C the inequality 
w(F, c) > O holds. 

Consider a feasible solution F E F and an initial scenario c0 E C. The 
quality of the solution F for the scenario c0 can be measured by its relative 
error r( F, c0 ), where 

r(F co)= max w(F, c0
) - w(F' , c0

) = w(F, c0
) - v(:F, c0

) ( 4) 
' F'EF w(F', c0 ) v(:F, c0 ) • 

A feasible solution F 0 E F is called an optima! solution for the scenario c0 

if and only if r(F0 , c0 ) ::; r(F, c0 ) for any F E F. Let !1(c0 ) denote the set 
of optima! solutions in problem (1) for the scenario c0 • It is obvious that for 
arbitrary FE !1(c0 ) we have r(F, c0 ) = O. 

Consider nowa particular optima! solution F 0 E !1(c0 ). The main object 
studied in the sensitivity analysis for combinatorial optimization problems 
is so-called optimality region S(F0 , C) of the solution F 0 , defined as the 
maxima! under inclusion subset of scenarios, for which this solution remains 
optima!, i.e. , 

S(F°,C) = {c EC: r(F0 ,c) = O}. 
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Denote S(P0 ) = S(P0 , lRn). We have therefore S(F°, C) = S(P0 ) n C. 
It is well known that the optimality region S(P0 ) is a convex polyhedral 
cone in lRn (see e.g. Greenberg [5), Libura [9)). This follows directly from 
the theory of linear programming. Namely, Jet Ę(P) E IIBn, where IIB = {O, l}, 
denote the characteristic vector of the subset P c;; E. The generic combi
natorial problem (1) is equivalent (see e.g. Schrijver [l 7]) to the following 
linear program: 

min{c1 x: x E conv.hull 4>(.r)}, 

where '1>(.F) is a polyhedral convex set. This means that <f>(F) can be, at 
least in principle, described by a system of linear ineąualities 

<f>(F) = { x E IIBn : h;(x) S;; h,, i EJ}. (5) 

Let I°<;; I be a subset of ineąualities binding in x 0 = Ę(P0), i.e., h;(x0 ) = h; 
for i E / 0 • Then 

S(P0 ) = -cone {h,, i EI°}. (6) 

Although polyhedral description (5) of the set '1>(.F) may contain very large 
number of faces, it can be exploited in various approximations of the optimal
ity region S(P0 ) (see e.g. Libura et al. [14]) and appears useful in sensitivity 
analysis. 

In the following we will define an analogue of the optimality region S(F0 ) 

in the robustness analysis framework. 

Let for P E F and for a given set of scenarios C c;; llł", 

Z(F,C) = max r(F,c). 
cEC 

We will call Z(F, C) the worst-case relative regret of the solution F over the 
set of scenarios C. 

A feasible solution F* E F will be called a robust sol-ution for the set of 
scenarios C c;; JR" if and only if the following inequalities hold: 

Z(F*,C) s; Z(P,C) for any PE F (7) 

Thus, a feasible solution is robust if it guarantees the minimum value of 
the worst-case relative regret on the set C among all the feasible solutions. 

Consider an optima] solution P 0 E O( c0 ). I t is obvious that P 0 is a 
robust solution for scenario c0 , and that it is robust for arbitrary scenario 
c E S(F0 , C) as well. But it may happen that P 0 remains robust also for other 
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scenarios. Actually, we will be interested in the maxima! under inclusion 
subset of scenarios, for which the solution P 0 is a robust solution: such a 
subset will be denoted R(P, C) and called the robustness region of the initially 
optima! solution P 0 . Formally, 

R(P0 , C) = {c EC: Z(P0 , R(P0 , C)) ~ Z(P, R(P0 , C)) for any PE F}. 

In case C = !Rn we will use simplified notation R(P0 ) = R(P0 , !Rn) . Observe 
anyway that this time - in contrast to stability region - we can not express 
R(P0 , C) as an intersection of the sets R(P0 ) and C. 

The above definition of the robustness region leads to significant diffi
culties with calculating this set for particular combinatorial optimization 
problems. It appears that there is no direct relation between R(P0 ) and 
polyhedral description of the convex hull of characteristic vectors of feasible 
solutions as in case of the set S(P0 ). Therefore, it is reasonable to consider 
various subsets of the robustness region, which may appear easier to analyze 
and - simultaneously - give some insight into robustness properties of the 
solutions considered. The main role in such analysis is played by appropriate 
choice of particular sets of scenarios. 

4 Scenarios 

The set of scenarios C plays a crucial role in describing an uncertainty con
cerning the data of the optimization problem. In this paper we will use 
the same sets of scenarios in sensitivity analysis and in robustness analysis 
contexts, although the interpretations in both cases will be actually different. 

In sensitivity analysis the set C represents all of the possible data changes 
we are interested in. In robustness analysis this set describes all possible 
perturbations of the data, which we want to be hedged against. Frequently, 
a choice of the set C will be determined by various simplifying assumptions 
wee will make in case of approximate analysis. Moreover, appropriate choice 
of the set of scenarios will lead to definitions of such objects as tolerances of 
weights, optimality radius, accuracy radius, robustness radius etc. 

In the following we discuss severa! particular choices of the set of sce
narios, and we introduce corresponding definitions of main objects studied 
in sensitivity and robustness analysis. We start with the sensitivity analysis 
and then we describe analogous definitions in the robustness analysis context. 
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4.1 Basic scenarios 

In sensitivity analysis the set C = !Rn may be regarded as a basie set of 
scen arios and it is actually a starting point for any further analysis. The main 
object studied for this particular set of scenarios is the optimality region S(F) 
of a feasible solution F E F. Nevertheless, sometimes it is necessary to avoid 
negative weights of elements which may have no reasonable interpretation. 
In sucha case we consider a restricted set of scenarios C+ = { c E !Rn : c ~ O}. 

In fact, in the sensitivity analysis context a choice of the set of scenarios 
corresponds mainly to various simplifications. A standard approach here 
consists in an assumption that only weights of elements belonging to some 
given subset Q <;;; E may be perturbed while all remaining weights are equal 
to their initial values given by the vector c0 E !Rn. This leads to the following 
set of scenarios, whic we will consider a basie set of scenarios: 

C(Q, c0 ) = {c E IR": c(e) = c0 (e) for ei Q}. 

The most frequently studied special case corresponds to an assumption 
that only a single weight of particular element e E E may be perturbed, i.e., 
Q = {e}. This leads to so-called tolerances of weight, which are considered 
in numerous papers (see e.g. Chakrnvarti, Wagelmans (4), Liburn (8), van 
Hoesel, Wagelmans [21], Sotskov et al. [18], Tarjan [19], Turkensteen et al. 
[20], Wendell [22]). 

Let F 0 E fl(c0 ). From the convexity of the set S(F0 ) it follows directly 
that 

S(F0 , C( {e}, c0 ) = {c E !Rn c(ei) = c0 (e,) for ei -:fe, 

c0 - r(e) ::C:::: c(e) ::C:::: c0 + t+(e)}, 

where t+ ( e ), r ( e) E IR U { oo} denote, respectively, so-called upper and /ower 
tolerance of the weight c( e). 

Let P ={FE F: e EF} and Fe= {FE F: ei F}. lt is well lmown 
(see e.g. Liburn [8, 9), Sotskov et al. (18]), that the following facts hold: 

Proposition 1 I/ e E X 0 , then t-(e) = oo, t+(e) = v(F„ c0 ) - v(F, c0 ). 

I/ ei X 0 , then t+(e) = oo, r(e) = v(F',c0 ) -v(F,c0 ). 

According to standard conventions, we take v(F„ c0 ) = oo or v(F•, c0 ) = oo 
if F. = 0 or F• = 0, respectively. Observe that given an algorithm for solv
ing problem (1) for arbitrary c E !Rn and F <;;; 2E, we may use them also to 
calculate values v(Fe, c0 ) and v(F•, c0 ). From Proposition 1 it follows there
fore that if the optimization problem (1) is polynomially solvable, then also 

8 



the tolerances t+(e), r(e) for e E E, can be computed in polynomial time. 
Moreover, the opposite implication also holds under some mild assumptions 
(see Chakravarti, Wagelmans [4], van Hoesel, Wagelmans [21]). 

In Liburn [13) similar results are obtained in the robustness context. We 
will present them after describing two important families of scenarios, which 
form subsets of the basie set of scenarios C(Q, c0 ). 

4. 2 Families of scenarios based on C ( Q, c0 ) 

In the basie set of scenarios C(Q , c0 ) we allow arbitrary perturbations of the 
weights for all elements belonging to the subset Q ~ E. It appears interesting 
to consider same restrictions of these changes and - simulta.neously - to a.llow 
a.dditiona.l sim ple pa.rametriza.tions of the perturbations. This will lead to two 
ma.in families of scena.rias, which we will denote denote T6(Q, c0 ), Ke(Q, c0 ), 

and define for sca.la.r pa.rameters ó E [O, 1), and f2 E [O, e(Q, c0 )), where 
e(Q,c0 ) = min{c0 (e): e E Q}, respectively: 

T6(Q,c0 ) 

Ke(Q, co) 
{c E C(Q,c0 ): ic(e) - c0 (e)I:::; ó · c0 (e) for e E Q} (8) 

{c E C(Q, c0 ): ic(e) - c0 (e)I:::; (! for e E Q}. (9) 

Thus, in the set of scena.rias Ke( Q, c0 ) for a given sca.la.r pa.rameter (! 

we allow a.dditive perturba.tions of a.ny weight of element from the subset 
Q, which do not exceed f!. In case of the set of scenarios n(Q, c0 ) we are 
interested in percenta.ge perturba.tions of these weights, controlled by the 
pa.ra.meter ó. Both introduced fa.milies of scenarios ca.n be used in the sen
sitivity a.na.lysis to define so-ca.lled stability Junction and accuracy Junction 
(see Liburn [12]). 

For an optima! solution F 0 , an a.rbitrary subset of elements Q ~ E, and 
ó E [O, 1), the va.lue of the accuracy Junction a(F0 , X, ó) is defined as the 
maximum of the relative error of the solution P 0 over the set T6 (Q, c0 ), i.e ., 

a(P0 ,Q,ó) = max r(P0 ,c). 
cET,(Q,c0 ) 

(10) 

In a simila.r way the stability Junction s( P 0 , (!) is defined. N a.mely, for 
(! E [O, e(Q, c0 )) and Q ~ E 

s(P0 , Q, ó) = max r(P0 , c). 
cEK,(Q,c0 ) 

(11) 

Denote for S', S 11 ~ E, S' 0 S 11 = (S' \ S 11 ) u (S" \ S'). In Liburn [11) 
generał formula.e for ca.lcula.ting a.ccura.cy function and sta.bili ty function a.re 
given: 
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Theorem 2 For F 0 E ll(c0 ), Q <;;; E, and o E [O, 1), 

(Fo Q o)= w(F0 , c0 ) - w(F, c0 ) +o· w((F0 0 F) n Q), c0 ) 

a ' ' 1JJfJ w(F,c0 )-ó·w(PnQ,c0 ) • 
(12) 

For P 0 E ll(c0 ), Q <;;; E, and e E [O, e(X, c0 )), 

(Fo Q ) _ w(P0 , c0 ) - w(P, c0
) + e · l(F0 0 P) n QI 

8 ' 'e - Wf? w(F, ca) - e · IP n QI 
(13) 

The accuracy function and the stability function can be now used to define 
so-called accumcy mdius and stability mdius as well as to derive formulae to 
calculate exact and approximate values of these radii. Analogous radii can 
be introduced in the framework of the robustness analysis. 

Observe that if P 0 is an optima! solution of the problem (1) then, obvi
ously, a(F0 , Q, O) = O. It is of special interest to know the maximum value 
of o for which a(F0 , Q, o) = O. This value is called the accumcy mdius of the 
solution P 0 with respect to the set Q and is denoted by r 0 (P 0 , Q). Formally 

r 0 (F0 , Q) = sup{o E [O, 1): a(F0 , Q , o)= O}. (14) 

A practical importance of the accuracy radius consists in the fact , that 
given the value r = r 0 (P0 , Q) we know, that the weight of any element e 
belonging to the set Q may be perturbed (increased or decreased) arbitrarily 
by r • 100% (or less) without destroying the optimality of P 0 • Similarly, if 
we know that the weights of elements in Q are estimated with the accuracy 
r · 100%, then we can guarantee that the solution P 0 , calculated for the 
estimated vector of weights c0 , is also optima! for the actual vector of weights. 

In an analogous way the stability mdius r'(F0 , Q) of the solution P 0 with 
respect to the set Q can be defined. Formally, 

r'(P0 , Q) = sup{o E [O, e(Q , c0
)): s(P0 , Q, ó) = O} (15) 

Observe that the value of stability radius gives the maximum absolute de
viation of any weight of element from the set Q which do not destroy the 
optimality of the solution P 0 • 

Let 
Fq ={PE F: w((F0 0 F) nQ,c0 ) f O} 

and 
Fb ={FE F: (F0 0 F)nQ f O}. 

The following theorem (see Libura [ll]) gives generał formulae for calcu
lating the accuracy radius and the stability radius of the solution F 0 with 
respect to the set Q. 
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Theorem 3 For P 0 E !1(c0 ) and Q ~ E, 

"( 0 Q) . { . w(P, c0
) - w(P0

, c0
) } 

r p ' = mm 1, ~~ w((Po 181 P) n Q), C°) (16) 

and 

'( 0 Q) . { ( 0 ) • w(P, c0
) - w(P0

, c0
) } 

rP, =mm eQ,c,J~ib l(P®Po)nQI . (17) 

Analogous radii can be introduced in the framework of the robustness 
analysis. Namely, instead of studying maximum perturbations for which a 
given initial solution remains optima!, we may seek for the maximum pertur
bations preserving the robustness of this solution. In particular, in Libura 
[12) an analogue of the accuracy radius - called the robustness radius is con
sidered. 

Let P 0 E !1(c0 ). The robustness radius of P 0 is denoted rf(P0 ,Q) and 
defined as the maximum value of the parameter ó for which the solution P 0 

is robust under the set of scenarios T0(Q, c0 ). Formally, 

rr(P0 , Q) = sup{ó E [O, 1): 

Z(P0 , T0(Q, c0 ))::,; Z(P, T0(Q, c0 )) for any PE F}. 

No formula like (16) is known for calculating the robustness radius. In 
Libura [12] some evaluations of the robustness radius are given for Q = E. 
The following facts hold: 

Theorem 4 ff P 0 is a single optima/ solution of problem (1) for c = c0 , then 

r'(Po, E) 2'. { 2;a 

where 

if a< 1, 

otherwise, 

a= min 
FEF\fl(c") 

w(P, c0 ) - v(F, c0 ) 

v(F, c0 ) 

Theorem 5 ff P 0 E !1,.(c0 ) and a 2'. 1: 0 , then 

r'.(Po, E) 2'. { 2(1~~)-a 

ff P 0 E l1r(c0 ) and a< 1:b, then 

if a< 1 - b, 

otherwise. 

{
min{-" - 0 } rr(Fo, E) 2'.'. 2(1:b)-a 1 2b+2ab-a 

2b+2ab-a 

if a< 1 - b, 

otherwise. 
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The situation simplifies significantly in case Q = { e} for some e E E. 
Then the robustness radius becomes an analogue of the tolerance of single 
weight in the sensitivity analysis. Namely, for e E E and P 0 E !1(c0 ) we 
introduce so-called robustness tolerance of the weight c( e), which we denote 
tr ( e) and formally define in the following way: 

t'(e)=sup{óE[0,l): Z(P0 ,C(c0 ,{e},ó)):$Z(P,C(c0 ,{e},ó)) , PEF}. 

Thus, t'·(e) is the maximum value of the parameter ó, such that P 0 remains 
robust for the set of scenarios C(c0 , {e}, ó). This case we are able to show a 
result, which is a close analogue of Proposition 1. Namely, in Liburn [13] it 
is proved that the following fact holds: 

Theorem 6 For P 0 E !1(c0 ), 

{ 
1 

t"(e) = l 
min { 1, [v(P,c0 ) 2 -v(F,c0 )2]' • c0 (eJ- 1} 

if e E P 0 , 

if e r/; P 0 . 

(22) 

Observe that this - as in case of the standard sensitivity analysis - leads to 
polynomial solvability of the robustness tolerance problem provided that the 
original optimization problem is polynomially solvable itself. 

5 Conclusions 

This paper deals with the robustness analysis regarded as a natura! extension 
of the standard sensitivity analysis for combinatorial optimization problems. 
It is shown, that it is reasonably to define analogues of such objects as sta
bility region, stability radius, accuracy radius, tolerances of weights and to 
study in the framework of the robustness analysis such objects as robustness 
region, robustness radius and robustness tolerances. All of them have nat
ura! interpretations and give some insight in the quality of a given optima! 
solution from the robustness point of view. 
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