
Raport Badawczy

Research Report
RB/23/2016

UCT in Capacitated Vehicle
Routing Problem
with traffic jams

J. Mandziuk, M. Swiechowski

Instytut Badan Systemowych
Polska Akademia Nauk

Systems Research Institute
Polish Academy of Sciences

POLSKA AKADEMIA NAUK

Instytut Badan Systemowych

ul. Newelska 6

01-447 Warszawa

tel.: (+48) (22) 3810100

fax: (+48) (22) 3810105

Kierownik Zakladu zglaszajq,cy prac1y:
Prof. dr hab. inz. Janusz Kacprzyk

Warszawa 2016

UCT m Capacitated Vehicle Routing Problem with
Traffic Jams

Jacek Mand7,iuka,b,•, Maciej Swiechowskic

"Faculty of Mathematics and Information Science, Warsaw University of Technology,
Warsaw Poland

b School of Com,pufer Science and Engir,,eer-ing'. Nanyang 'I'echnolog·ica.l Univers-ity, Singapore
csystems R esearch institute, Polish Academy of Sciences, Warsaw, Poland

Abstract

In this paper a dynamic version of the Capacitated Vehicle Routing Problem

(CVRP) which takes into account traffic jams is considered, Traffic jams occur

randomly according to pre-defined intensity and length distributions, In effect,

static CVRP is transformed into a non-deterministic scheduling problem with

high uncertainty factor and changing in time internal problem parameters , Our

proposed solution to CVRP with traffic jams (CVRPwT.J) relies on application

of the Upper Confidence Bounds applied to Trees (UCT) method, which is an

extension of the Monte Carlo Tree Search algorithm, The most challenging issue

here is finding a suitable mapping of the CVRPwTJ onto a tree-like problem

representation required by the UCT, Furthermore, in order to prevent the si,:e of

the tree from explosive growth, an efficient mechanism for child nodes selection

is proposed, UCT-based approach is compared with four other methods showing

promising results and offering prospects for its wider applicability in the domain

of stochastic optimization problems.

Keywords: stochastic optimization, Vehicle Routing Problem, UCT,

optimization under uncertainty

• Corresponding author
Email addresses: j ,mandziuk!Dmini.pw,edu,pl (Jacek Mandziuk),

m. swiechowski!Di bspan. waw. pl (Maciej Swiechowski)

Preprint submitted to Information Sciences September 27, 2016

1. Introduction

Vehicle Routing Problem (VRP) [9], along with its numerous variants, is a

widely known combinatorial optimization task. The problem was formulated

in 1959 [9] and subsequently proved tu be NP-hard in 1981 [25]. In short, the

s problem consists in assigning a number of homogeneous vehicles to a number

of clients, where each client has a certain 2D location and a certain demand of

(homogeneous) goods. The optimization objective is to deliver the demanded

goods to all clients while minimizing the sum of vehicles routes' costs (lengths).

Additionally, each client must be served by exactly one vehicle and each vehicle's

10 route must st.arL and end in t.he depot (defined by it.s 2D coordinat.es). For

practical reasons , t.he upper limit on vehicles ' capacity is often impoRed, leading

to the Capacitated Vehicle Routing Problem (CVRP) formulation.

Since VRP /CVRP is NP-hard, no pulynumial method of solving the prob

lem is known and perfect solutions can only be obtained for relatively small-size

,s problems. Among the exact algorithms une can distinguish the following three

main approaches: full tree search (e.g. spanning tree and shortest path relax

ations method [6]), dynamic programming (e.g. [13] in the case of problems

with a priori known number of required vehicles) and integer programming (e.g.

three-index vehicle flow formulation [16]).

20 There are also multiple approximation algorithms for VRP /CVRP, most

of them designed to address specific: problem formulations, e.g. multi-trip [4]

or mul1.i-compartmenL [1] versions of the problem, variants with certain deliv

ery time-windows [18] or dynamically defined requests [28], combined pick up

and delivery problem formulations [29], eculugy-uriented Green VRP ['12], and

2s many others. Due to space limits, we arc nut able to provide a more in-depth

cha.racteristics uf these a.nd other related works. Please see the recent special

issue [40] fur an overview of the current developments and challenges in this

domain and [14] for the VRP taxonomy.

A particular variant of CVRP considered in this paper, which we call CVRP

Jo with Traffic Jams (CVRPwTJ), introduces a high degree of uncertainty to the

2

problem specification by means of traffic jams (TJ), which may dynamically oc

cur on particular edges of the planned vehicles ' routes. The existence of a traffic

jam increases the cost of traversing a certain edge, usually to the extent that

requires some re-modeling of the currently planned route . Tn the proposed so-

3s lution, these dynamic changes are handled on-line by appropriate actions taken

to alleviate their impact.

Our proposed solution to CVR.PwTJ relies on the Upper Confidence Bounds

Applied to TI·ees (UCT) method [22, 3], which is currently a state-of-the-art ap

proach in game playing domain, particularly applicable to games for which com

" pact and easily computable position assessment. function is not known. Typical

examples of such games/game frameworks are Go [17, 3], General Game Play

ing [35, 36, 41] or Havannah [39] .

The main advantage of using UCT in games is its adaptability to the chang

ing game situation and long-term reliability of position assessment. An aclcli-

•s tional asset of UCT is its "knowledge-free" nature [27] understood as the lack

of the requirement for providing any domain-specific knowledge, except for the

formal game definition, which is indispensable in the move generation process

and for detection and evaluation of the final states of the game.

In the view of the above-listed UCT qualities, we conducted research on pos-

so sible ways of applying the modified form of this algorithm to solving CVR.PwTJ.

In particular, presented research aims at. verification of the UCT capabilit,y to

flexibly address the exploration vs. exploitation dilemma in CVR.PwTJ, i.e.

the issue of balancing the usage of discovered best solutions vs. finding the

new ones with respect to highly variable problem parametrization (stochastic

ss changes of TJ intensities). Such a plasticity of the solution method seems to be

indispensable for efficient solving stochast ic optimi:rntion problems, in particular

CVR.PwTJ.

Since, to the best of our knowledge, this paper presents the first approach to

solving the CVRPwTJ by means of the UCT method, we had to make several

•o decisions related to particular implementation and usage of the method in a

new application domain . The ma.in issue was related to the CVR.PwTJ problem

3

representation in the form of a graph (which is a desirable representation for the

UCT t rcc-sca.rch method), and definition of the set of UCT actions (possible

"moves" in a given state of a partial solution) as well as their interpretation per

" analogy to game moves .

The efficacy of the proposed approach is compared with two versions of

Genetic Algorithms (GA) implementations and with Tabu Search (TS) and Ant

Colony Optimization (ACO) meta.heuristics showing its upper-hand under the

same time and resource availability. Several differences in which UCT and the

,o above-mentioned metaheuristic methods tackle the problem have been pointed

and discussed.

The rest of the paper is organized as follows: in the next. section a formal

definition of the CVRPwTJ is provided. Sect.ions 3 and 4 summarize the UCT

method and t he way we propose to apply it to solving CVRPwTJ, respectively.

15 In section 5, evolutionary methods used for comparison with the proposed UCT

approach are introduced. Section 6 is devoted to presentation of an experimen

tal setup, simulation results and their comparison with t he above-mentioned

metaheuristic approaches. A summary of the main contribution and directions

for future research conclude the paper.

00 2. Capacitated Vehicle Routing Problem with Traffic Jams

In CVRP, a fleet V = { v1 , ... , Vn } of n vehicles is to deliver cargo to a set

of m clients C = { c1, . .. , Cm} each of them having a demand of size sizei, i =

1, ... , m. Vehicles a.re homogeneous, i.e. have identical capacity E R. The

cargo is loaded in a. pre-defined depot (denoted by c0 in our implementa.tion)1 .

05 Each customer as well as the depot have certain location locj E R 2 , j = 0, ... , n.

A travel distance Pu is the Euclidean distance between loc; and locj in

R 2 ; i,j = 0, . .. , m. For each vehicl e vi the r i = (in, i 1 , . . . , iv(i)) is a permutation

of indexes of requests/ customers assigned to 11; to be visited by the vehicle, which

1 In some CVRP formulations more than one depot is considered, however, the version with

one depot is the most popular in the literature.

4

defines the route of the ith vehicle. The first and the last elements in r; always

90 denote a. depot, i.e . ea.eh route must start and end in a. depot.

The goal is to serve all clients (requests) with minimal total cost (travel dis

tance), with routes/vehicles starting from the depot, with fulfilling the trucks'

ea.pa.city constraint, visiting ea.eh client only once (i.e., for ea.eh customer cargo

must be delivered in one service) and returning to t he depot afterwards. For

mally, the goal is to find a. set R = {r!,r2, ... ,r~} of permutations of requests

that minimizes the following cost function:

n p(-i)

COST(r1, r2, ... , rn) = L L Pi;i; _ 1

i.=l j=l

under the following constraints:

!\f,E{l 2 . n}

:iE{l,2, .n)

lE{l.2 .. m}

io = ip(-i) = co
p(i)-1

I: size;, :S: capacity
l=l

:J !iE{l,2 . .. n) l Er;

(1)

(2)

In practically all methods applied to CVRP, the solution process is divided into

a. number of discrete time steps. In ea.eh step, all active trucks (i.e. those which

left the depot) move to their next clients and the trucks parking in a. depot

may (but do not have to) commence their routes. The process ends when all

95 vehicles move back to the depot after having visited all the customers. The

initial conditions, i.e. the number of available t rucks, their ea.pa.city, clients

requests ' sizes, and the coordinates of the depot and the clients, a.re provided in

the problem definition and therefore arc known to the solving system beforehand.

What makes the CVRPwTJ distinct from the a.Love-descriLecl (static) CVRP

100 definition is considering road conditions Ly means of· traffic jams. Specifically,

at ea.eh time step, for ea.eh edge (a direct link between two clients or a. client

and a depot) the TJ is imposed with probability P. If TJ happens to appear

on a given edge a it is assigned a randomly selected intensity I(a) and dura

tion/length L(a) measured in time steps.

105 Therefore, for each edge a of cost c(a), if a. traffic jam T J(a) with inten-

5

sity I(a) and length L(a) appears on that edge, its current cost; is modified to

c(a)-I(a) for the next L(a) time steps and reduced to the previous value c(a), af

terwards. If TJ happens to be selected for an edge a which is currently jammed

(was jammed k time steps before, for some k, with the TJ length L(a) > k and

110 intensity I(a)), then the length of the TJ on that edge is increased by the newly

selected TJ's length, but the cost of that edge is not increased - it remains at the

level of c(a)·I(a) (though, for a longer time period). This way we a.void TJ inten

sity multiplications which might otherwise have easily led to explosive growth.

The above TJ assignment (with probability P) is applied at the beginning of

m each time step for all edges (see section 6.1 for traffic parametrization). It is

worth to underline that although the times of occurrences, intensities and time

spans of the traffic jams are generated according to some pre-selected probabil

ity distributions whose parameters arc known a priori, the actual realizations

of T J are known only once they materialize.

120 2.1. Related work

VRP formulations considered in the literature include t,he cases with specifi

cally defined travel times. The most commonly used model of traffic conditions

assumes that Lhe congestion is a function of a working day time. For example,

in [4.2], as well as in [5] and [10], time is arbitrarily divided into periods in which

m the traffic speed is assumed to be fixed (but may differ between time periods).

The authors of [23] consider certain traffic-related factors that occur in par

ticular cities at a given time of the day, which are then used to calculate the

effective speed of traveling between those cities. Another approach is proposed

in [38], where the traveling times are stochastic and the cost function depends

no not only on the total distance traveled but also the number of vehicles used and

the total expected overtime of the drivers.

Generally speaking, each approach has its specificity manifested by either

particular definition of the road congestion or by formulation of the ultimate

goal and !.he respect.ive cost function. In this respect i!. is not possible Lo com-

1,s pa.re directly the above-cited papers with our work, since except for a general

6

notion of "changing in time traffic speed" they differ significantly in detailed

formulation of the problem and the used method of solving it.

Perhaps the closest to ours CVRP formulation is presented in [21] where

both stochastic travel times a.nd online adaptation of the solution by means of

140 Monte Carlo (MC) simulations is proposed. On a less general note, however,

both papers differ in the following major aspects. Firstly, in [21] the problem

is decomposed into independent single-vehicle problems contrary to global op

timization performed in this paper. Secondly, the experiments in [21] are based

on an in-house real-time traffic data (owned by logistic company from Singa-

145 pore) and not on publicly available benchmarks. Lastly, MC simulations a.re

used in [21] only to gather statistical data to be subsequently used by approx

imate dynamic programming, while our approach uses the simulations directly

to construct and modify the routes.

3. Upper Confidence Bounds Applied to Trees

1so UCT is a simulation-based algorithm, which proved to be successful in multi-

step decision-making under uncertainty, in particular in building playing agents

for several demanding games.

In the case of game-playing framework, the method consists in performing

multiple simulations of possible continuations of a game from the current state.

m Instead of performing fully random rollouts, a.s is the case of MC method, it

proposes a more selecLive approach Lo choosing continuations worth analyzing,

making the obtained results more meaningful. In each state, UCT advise;s to

choose uniformly any of the actions not yet tried (if one exists) and to choose

otherwise move/action a* according to the following formula:

a*= arg max {Q(s, a)+ C
a EA(s)

ln [N(s)]}
N(s,a)

160 where A(s) is a set of actions available in states, Q(s,a) denotes the average

result of playing action a in state s in the simulations performed so far, N (s) - a

number of times states has been visited in previous simulations and N(s, a) - a

7

number of times a.ction a has been sampled in this sta.te in previous simulations.

Constant C controls the balance between exploration and exploitation, since the

16s formula postulates choosing actions with high expected rewards but , at the same

time, a.voiding repetitive sampling of the same actions while others might yet

prove more beneficial.

With the UCT simulations finished in a given time step, choosing the next

move is simply a matter of finding the action with the highest Q(s , a) value in

110 the current game state.

175

Recently, UCT gained attention also in the area of probabilistic planning

implemented by the Partially Observable Markov Decision Process (POMDP)

model [24, 19, 15]. Successful application of UCT in this area further motivated

our work on CVRPwTJ.

4. UCT in CVRP with Traffic Jams

A general top-down view of our method is depicted in Figure la. The algo

rithm starts with finding a.n initial solution to the static version of the CVRP,

which is explained in Section 4.1. The initial solution is used to create initial

UCT trees, introduced in detail in Section 4.2. Next, the main loop of the al-

180 gorithm is executed and performed until all customers are visited. In each step,

once the traffic is updated, the algorithm runs a series of the UCT/MC simu

lations (,o expa.nd t,he trees and ga.t,her s(,aiisLics about, various transformalions

of the planned routes. Section 4.3 is devoted to description of Lhis underly

ing UCT /MC simulation procedure. The UCT trees arc expanded by means

,., of simulating various potential modifications of the routes as consequences of

taking certain actions. The set of possible actions (local route modifications)

is discussed in Section 4.4. Actions are chosen both in the internal UCT /MC

simulations as well as in the main simulation used to solve the problem. VVhen

actions are chosen in the main simulation, the current state is updated and the

190 UCT trees are trimmed so as to correspond to this state.

8

Benchmark = LoadBenchmark {)
Ini tia.lizeStructure-9 ()

StaticSolution = SolveSta ticProblem (Benchmark)

// the initial .<Jtate contain-9 po::sition!l and p l anned route!!

I I from the !I ta tic !lolution
Ini tialState = Create From (S taticSolution)

u c tSimulator . CreateTree !I (Ini tialState)

CurrentState = InitialState

Tota1Co.'3t = Step = 0

whil e (CurrentState i:J NOT terminal)

//update jam~ according t,j the benchmark
CurrentTraffic = UpdateTraffic (Benchmark , Step)

u ctSimulator. Synchronize (CurrentTraffic)

uctSimula.tor. Simulate(SIM_COUNT) // the mllin MCTS rout i ne

actions [) = uctSiraulator. SelectTopActions ()

I I compute the next :9tate by moving the vehicles; to
// their new po.'3ition::s (applying action.'!!) ;

NextSta.te = Apply (actions [])

// !lynchronize the UCT tree!! accordingly: the root

// node::i will denote the next .<Jtate
uctSimulator . UpdateTree~ (actions [l) //

TotalCo~t += DynamicCo!lt (CurrentState, NextState)

CurrentState = NextState

Step++

(a)

UCT Simulation Step

RETUR NS as OUTPUT

OutputNodes
{children of lnputNodH)

NO

NO~

YES (early cutoff) YES

For each node In Output Nodes
o talCost +~ StaticRemainir@Cost(node)

STOP

(b)

Figure 1: Operational scheme of t he proposed UCT-based approach. (a) A pseudocode of the

proposed UCT algorithm . The UCT /MC simulations are executed until the a llotted time /

computa tional budget. is used. (b) A scheme of a s ingle UC'T' simula tion.

9

4.1. Initial solution

The initial solution, in the form of a set of vehicles' routes is obtained for

the static problem instance wii,h t.he help of a modified Clark and Wright. [7]

(CW) savings algorithm [34]. The routes are pairwise separated, except for the

"' initial and final position which is always the depot. This set of routes forms an

input to the proposed UCT approach.

Tn genera.I, any method suitable for solving the sta.tic version of the CVRP

could be chosen to generate the initial solution. The main advantage of the

algorithm of our choice is computational speed and deterministic nature by

200 means of yielding the same set of routes when given the same problem instance.

The solutions computed by the CW method are between 100% and 112% of the

optimal solutions for the (static versions of) benchmark instances used in this

paper, which is a reasonably good starting point. Please observe, however, that

due to high level of dynamism in t.he problem definiLion (in t.erms of frequent.

20s traffic jams) the actual usage of the starting solution is limited to the very short

initial period of the algorithm 's performance.

4.2. UCT trees

Suppose that the initial solution is composed of k routes, i.e. uses k trucks .

Then the initi al UCT tree is actually a forest composed of k trees - each in the

210 form of a path with the first and the last elements being a depot. The consecu

tive elements on each path denote t.he dient.s planned t.o be visited by respective

trucks in subsequent time steps (e.g ., the third elements in all paths represent

the set of clients visited in the second step of the solution). The interpreta

tion of a tree node is valid only in the context of the respective route (called

21s route-states representation hereafter). Tbe complete UCT state is defined by a

k-tuple of route-states - one route-state per each route.

Note that different sequences of visited customers in a route may lead to tbe

same state, e.g. [O, 12, 7, 3, . .. , OJ and [O, 7, 12, 3, ... , OJ after the first three time

steps. In order to keep the size of the UCT trees within a reasonable limits,

220 such isomorphic states (called transpositions) a.re detected and only one node

10

per each transpositions-set is used. Two states are mapped to one state in the

UCT tree iff they share the following data: (1) the current position of the vehicle

in the route, (2) the remaining capacity of the vehicle which can be allocated

and (3) the remaining set of customers scheduled for the route. The mechanism

22s of route-states comparison was implemented with the help of hashing.

4- 3. UCT simulations

A single UCT simulation can be regarded as a sequential decision-making

process (sec Fig. lb). The initial state of the simulation is composed of the

roots of all k trees. In each tree a.n individual UCT action-selection process is

2,0 performed which, a.t ea.eh level of the tree, ca.lcula.tes a.n action to be simulated.

235

Next, in each tree, the chosen action is applied, the current state is updated by

the result of the simulated action, the simulation moves one level clown the tree,

a.nd the simulation step counter is incremented. If any of the actions leads to

a terminal state (the depot), then the respective route is completed, the tree is

removed from the collection of active trees and will not be used in the current

simulation a.nymorc.

In general, simulations a.re performed in a typical UCT manner, going down

the UCT tree at each step. There are, however, three main differences compared

to the classical UCT usage presented in section 3. First of all, since the less

costly the solution the better, tl1e UCT formula (3) is modified to eq. (4) , which

favors lower average outcomes Q(s, a):

a* = arg max {c
a EJl(s)

ln[N(s)]_Q()}
N(s,a) s,a (4)

Second of all, the next compound step (movement of all k trucks) is a result

of a. combined knowledge obtained from all k trees. More precisely, in each tree

the most promising action is selected, then these k selected actions are sorted in

2, 0 descending order based on their UCT values (i.e values C 1~~::?1 - Q(s, a) in

(4)) and executed in this order afterwards. If the execution of an action in the

former tree disables the chosen-as-best action in any of the subsequent trees,

then the next best action in the latter tree is selected instead.

11

The third difference compared to classical UCT implementation is that sim-

240 ulation cn<ls when there arc no more active trees or the step counter reaches the

value of MAX _STEPS (the so-called Early Termination) whichever comes first.

We set MAX_STEPS value to the maximum length of a traffic jam. There a.re

few reasons behind using Early Termination over finishing at terminal states

only. Firstly, simulations are much faster and, therefore, more of them can be

250 performed. Secondly, simulation is focused more on the current traffic situa

tion. Thirdly, memory usage is drastically decreased. We tested both a regular

termination and Early Termination and the latter leads to the comparable or

slightly improved results in approximately one order of magnitude shorter com

putational time.

255 A dynamic cost (affected by the traffic) of each action chosen in a simula-

tion increases the cumulative score of a simulation. When the Early Termination

condition is applied, the sum of static costs (i.e. without possible T J considera

tion) computed for the remaining fragments of the routes is added to the score.

Once the simulation is completed, such a compound result from all k trees is

2•0 back-propagated from the last visited nodes in each tree to the roots.

After a certain number of the above-described simulations, the actual (real)

decision regarding the movement of the k trucks is made according to the small

est Q(s, a) value among the child nodes in each of the k trees, sorted in an

ascending order. Hence, the act.ion in the tree with the lowest Q(s, a) is exe-

2•s cuted first, followed by the action in the tree with the second-lowest. Q(s, a),

etc.

4.4. Possible actions in the UCT trees

As stated above, at each step of both the UCT simulations and the real

decision process regarding the vehicles ' tours, all possible actions are considered

210 in each of the k root nodes. There are three types of actions differing by their

complexity: level-0, level-1 and level-2, which modify 0, 1 and 2 existing routes,

respectively. For each act.ion t.here are some pre-conditions under which I.his

action is legal in a given state. If the action is illegal in a given state it is not

12

considered.

m In the following description, legality conditions will Le placed in the square

Lraces, e.g. [1-TJ] / [no 1-TJ] will denote the fact that the edge planned to

be traversed is jammed / not jammed, respectively. The legality conditions can

be regarded as an expert knowledge built into the algorithm in order to avoid

combinatorial explosion of possible action sequences if all actions would have

wo been available in each state. A route will be called fully jammed if there is a

traffic jam from the current vehicle's position to all currently scheduled clients

in the route. A total demand of a route is the sum of demands of all clients in

the route (both currently scheduled and already visited). Due to the existence

of actions which produce a new route a~ their output t.he method assumes some

2ss number k' of spare trucks at its disposal. Since in none of the tests a demand

for additional trucks exceeded one (with the average across all tests equal to

0.3), the setting of k' = 1 was experimentally justified as a safe choice.

Level-0 actions (no changes are introduced to the routes)

AO - continue the planned non-jammed route. [no 1-TJ].

200 Al - continue the planned jammed route. [1-TJ] .

295

Actions AO and Al are distinguished from each other, despite leading to the

same result, clue to different legality conditions. Both actions are effectively noop

operations since no modifications to the current solution are applied. Note that

in each non-terminal state there is exacUy one level-0 act.ion available, either

AO or Al.

Level-1 actions (changes arc introduced to exactly one route)

A2 - Move the current client to the end of a route. [1-TJ and no 1-TJ

after applying the action].

A3 - Move the current client into locally optimal place in a route.

,oo [1-TJ]. The current client X is inserted in a greedy manner between the two

neighboring clients A and B, so as to minimize the value of [AX[+ [X Bf- [AB[.

In effect, the route {X, Y, ... , A, B, ... , O} is changed to {Y, ... , A, X , B , ... , O}.

13

A4 - Find the first client to whom there is no T J and insert him as

the first in the planned route. [1-TJ and there exists such a client to whom

,os there is no TJ from t he current location].

A5 - Reverse the route. [l-TJ and no 1-TJ after applying t he action]. The

order of the customers to visit is inverted, except for the depot, which remains

at the end.

A6 - Insert the nearest client as the first to visit. [no 1-TJ].

310 A7 - Insert the second nearest client as the first to visit. [no 1-TJ].

The underlying idea both A6 and A 7 is to allow to repair the route which

was inefficiently modified by some of the previous actions. The average UCT

score Q of these act ions (c.f. Equation (4)) is multiplied by 1.15 in order to

prevent such greedy choices from happening too often.

31s A8 - Cornplete the current route and start a new one. [the route is

fully jammed; the edge from the current vehicle's location to the depot is not

jammed; the edge from the depot to the first customer is not jammed; the limit

for available trucks (k + k') is not exceeded].

The current route is completed by moving to the depot and a new route is

320 commenced, initialized with all customers left from the finished route, in the

same time step.

Level-2 actions (changes are introduced to exactly two routes)

Actions which modify two existing routes are created for each pair of routes

if only all the legality conditions are met. Recall that r; denotes the route

325 assigned to the ith vehicle.

A9 - Move all customers from the current route (r;) to another one

(r1). [r; is fully jammed and rj has enough capacity left to accommodate all

customers from ri].

The action finishes ri and the customers are transferred to r 1 in the un-

330 changed order. This action has a synergy with A8 whose newly started route

has usually less customers than other routes and large part of its capacity re

mains available.

14

AlO and All - MIN and MAX exchange between two routes (ri and

rj)• [ri is fully jammed; there will be no 1-TJ neither on ri nor on rj after the

335 exchange; capacity constraints are fulfilled for both routes] .

The algorithm in the MIN version is as follows:

1. Start from transferring the first customer from ri to rj,

2. If the capacity constraints are fulfilled then STOP.

3. Continue the exchange of customers by transferring a subsequent one from

,,o t.he route wit.h higher t.ot.al demand to the other one.

4. Go back to step 2) or STOP with a PAI LU RE if there arc no more

customers for the exchange.

The algorithm in t.he IVIAX version is as follows:

1. Initialize RESULT as FAILURE

345 2. Start from transferring the first customer from r .; to rj,

3. If the capacity constraints are fulfilled then save the current result as

RESULT

4. Continue the exchange by transferring a subsequent customer from the

route with higher total demand to the other one.

JSo 5. Go back to step 2) or STOP returning the RESULT if there are no more

customers for an exchange.

Both actions appear in four cases, each of which combines the above procedure

with possible initial reversal of the routes: (1) use ri and 7'j as originally planned;

(2) Reverse(r;); (3) R everse{rj); (4) Reverse(r;) and R everse(rj)-

,ss Al2 - Complete two routes (ri and rj) and start a new one (rk)• [r;

is fully jammed; there will be no 1-TJ on rk after completing the action; the

sum of customers' demands on ri and rj does not exceed the truck capacity; the

limit of available trucks is not exceeded].

This is an extended version of A8, defined in four variants depending on how

,.o the new route rk is constructed: (1) rk := ri + rj; (2) r1, := rj + r;; (3) rk :=

Reverse(r;) + rj; (4) r,, := R everse(rj) + r.;. "+" denotes simple concatenation

of the routes excluding the depot from the first concatenated route.

15

Summary

Majority of the proposed actions arc based on the following rationale : if the

36s currently selected candidate edge is not jammed then traverse it. Otherwise try

to enhance t he planned route (by avoiding the tra.ffk jam) by means of· lornl

changes in the planned orders of the clients to be visited. Actions A6 and A7

are the only ones which allow to optimize a route which is not jammed. They

may be particularly suitable when the route is far from optimal due to some

310 unfavorable changes introduced in earlier steps.

In theory, one might proceed with defining even more complex and more

sophisticated actions, e.g. the ones involving three or more routes (t rucks),

but such an approach would fast become infeasible due to its computational

complexity. Based on performed experiments we found out that considering

m actions up to level 2 is a reasonable compromise between efficiency and feasibility

of the method.

5. Metaheuristic Methods Used for Comparison

As we stated in section 2.1 majority of the papers published on VR.P have pe

culiar assumptions or specific formulations which hinder their direct comparison

380 with our approach. For these reasons we have decided to compare UCT-ba.sed

approach with several well-established general-purpose meta.heuristics, which

are commonly used across a variety of proposed VRP formulations.

After literature review three mcLaheurisLics were selected (GA, TS and ACO)

leading to four DVRPwTJ solutions. Due t.o space limits, another "natural"

38, option, i.e. Particle Swarm Optimbmtion (PSO) [20, 32, 33] was left for future

work. Among four competitive solutions the two, denoted GAl and TS, use

exactly the same repertoire of possible actions as UCT does, which ma.kes these

methods directly comparable in terms of computational efficiency and quality of

solutions. The other two, denoted GA2 and ACO, implement straightforward

300 problem encodings with common-sense sets of actions.

All methods are tested under the same time conditions measured by the

16

number of Fitness Function Evaluations (FFE) performed during the method's

run, which is a widely-used measure of assessing method's complexity in Com

putational Tntelligenc;e (CJ) and Operation Researd1 (OR) communities.

395 5.1. Two genetic approaches

400

Both GA implementations make use of the initial solution computed by the

CW savings algorithm in a similar fashion as the UCT algorithm does. This

initial solution is then dynamically adapted and updated in the process of genetic

optimization in order to react to dynamically changing traffic conditions.

Each individual encodes a complete solution by means of a vector of routes

[r1, ... ,rk, ···rk+k']. Each of the first k routes is a permutation of customers'

idenLifiers with zeros (representing the depot) added as the first and the last

element in the rout<:. The first k rout<:s rf)pws<:nt th<: initial solution and the

next k' routes denote the spare trucks' routes which are initially empty and

ready to be used later during the algorithm's run, i.e.:

ri = { (0, r}, .. . , r;(i), 0)

(#E;)

for 1 ::::; i::::; k

for k < i ::::; k + k'

(5)

where I:~=l p(i) = m and #E; denotes an empty route assigned to the ·i-th

spare truck. For both methods, the settings from k' = 0 to k' = 5 were initially

tested showing a gradual improvement of obtained solutions until k' = 4. For

this reason the finally tested range of this parameter was k' E {3, . .. , 4}.

The initial population consists of N = 200 identical individuals representing

405 the initial solution. Such a lack of diversity is not harmful due to the use of

highly probable and extensive mutation operator which quickly leads to hetero

geneity and high variability of individuals .

GA operational scheme

Both GA implementations solve the problem step-by-step in a similar rnan

,,o ner as UCT does, and in each step a certain number of GA generations is

performed so as to provide solution for the current step of the main loop of

the method. Once the solution is found, the vehicles move one step (to the

17

currently assigned clients), the traffic conditions are updated and the next step

of the main loop begins. Selection is performed by ranking all parent and child

415 individuals in the current generation. The fittest N individuals, either parents

or chi ldren, advance to t he next generation. 'T'he fitness function is defined as

the inverted total length of the solution encoded by an individual. The length is

computed by summing dynamic costs of the routes with respect to the current

traffic distribution in the main simulation.

420 The best individual from the last generation in the current step of the main

loop represents the solution to pursue. Trucks are moved by one step as sched

uled by this solu tion and the main simulation is updated. Unless all customers

have been visited, the evolutionary process is continned from the current state

based on the updated traffic conditions .

• ,, Mutation in Genetic Algorithm 1 (GAl)

ln t.he first. approach, the mut.at.ion algorit.hm Hera.Les over all non-empLy

routes, which are randomly permutat.cd, in t.he solution encoded by an individ

ual. If there is a TJ on the route (to the currently planned customer), then the

route is affected by the mutation operation with probability 0.95. If there is no

430 1-'T' J sit uat ion , then the probability is equal to 0.01. 130th above-mentioned mu

tation probabilities were selected based on a special t uning procedure discussed

in Section 6.1.

The set of possible mutations includes exactly the same actions that are used

in the UCT approach with the exception of the non-modifying Level-0 actions,

435 which are applied by default if the mutation does not happen to occur for a

particular route or there are no other legal actions available. All other action

(with ID>l) which are legal by means of the above-defined legality conditions

have pairwise equal probability of being chosen. Actions which do not fulfill

legality conditions are not considered.

«o Actions which operate on two routes accept the second route only among

those which a.re furth er in the iteration order (thus have not been mutated

yet) . Should such a. case occur, the second route is marked as mutated and not

18

considered for mutation again in its t urn .

Mutation in Genetic Algorithm 2 (GA2)

445 ln the second genetic approach (denoted GA2), mutation is implemented in a

"classical" way as a random swap of two customers within an individual. Recall

that each individual which encodes a k-route solution is represented as a vector

of m + 2k + k' elements (c.f. Equ ation (5)), with 2/;; zeros (beginning and ending

of each route), k' elements of the form #E;, i = 1, ... , k' representing empty

450 routes of k' spare vehicles and m elements representing customers assigned to

particular trucks (see Figure 2 as an example) .

I O I 5 11 I 2 I 7 I 6 11 OI O I O I 3 I 4 I 8 I 9 I O I #E, lnE, I
slots: 3 4 5 7 8 9 10 11 12

Figure 2: A sample encoding of a chromosome composed of two routes: [O, 5, 1, 2, 7, 6, 10, OJ

and [O, 3, 4, 8, 9, OJ (k = 2 and rn. = 10) and two spare trucks: #E1 and #E2 which can be

used if neede<l (with empty routes at the moment). The numbers below the boxes d enote the

numbering of these slots (gens) which a re available for selection in the mutation operation.

In mutation operation, two different genes, corresponding to clients or spare

vehicles, are drawn randomly, with uniform probability. Depending on the re

sult, the following 4 cases a.re possible: (1). Identifiers belong to the same

455 route: the respective customers are swapped. (2). Identifiers belong to

different non-empty routes: I.he respE>ctive customers are swapped between

the routes if the operation docs not violate capacity constraints. Otherwise, the

operation fails (is ca.nceled). (3). Identifiers belong to different empty

routes: this operation is always cancclcd. (4.) Exactly one identifier be-

460 longs to a non-empty route: a. new route is commenced with the respective

customer as the unique client. The customer is removed from its previous route.

If the operation is canceled, it is repeated with a. new pair of randomly

sampled identifiers. If it fails again, then the mutation is fini shed with no

effect. The mutation operation is executed R:rJ times with probability 0.95 and

465 Rp times with probability 0.05 , where RT.1 is the number of routes with 1-TJ,

19

whereas RF denotes the number of routes without 1-TJ. Both probabilities were

optimized based on preliminary tests.

In both GA implementations a popula.tion of N = 200 individuals was main

tained for GEN = 150 generations, which is equivalent to 30 000 simulations

•10 made in each UCT run (see section 6.4 for further discussion on methods' com

plexity).

5.2. Tab'U Search approach (TS)

The main loop of the TS approach was implemented in a classical way based

on [8] and [37] with the main components (solution perturba.tion, local search,

475 and in tensifi cation) being optimized towards the DVRPwTJ specification, which

is a common approach to VRP (c.f. [26] for example). In each iteration of the

main loop (i.e. after the TJ injection), for a given number of steps M, the

current solution 80 (M) is perturbed (lea.ding to a state S'(A1)) and a local

search procedure is run in the neighborhood of S' (A1). In effect a new locally

400 optima.I solution state S"(M) is obtained and the tabu lists for a.II routes are up

dated. Furthermore, at certain intervals (Intivs) the intensification procedure

is applied which attempts to significantly enhance the current solnt.ion.

The perturbation procedure uniformly selec:Ls one of the routes and one of

the possible (legal) act ions among those defined in section 4.1, which is then

4o5 applied to that route with some probability Ptabu· If the action is of level-2

type a. compound route is uniformly selected among all other suitable routes.

In the local search procedure, for a randomly selected route ri all legal actions

which are not present on the tabu list are first identified. These actions are then

tried in random order and the first one which improves the current solution is

490 accepted and executed as a result of the local search improvement procedure.

The selected action is added to the tabu list tabiii associated with the router-;.

The intensification procedure attempts to build a solution from scratch for

all yet unserved customers using the savings algorithm [34], with the savings of

the form C(i) -+ j and j -+ 0, where C(i) denotes the current customer visited

49s in router;, 0 is the depot and _j denotes any customer other than C(i) among

20

those not yet served.

At the end of ea.eh iteration step the ta.bu lists (one per route) a.re updated

by removing the actions which were added to the list more than Stabu steps

before.

In order to make the comparison with UCT approach fair the number of

iteration steps (M) was calculated as follows:

M = UCT's;m * MAX _STEPS/(UCTL + 1) ((i)

soo where UCTs;m is the number of iterations of the UCT algoriLhm (each of them

lasting for aL most MAX_STEPS steps), and UC1'r, is the average number

of actions available among all route-states. One is added to compensate the

use of intensification procedure, which is computationally intensive, though not

performed in ea.eh step (I ntlvl was set to 300). The remaining pa.rarneters

5os Ptabu = 0.3 and Stabu = 3 '{!< (where K denotes the number of a-Ctive routes)

were set based on grid-based preliminary tuning.

5. 3. Ant Colony Optimization approach (A CO)

Our implementation of the ACO approach is inspired by a standard algo

rithm used to solve the Traveling Salesman Problem [11, 12] enhanced to take

510 into account the VRP specificity [2, 30] and furthermore the stochastic nature

of the DVRPwTJ. In each main-loop iteration , each ant starts with the cur

rent state and finds a complete remaining solution to the problem, i.e. a set

of k routes for the trucks . When the solution is found, its quality is evaluated

and the pheromone is deposited. The initial solut ion computed by the CW

515 algorithm [34] is used to set the starting number of routes (k) and deposit the

initial pheromone.

At each time step, each ant, for each route starts its search in the current

vehicle's posit.ion and finds the next customer to be added to the route based on

pheromone trails and the current dynamic cost of traversing particular edges.

,20 If the truck's capacity is not sufficient to serve any of the remaining customers

21

or there are TJ to all customers from a particular position, the truck is sent to

the depot and a new route is commenced.

The customer selection procedure chooses the next client to be visited using

the pseudo-roulette. The closest (in terms of dynam ic cost) unvisited customer

is selected as next to be visited with probability 0.05 and with probability 0.95

the next customer is chosen according to the roulette-wheel selection with the

following probabilities:

Pij = a fJ
~ij (T;j * 7/;j)

1/ij = (BASE/dij) 2 (7)

where T,j denotes the pheromone amount deposited on the edge e,;j and d.,j is

the current dynamic (traffic-aware) cost of traversing this edge. BASE is the

525 length of the initial (static) solution. The remaining two parameters: a = 2

and (3 = 3 were set based on some number of preliminary tests.

After all ants complete the current iteration, the pheromone increment is

computed for each edge e;j in the following way:

(8)
a.

where Da denotes a dynamic cost of solution s(a) found by ant a, and r5;j can

take one of the three values: 0: if e;j (/c s(a); 10: if e;j E s(a) but s(a) is

not the globally best solution; 20: if e.,j E s(a) and s(a) is the overall best

solution. After pheromone evaporation procedure we obtain the final amount

of pheromone T;_i deposited at the beginning of the next iteration:

Tij := Conf(0.l * Tij + l::,.rij) (9)

where Conf confines pheromone values to pre-defined interval [rmin, Tmax]

Once the last iteration is completed by all ants, the best solution is found. It

is used on ly for one step to move the trucks according to the schedule represented

530 by this solution. Afterwards, the best solution is forgotten and the pheromone

trails are reset in a similar way as in the beginning of the algorithm. New

TJ are distributed and the system proceeds with solving the next step of the

22

problem. Numerical tests clearly confirmed that resetting pheromone traits after

each main simulation step, i.e. when the new T J arc imposed on the routes, is

m indispensable, since the problem is highly dynami(; and the previous traces are

misleading.

ANT algorithm was run with a population of l\1 AX _A= max(lO0, 2n) ants,

for l\1AX_J iterations. l\1AXJ was set to 200 for benchmarks with n < 70 and

75 for benchmarks with n ~ 70. The above parameters were limited by the

540 assumed time allotted for reaching the solution, which was, anyway, greater

than that required by the UCT-based approach.

6. Experimental Results

In this section, the experimental setup and traffic jams' parametrization

a.re presented, followed by the results of applying the proposed approach to

545 a set of popular static CVRP benchmarks modified by imposing the TJ. The

results of the UCT method are compared with those of the two GA, ACO and

TS systems described above, and then tested for statistical significance. In

the last subsection the methods are compared on the ground of computational

complexity.

550 For each benchmark set, a certain number of instances with different realiza-

tions of the traffic was prepared and saved. Each method was tested using the

same set of saved instances during the main simulaLion2 (the actual vehicles'

movement. decision process). Concrete realizations of traffic arc not known to

the methods beforehand. Therefore, there is a significant degree of uncertainty

sss and dynamism introduced into the problem.

Ea.eh main simulation is performed in discrete time steps. The movement

of vehicles is performed simultaneously by means of atomic state update oper-

2The word simulation is used in the paper in two meanings. Firstly, it denotes an internal

UCT simulation, secondly it refers to the actual decision process regarding vehicles' movement.

These two situations should be easily recognizable by the context, but in the case of potential

ambiguity a word m.a'in or actual will be added to sinmlat-ion so as to point the latter case.

23

ations, during which each active vehicle is moved from its current customer (or

depot) to the next scheduled one. In each step, all vehicles which arc not located

5so in a depot must be moved. Consequently, an upper margin for the number of

steps in a simulation is equal to the number of customers plus one (return to

the depot).

6.1. Experimental set-up

A diversified set. of static benchmark problems downloaded from Lhc CVRP

sos webpage [:n] and transformed into CVRPwTJ instances by adding uniformly

distributed TJ at each time step was used in the experiments. More precisely for

a given edge a, the noise at time step t was selected with probability distribution

Pt(a), intensity J1(a) and duration L1(a), within the following ranges :

P1(a) E {0.02; 0.05; 0.15}

510 It(a) = UrN1·[lO, 20]

Lt(a) = UINr[2, 5]

where UrNr[a, b] denotes random uniform selection of any integer x such

that a::; x Sb.

Please recall, however, that as stated in section 2, in order to prevent the

575 noise intensity from explosive growth, if a was already jammed at time l (as

a consequence of TJ distribution in one of the previous time steps) then when

selected at time t, the noise would not change its intensity (i.e. Ii(a) := It-i(a)),

and only the length ofTJ on that edge would be increased by L1(a) (i.e . Lt(a) :=

L1(a) + Lt-1(a)).

580 The set of tested benchmarks was chosen blindly, however, the final selection

reflects qui te significant variability in sizes and the estimated numbers of routes

in the optimal solutions. Also the distributions of clients requests' sizes and

thei.r geographical (2D) locations are varying from benchmark to benchmark,

including examples of large benchmarks with uniformly distributed customers

58, (C-n150D-k12) or more clustered ones (Tai-n150b-k14).

The UCT approach is parameLerized by one coefficient only, the so-called

exploration constant, denoted by C in (4). In games domain, this parameter is

24

usually set to QMAX or v'2QMAX where QMAX is the maximum possible nu

merical outcome (score) of a single simulation. Since the best score is unknown

soo in our problem, we propose to replace it with the cost of the initial solution

(assuming no traffic) which is a good approximation of tbe best possible result.

In order to trace the intrinsic properties of UCT application in this new domain,

instead of using v'2 as a pre-selected multiplier we tested values between 0.5 to

2.0 with step 0.1 as well as a few greater ones as candidate multipliers. Inter-

s•s estingly, it came out that the best results were observed within the whole range

of [0.7, 1.8] interval without the clear winner. The differences among the results

for parameters belonging to this interval were statistically insignificant. This

observation, together with promising numerical results, is a strong indication of

flexibility and robustness of the proposed method, as it can perform effectively

600 within a relatively wide range of its steering parameter selection. After a closer

examination of this initial results we decided to use both boundary values, i.e.

0.7 and 1.8, for t he results presentation, as they exhibit sl ightly distinct patterns

of action distributions.

The GAl approach operates with two parameters, which denote the proba-

•os bilities of mutation for a currently jammed and non-jammed routes, respectively.

A dedicated optimization experiment was conducted to find the best settings of

these parameters. To this end we have performed grid search checking the Carte

sian product of the set {l, 0.95, 0.85, 0.7.'i, 0.65} for the first parameter and the

set { 0, 0.005, 0.01, 0.02, 0.03 , 0.04 , 0.05 , 0.1, 0.15} for the second one. The best

610 results were found for the pair { 0.95, 0.01}.

6. 2. Numerical results

For each of 57 pairs (benchmark, P) 50 experiments were performed for

all five approaches (UCT, GAl , GA2, ACO and TS) . In a given experimental

trial (one out of 50) the same TJ realizations were used for all tested methods,

615 and certainly different realizations were used in different trials. It should be

underlined Lhat these TJ realizat.ions were not known t.o t.he tested algorit.hms

beforehand (i.e. unless the traffic jamR actually materialized in a given time

25

step). Hence, solving the CVRPwTJ required truly on-line and self-adaptive

probabilistic planning capabilities. The main results arc presented in Table 1.

620 Due to the lack of space in Table l, we did not show results of the "static so-

lution", which consists in applying TJ realizations to the initial solution without

any routes' modifications. Inferiority of such approach is a foregone conclusion

with a few-times longer tours, in average, compared to the winning scenarios.

For the same reasons (space savings), for each GA implementation only the re-

625 suits obtained with a more efficient selection of kl (which happened to be kl = 4

for both GAl and GA2) are presented.

On a general note, it can be seen that UCT and GAl are undisputable

winners of this comparison. Out of 57 combinations of a benchmark and prob

ability P, when counting multiple winners when two or more methods tied the

610 best result, GAl performed most effectively in 18 cases, followed by UCT-0.7

and UCT-1.8 (15 and 13 wins, respectively), GA2 (12 wins) and ACO (6 wins).

TS was only tied for 2 wins (but, at the same time, was also very rarely the

worst method). Since the above-mentioned general statistics may be biased the

selection of methods used for presentation we also compared the 3 best per-

•1s forming methods directly. In this pairwise comparison the winner is UCT-1.8

scoring 30 : 25 : 2 (win:loss:draw) against GAl, 32 : 23 : 2 against UCT-0.7.

The outcome of GAl vs. UCT-0.7 equated 24 : 31 : 2 (the advantage of UCT-

0.7). All 3 results are statistically significant (section 6.3 discusses this topic in

more detail). While the above statistics dearly confirm a dominance of UCT

Mo and GAl over the competitive methods in terms of quality, what seems to be a

truly salient feature of the UCT approach is the stability of results.

When standard deviations (for 50 tests in each of 57 cases) are compared UCT-

1.8 leads with 25 wins, followed by UCT-0.7 (24 wins), GAl (7 wins) and TS

(1 win). GA2 and ACO did not win in any of the test cases. The standard

,,s deviation of both UCT variants is, on average, as low as 7% only while the

same measure for other methods yields 9% (GAl and TS), 15% (GA2) and 18%

(ACO).

Stability of the UCT method seems to be a real advantage in the real-world

26

DVRP scenarios, and beyond dynamic transportation problems. We believe

6,o that repeatability of results is a crucial asset of the proposed method as it makes

the outcomes more reliable and more feasible from the rea.l-world deployment

viewpoint. The advantage of UCT-0.7 becomes more visible in the case of high

TJ probability (P = 0.15) when the ability of on-line adaptation to the new

traffic conditions is a critical facet. It stems from the experimental results (9

655 wins out of 19) that adaptability of UCT with a lower exploration factor to the

dynamic changes in the problem parametrization is visibly greater than in the

competitive methods. UCT-1.8 and GAl came second in this classification, tied

for 4 wins only.

Generally speaking, the action-based methods led to visibly better results

660 than the remaining two approaches. In particular, UCT and GAl, which are

both action-driven and involve testing multiple variants in a given situation, i.e.

by building a game-tree (in case of UCT) or managing a population of solutions

(in case of GA 1) significantly outperform the other approaches. TS, which is

also based on actions, proved to be not as strong method probably because it

665 does not maintain a set of candidate solutions, but instead traverses the solution

space with a single path.

The above-mentioned differences in methods' suitability to particular amount

of uncertainty in the problem formulation, imposed by the occurrence of TJ,

stem from various expansiveness of local optimization operators implementation

6rn in the respective methods. Observe that in the case of P = 0.02, the quality of

initial solution (which is high when using CW method [34]) plays a crucial role

in the final result, due to a low degree of problem's dynamism. In the case of

higher amount of uncertainty GAl and UCT arc undoubtedly the best suited

among all tested methods. On the other hand, despite potentia.l incentives of

675 having a well-suited repertoire of actions, GAl cannot compete on equal terms

with the UCT in the highest P regime. Along with the increase of the amount

of randomness in the problem, the advantages of the UCT approach (related to

its natural adaptability due to simulation-based operational scheme and inter

nal way of maintaining a balance between exploration and exploitation) start

27

680 to gradually manifest themselves.

6. 3. Statistical significance

The results presented in previous subsection showed an advantage of UCT-

0.7, UCTl.8 and GAl over the remaining tested approaches and additionally

some upper-hand of both UCT methods over GAl (in further one-to-one direct

68, pairwise comparison).

In order to verify whether the differences in results are in fact significant

double-sided paired t-Studcnt tests with signi,ficance le1Jcl a =0 . .95 (p-value=0.05)

were performed with HO hypothesis stating that the differences between aver

ages are statistically insignificant. Ten test was performed for all possible pairs

600 of methods, including GA2 approach (15 cases).

When considering the average values over all 57 test cases the differences

between UCT-0.7, UCT-1.8, GAl (TOP3) are not significant. All the remaining

pairwise differences are statistically significant, except for the case of GA2 vs.

ACO. For P = 0.15 all pairwise differences are statistically significant except for

69s the case of GAl vs. TS. In the case of P = 0.05, the differences within TOP3

are significant, and the remaining differences are not significant, except for the

cases GA2 vs. TS and GA2 vs. ACO. Finally, for P = 0.02 all differences within

the set of 4 methods (TOP3 and GA2) are insignificant and the rest of the cases

presents significant differences, except for GAl vs. TS.

,oo In summary, it could be concluded from the above that the TOP3 meth-

ods are generally significantly better than the remaining 3 approaches and in

the case of P = 0.15 the UCT approach addit ionally significantly outperforms

GAl. In the case of P = 0.02 the TOP3 set should be extended by the GA2

implementation which is not significantly different the leading approaches.

,os 6.4, Compntat·ional complexity

In this section insights into computational efficiency of the examined ap

proaches are presented. First of all , for a given benchmark set, the main sim

ulation lasts for about the same number of steps for all considered methods.

28

Likewise applying the result of each step is computationally comparable across

110 all the methods. Consequently, what effectively matters in the comparative

analysis is the cost of a single core iteration , which in each case is implemented

as a kind of a local search procedure.

The most common ground for estimating the complexity of local search for

both population-based and simulation-based methods is the number of the FFE

m (Fitness Function Evaluations). For the UCT approach, the number of FFE is

equal to the number of simulations in each step (which equals 30 000) multiplied

by the number of steps . In both GA implementations, in each step the number

of FFE is equal to the number of generations (GEN = 150) multiplied by

the number of individuals (N = 200), which is equal to 30 000 to match the

120 complexity of the UCT approach. The number of iterations in TS was also set

accordingly, to make the numbers of FFE in TS and UCT equal, as defined

in eq. (G) . In the case of ACO, the number of FFE in each step is equal to

the number of ants (M AXA) multiplied by the number of iterations (1\1 AX1).

Although AfAXA * MAX1 is lower than 30000 (N · GEN in GA) these two

ns parameters were really pushed to the limits, since ACO is a significantly slower

method (due to the way it constructs a solution) and it would be impractical to

level up these parameters to the evolutionary ones or TS. The number of steps

which is derived by the longest route created for a particular problem may vary

between benchmarks, but for a given instance these values are close to each

,,o other across all tested approaches. In effect, the estimated complexities of the

methods, measured as the number of FFE evaluations, are fairly comparable.

In terms of real running times, it can be observed that ACO is significantly

slower than the remaining approaches. Among GAl, UCT and TS, which all

share a common set of route modification operators, the UCT is the fastest, at

rn the expense however of higher memory requirements (since the method stores

each modification in memory, many repeated calculations are avoided), but only

by a small margin. Finally, since GA2 uses the simplest form of mutation it

is slightly faster than GAl, UCT and TS. Overall, in practice the differences

among these four approaches are negligible.

29

1<• 6. 5. Statistics of chosen actions

Among the two genetic methods, GA2 applies a classical form of mutation,

commonly used in the CVRP literature. The mutation operator in GA l, how

ever, is a direct implementation of the set of actions utilized by the UCT method

and, to the best of our knowledge, was never proposed before. Similarly, the

745 neighborhood structure used by TS is induced from the same set of act ions

that is utilized by both UCT and GAl. This common selection of possible ac

tions/movements in the search space provides a unique opportunity for a direct

comparison of the UCT, TS and GA methods in terms of their internal under

lying activity pa/;lerns. To this end, a thorough comparison of the frequency of

150 selection of particular act.ions in the three met.hods was performed. For each of

the three values of P the numbers of particular actions' selections (from AO to

A12) were summed across all benchmarks for GAl, TS, UCT-0.7 and UCT-1.8

(in both cases of UCT, separately for the simulation phase (denoted by UCT

sim) and decision (moving) phase (denoted by UCT-play). Severa.I conc1usions

155 can be drawn from analysis of this action-selection data.

(1) : while differences between both UCT versions in the play (decision) phase

are negligible, when it comes to the simulation phase the action selection pat

terns differ in a few aspects. First of all, with higher value of C the method

prefers more explorative beha.vior and hence the usage of action AO ("move a.long

160 the non-jammed route, as planned") is visibly lower for U CT-1.8. The usage of

AO by UCT-0.7-sim is equal to 63.4%, 80.6% and 87.3% for P = 0.15, 0.05, 0.02,

respectively, whereas the respective values for UCT-1.8-sim are equal to 55.9%,

67% and 72%. Leaving AO aside, the next most frequently used actions by

UCT-sim were A4, A6, AlO (P = 0.15), AS, A6, A7 (P = 0.05) and A6, A7,

765 A4 (P = 0.02).

(2): the UCT act ion-selection profiles clearly differ between UCT-sim and UCT

play. This is especially apparent when comparing the usage of AO. This action

is played by both variants of UCT, on average, in 73%, 88% and 94% of the

cases for P = 0.15, 0.05, 0.02, respectively. There are two main reasons for

110 this discrepancy. First of all, statistics of UCT-sim actions a.re collected at

30

several levels of the UCT trees while UCT-play represents the statistics of the

exactly those actions that were performed. Second of all, the legality of actions

frequently tested during simulations might have changed at the decision-taking

time, making them impossible to be applied to the real route modification. And

m conversely, some less frequently tested actions might have apparently become

the most favourable ones due to the changes of legality conditions. Apart from

AO, the most frequently played actions by UCT were A4, A3, A5 (P = 0.15),

A4, A3, A2 (P = 0.05) and A4, A3, A6 (P = 0.02).

(3:) vast preference of GAl for applying action AO (if available) can be observed,

100 especially for lower values of P. This action is selected by GAl on average in

91.3%, 95.68% and 96.9% of cases, for the respective values of P. While such

a preference for exploitative behavior (follow the planned non-jammed edge if

possible) proves sufficient for relatively stable situations (P = 0.02, 0.05), it

apparently uecomes not adequate for the cases of larger amount of noise (P =

105 0.15), where more exploratory attitude is desired. In such cases, UCT seems

to maintain the exploration-exploitation balance more efficiently. In contrast

to GAl, TS chooses AO only in 57.3%, 71.3% and 76.5% of the cases, for P =

0.15, 0.05, 0.02, respectively, but instead it prefers actions A6 and A7 visibly

more than the other two methods. The combined usage of A6 and A7 by TS

rno equals 17.2%, 19.3% and 19.4%. For comparison, UCT chooses them in 9.4%,

9.2% and 8.4% of the cases, and GAl in 2.2% only (regardless of the set.ting of

P).

(4): while generally the usage of complex actions involving two routes (A9-A12)

is not impressive in the absolute figures it is, nevertheless, visibly much higher in

105 the case of UCT. For P = 0.15, the combined usage of actions A9-Al2 equals 9%

(UCT-1.8-sim), 8.6% (UCT-0.7-sim), 6.6% (TS), 5.2% (UCT-0.7-play and UCT-

1.8-play), 0.5% (GAl). This distinction most probably constitutes one of the

decisive factors of the UCT dominance in bigger and/or more noisy benchmarks.

Even though complex actions are not used frequently, they often serve as a last

eoo resort instance when the current solution process is trapped in a local minimum

with all relevant edges being jammed. Due to substantial routes' modification

31

actions A9-Al2 allow for making a "long jump" in a solution space where new

options may possibly emerge.

(5): besides actions AO, AG, A7, all three methods assign higher than average

sos preference to applying action A4 ("searching for the first customer with non

jammed route") - especially in the regime of P = 0.15.

In summary, the above analysis confirms high flexibility of the UCT approach

to DVRPwTJ and its generally higher adaptability to the temporal changes in

the problem definition compared to GAl and TS. This better overall suitabil-

810 ity of UCT should, most probably, be attributed to its frequent exploratory

behavior manifested by skipping the obvious choice of AO option and search

ing for other possibilities, as well as, by applying complex actions involving

two routes which consequently introduce large changes in the current partial

solution. Despite efforts that had been devoted to accomplishing a similar op-

a1s erational scheme in GAl and TS implementations we were unable to find a

suitable parametrization that would lead to the qualitatively similar activity

pattern in the case of these two algorithms.

7. Conclusions and Directions for Future Research

This pa.per proposes a. new approach to solving the Capacitated Vehicle

"' Routing Problem with Traffic Jams. Presented solution relies on the UCT al

gorithm, which was hitherto applied mainly in game domain (in particular to

games for which a compact and meaningful evaluation function is not known)

and to Partially Observable Markov Decision Processes in the area of proba

bilistic planning. Application of UCT to solving CVRPwTJ required suitable

82s problem representation (in the form of a forest of UCT trees) and specific def

inition of legal actions to be performed in these trees in order to prevent the

method from explosive growth of memory requirements.

The UCT-based results were successfully compared with Ant Colony Op

timization method, Tabu Search and two approaches employing Evolutionary

830 Algorithms. All five methods were tested on a. selection of diversified widely-

32

used benchmark problems. The advantage of proposed UCT approach was

manifested in the strongest way in the case of the largest benchmark prob

lems and/or higher levels of uncertainty (imposed into the problem definition

by means of stochastic occurrence of traffic jams).

835 Further investigation into the issue of action-selection schemes of UCT, TS

(which uniformly selects one of the legal actions in its perturbation proce

dure) and GAl (with the mutation range equivalent to the set of UCT ac

tions) revealed interesting differences between operational preferences of these

approaches. In turned out that UCT is more leaned to explore possible changes

040 in the a~signed schedules even though the current schedule does not suffer from

the existence of the T J on the edge to be traversed (action AO is available).

Furthermore, the relative usage of complex actions (involving two routes) is vis

ibly higher in the UCT performance scheme compared to the cases of GAl and

TS. Most probably, these complex actions (A9-A12) serve as the last resort in

045 the highly jammed situations in which simple, local improvement schemes are

ineffective. It seems reasonable to say that the two above-mentioned operational

differences are largely responsible for the UCT upper-hand in the case of high

TJ probability and/or large benchmark instances.

We believe that UCT, when applied to CVRPwTJ, has two important merits

050 which were manifested during the experiments. First of all, the method is

flexible in terms of parameterization. It is easy to apply the educated guess

approach and effectively set parameter C in eq. (4), which is adually the only

method's parameter. What can be even more important is that within a wide

range of reasonable selections of C the results arc qualitatively comparable.

055 While the internal simulation pattern differs depending on particular setting of

C, the final decisions (appl ied actions) are repeatable within the whole range of

tested C values.

The other asset of the proposed method is the repeatability of results. When

compared to GAl, TS and ACO the average standard deviation of the UCT

860 across all tested benchmarks is lower by at least 20%.

Our current focus is on applying the UCT approach to solving other types of

33

stochastic transportation problems, in particular the so-called Vehicle Routing

problem with Dynamic Requests, where only part of the customers' <lestinations

an<l demands is known beforehand and the remaining information is gradually

s,5 revealed to the dispatcl1er during the working time hours. This problem formu

lation seems to be well-suited for the UCT approach as it requires prediction

(or simulation) of unknown demands' distributions in both time and space di

mensions.

Acknowledgment

010 The research was financed by the National Science Centre in Poland grant

number DEC-2012/07 /B/ST6/01527.

References

[1] M. M. Abdulkader, Y. Gajpal, T. Y. E!Mekkawy, Hybridized ant colony

algorithm for t.he multi compartment vehic:le routing problem, Applied Soft

015 Computing 37 (2015) 196 - 203.

[2] J. E. Bell, P. R.. McMullen, Ant colony optimization techniques for the

vehicle routing problem, Advanced Engineering Informatics 18 (1) (2004)

41- 48.

[3] C. Browne, E. Powley, D. Whitehouse, S. Lucas, P. Cowling, P. Rohlfsha-

000 gen, S. Tavener, D. Perez, S. Samothrakis, S. Colton, A Survey of Monte

Carlo Tree Search Methods, IEEE 'n·ansactions on Computational Intelli

gence and AI in Games 4 (1) (2012) 1- 43.

[4] D. Cattaruzza, N. Absi, D. Feillet, T. Vidal, A mernetic algorithm for

the multi trip vehicle routing problem, European Journal of Operational

00s Research 236 (3) (2014) 833 - 848.

[5] H.-K. Chen, C.-F. Hsueh, M.-S. Chang, The real-time time-dependent vehi

cle routing problem, Transportation Research Part E: Logist ics and Trans

portation Review 42 (5) (2006) 383- 408.

34

[6] N. Christofides, A. Mingozz, P. Toth, Exact algorithms for the vehicle

ooo routing problem, based on spanning tree and shortest path relaxations,

Mathematical Programming 20 (1) (1981) 255- 282.

[7] G. Clarke, J. Wright, Scheduling of vehicles from a central depot to a

number of delivery points., Operations Research 12 (4) (1964) 568- 581.

[8] J.-F. Cordeau, M. Maischberger, A Parallel Iterated Tabu Search Heuristic

e9s for Vehicle Routing Problems, Computers & Operations Research 39 (9)

(2012) 2033 - 2050.

[9] G. B. Dantzig, J. Ramser, The truck dispatching problem, Management

Science 6 (l) (1959) 80- 91.

[10] A. V. Donati, R. Montema.nni, N. Casagrande, A. E. Rizzoli, L. M. Gam-

900 bardella, Time dependent vehicle routing problem with a multi ant colony

system, European journal ofoperational research 185 (3) (2008) 1174 -1191.

[11] M. Dorigo, Optimization, learning and natural algorithms, Ph.D. thesis,

Politecnico di Mila.no (1992).

[12] M. Dorigo, L. M. Gambardella., Ant colonies for the travelling salesman

90s problem, BioSystems 43 (2) (1997) 73- 81.

[13] S. Eilon, C. Watson-Gandy, N. Christofides, Distribution Management.:

Mathematical Modelling and Practical Analysis, 1st ed., Griffin, 1976.

[14] B. Eksioglu, A. V. Vura.l, A. Reisman, The vehicle routing problem: a.

taxonomic review, Computers & Industrial Engineering 57 (4) (2009) 1472

910 - 1483.

[15] Z. Fehlman, C. Domshlak, On Monte-Carlo tree search: To MC or to

DP?, in: Proceedings of ECAI-14. 21st European Conference on Artificial

Intelligence, 2014.

35

[16] M. Fisher, R. Jaikumar, A Decomposition Algorithm for Large-scale Vehi-

91, cle Routing, Dep. of Decision Sciences, Wharton School, Univ. of Pennsyl

van ia, Philadelphia., 1978.

[17] S. Gelly, D. Silver, Monte-carlo tree search and rapid action value estima

tion in computer go, Artificial Intelligence 175 (11) (2011) 1856- 1875.

[18] K. Ghoseiri, S. F. Ghannadpour, Multi-objective vehicle routing problem

020 with time windows using goal programming and genetic algorithm, Appl.

Soft Comput. 10 (4) (2010) 1096- 1107.

[19] T. Keller, P. Eyerich, PROST: Probabilistic planning based on UCT,

in: Proceedings of International Conference on Automated Planning and

Scheduling, 2012, pp. 119- 127.

92s [20] M. Khouadjia, E. Alba, L. .Jourdan, E.-G. Talbii, Multi-Swarm Optimi7,a

tion for Dynamic Combinatorial Problems: A Case Study on Dynamic

Vehicle Routing Problem, in: Swarm Intelligence, vol. 6234 of LNCS,

Springer, Berlin / Heidelberg, 2010, pp. 227- 238.

[21] G. Kim, Y. S. Ong, T. Cheong, P. S. Ta.n, Solving the dynamic vehicle

930 routing problem under traffic congestion, IEEE Transactions on Intelligent

'fransporLa.tion Systems 17 (8) (2016) 2367--2380.

[22] L. Kocsis, C. Szepesvri, J. Willemson, Improved monte-ca.rlo search, Work

ing Pa.per (2006).

[23] A. Kok, E. Hans, J. Schutt.en, Vehide routing under time-dependent travel

935 times: the impact of congestion avoidance, Computers & Operations Re

search 39 (5) (2012) 910- 918.

[24] A. Kolobov, Mausam, D. S. Weld, LRTDP versus UCT for online prob

abilistic planning, in: Proceedings of the Twenty-Sixth AAAJ Conference

on Artificial Intelligence, 2012, pp. 1786- 1792.

36

"'° [25] J. K. Lenstra, A. R. Kan, Complexity of vehicle routing and scheduling

problems, Networks 11 (1981) 221- 227.

[26] S. C. Leung, X. Zhou, D. Zhang, J. Zheng, Extended guided tabu search and

a new pa.eking algorithm for the two-dimensional loading vehicle routing

problem, Computers & Operations Research 38 (1) (2011) 205 - 215.

945 [27] J. Maridziuk, Knowledge-Free and Learning-Based Methods in Intelligenet

Game Playing, vol. 276 of Studies in Computational Intelligence, Springer

Verlag, Berlin, Heidelberg, 2010.

[28] J. Maridziuk, A. Zychowski, A memetic approach to vehicle routing problem

with dynamic requests, Applied Soft Computing 48 (2016) 522 - 534.

,so [29] R. Masson, S. Ropke, F. Lehud, 0. Pton, A branch-and-cut-and-price ap

proach for the pickup and delivery problem with shuttle routes, European

Journal of Operational Research 236 (3) (2014) 819 -- 862.

[30] S. Mazzeo, I. Loiseau, An ant colony algorithm for the capacitated vehicle

routing, Electronic Notes in Discrete Mathematics 18 (2004) 181- 186.

9s5 [31] NEO. Networking and Emerging Optmization,

http://neo.lcc.uma.es/vrp /vrp-instances / capaci tated-vrp-instances/.

[32] M. Okulewicz, .J. Maridziuk, Application of Particle Swarm Optimization

Algorithm to Dynamic Vehicle Routing Problem, in: Artificial Intelligence

and Soft Computing, vol. 7895 of LNCS, Springer Berlin Heidelberg, 2013,

960 pp. 547- 558.

[33] M. Okulewicz, J. Ma.ridziuk, Two-Phase Multi-Swarm PSO and the Dy

namic Vehicle Rouring Problem, in: IEEE Symposium on Computa.t.iona.l

Intelligence for Human-Like Intelligence, IEEE Press, 2014, pp. 86- 93.

[34] T. Pichpibul, R. Kawtummachai, An improved cla.rke and wright savings

965 algorithm for the ca.pa.cita.ted vehicle routing problem, Science Asia. (2012)

307-318.

37

[35] Stanford University, Stanford gamemaster online repository,

http:// gamcmastcr.stanford .cdu/ showgamcs (2012).

[36] M. Swiechowski, J . Mari.dziuk, Self-adaptation of playing strategies in gen-

•rn eral game playing, IEEE Transactions on Computational Intelligence and

AI in Games 6 (4) (2014) 367-381.

[37] E. Taillard, P. Badeau, M. Gendreau, F. Guertin, J.-Y. Potvin, A Tabu

Search Heuristic for the Vehicle Routing Problem With Soft Time Win

dows, Transportation Science 31 (2) (1997) 170- 186.

o,s [38] D. Tas, M. Gendreau, N. Dcllacrt, T . van Wocnscl, A. de Kok, Vehicle

routing with soft t ime windows and stochastic travel times: A column

generation and branch-and-price solution approach, European Journal of

Operational Research 236 (3) (2014) 789 - 799.

[39] F. Teytaucl, 0. Teytaucl, Creating an upper-confidence-tree program for

oso havannah, Advances in Computer Games (2010) 65- 74.

[40] P. Toth, D. Vigo, Special issue on vehicle rout ing and distribution logist ics,

European .Journal of Operational Research 236 (3) (2014) IFC -.

[41] K. Wal~dzik, .J. Mari.dziuk, An Automatically-Generated Evaluation Func

tion in General Game Playing, IEEE Transactions on Computational In-

••s telligence and AI in Games 6 (3) (2014) 258-270.

[42] Y. Xiao, A. Konak, Green vehicle routing problem with time-varying traf

fic congestion, in: Proceedings of the 14th INFORMS Computing Society

Conference, 2015, pp. 134- 148.

38

Table 1: The average values across 50 trials. For GAl and GA2 methods the results for better

performing variant are presented, which in both cases was that of k' = 4. For each benchmark,

there are 3 lines of results: for P = 0.02 (top), P = 0.05 (middle) and P = 0.15 (bottom) .

Benchmarks arc shown in two groups: the left one (columns 1-7) and the right one (columns

8-14). The best results are bolded. The la.st row presents the number of winning ca.ses for

each method across all 57 benchmark cases and for 19 of them with the highest degree of

uncertainty (P = 0.15).

Set GAl GA2 UCT UCT Ant TS Sot GAJ GA2 UCT UCT Aut TS

k' 4 k' = ,1 0.7 1.8 k' = :J k' = •I 0.7 1.8

P-1119 24-L(j 230.0 2,1G.2 2-M.U 2S1.2 2G2A F-n-1l:i 1,10.0 733.G 775.C 77,1,~ 7Gl.5 775.2

k= 2 2G3.1 242.4 2G!J.G 2lill.3 311.8 :151.2 774.7 80 U'i 82S.H s:m.7 831.1 S-!7.8

324.0 ·110.i 338.2 340.!J 391.2 373.G 10-10.7 lfl0.J.4 1037.2 10-18.G ! 138.8 1128.!J

P-ntl ::i (i,)2.7 575.0 G(),1.0 G0I.0 (107.G 622.3 f-11135 1224.0 t~H5.!J 1285.2 121-!G.3 2!J7G.6 12!1G.0

G!J4.!J ti5H.fJ G·l~.G 64C.8 GS2.0 Gf>'l.3 k= 7 1412.6 1741.!J 1403.8 J4()(i.2 321 l..::! 1434.2

87.S.2 1148.4 787.7 781.8 {J4!1.7 851.0 ld&G.1 3838.5 1810.3 1872.5 3!163.7 l!JJG.U

E-11GI GC!J.7 572.8 G15.4 6\[,.fj Gl4.I G43.0 F-117'2 276.J 308.0 2G8.7 2GS.8 2!!2.3 26!1.2

713.,5 G8G.G GG5.7 (i(i7.I 6W.l G75.G k=5 312.(i -131.1 292.0 200.0 ,12,1.2 :m:rn
U28.7 J:Jo:u 8-17.1 845.•1 789.0 8HG.G 427.2 !)[7.G 372. 7 371).2 537.G ~~!16.0

A-1154 1253.7 1216.1 1258.3 12.::i4.9 1338.7 1310.2 lni-n7.::i11. li78.5 1778.5 1778.5 1778.5 2257.l 17i8.5

k = 7 13'lG.2 J.333.3 1355.0 13-17.5 !,J5GA l3!J5.5 k '""' JO 1808.7 187:S.{i l/H3.5 18'10.;, 2•1'17.8 lS!~J.0

1G41.!J 2\r,5.G 1G34.5)(i47,f; lb2!l.0 17!11),8

A-nU9 1298.G 1185.0 12GJ.5 12G[,.2 l:HJ5.U 1:t32Ji tni-n73b 13\[i.!l 1203.4 l/414.l 1•110.8 2025.I M~H.0

k = !I J3g4_!J l.t.',7.,'.i 1:i8r,.a 1377.3 1538.1 1413.0 k= 10 143G.1 l•llJ!l.,l 1540.G 1540 . .'i 22mJ.2 IG04.5

l793.0 '2t.>7'.!.0 17:;5.5 1731.8 '.W!J0.1 1815.5 :21G2.u :rnm.:2 :.WLGA 2023.G :,mm.u 1.1.25.7

E-1170 8:27.7 7.'ilU 779.;j 779.0 746.U 87/U l'f1Ul7.'i 527.0 54:1.5 iJ77.:{ 575.ti (i:!7.Li G~0.4

k= 7 !J2,1.U 1001.U 83-1.8 83,J.7 82G.7 1059.0 k= IU U48.0 579.l. UhG 017.0 ti-35.4 037.8

1180.7 2187.1 1083.G lOri&.li 1037.2 lJ3:2.7 G87.1 93tUI 78~.!I 11.-13.!J 1.-1!18.2 !.'!•n.:l

A-u8U 1953.2 17GG.l 1938.li HJ:.19.3 l!JU'i.l W:l9.[i tfl.i-11JUU11 :!l.l.1.U:! 2178.0 :l:ll.i7.4 l:.W:UJ 3:.!31.i.5 l:.18:l.G

k= IO :lUG2.3 :m:U.'.O :l070.U :lOU.J.8 2003.3 :ll!M.4 k--"' 12 241G.4 WU7.!I l/123.!J 24:lVI :w;.17.4 :l.iOI.U

261.'i.l 3G9U.2 2U78.G 2r.88.-l 31GJ.8 2G1J.1 3J62.!J 1!XH.G 3081..r. ;HJS.U :l3W.G .12G2.8

P-11!0! 89fl.8 10.:i3.!:i 8 1.3.7 OJ!:i.0 8'1G.8 850.9 tni-ulOOl, 2HO.G 2HO.G 21-10.G 21-10.G 2!l7:rn 2 1-1 0.G

k ·l I0,'.,8.3 t?::!8.2 8!l3.3 8!ll.G 8!l3.8 !)27.1 k t2 23:22.,J 2::i!Xl .• 1 231;;.3 231G.3 3155.!J 2.%1.7

112G.G 3711.8 11!)4. 7 1201.0 1375.0 1235 . .'.i 3121.l ,!(i70.1 2!)04.2 2!J31.8 3730.G 3051.!l

C-nlWD 121<,7.!l 1281.·I 120:U 1202.0 J2!J7.0 1211;_7 vqui!OO 441.:i 1fif,.1 il!JD.3 ·10G.8 ,JG9.3 302.G

k 12 1120.7 !!)37.1 1318.8 1318. 7 1392.Ei 1379.9 k tl: 486. 7 G7G.G G3G.8 532.8 !:.38.3 .JGJ.O

18GCi.2 112G.2 17:m.2 J8Hl.2 W8i.fi 18Gli.8

TAi-ulr.OI, 2i61.3 200!',.i :\Ol (i. 1 3021.:", 4:Wi . .'", :11n.2

k= 14 3150.4 4271.i 32!,fUI :1270.1 41':14.3 :1 ,1:uu;

B"1lt

Overnll

4352.4 079.-l.9 4.1.-l~.O -<M4:l.!, 70/<1.4 4;ifM.2

18 12 15 !J

39

#f1PSI

P = l5

GH.5 1073.l 72l.!i 718.::i 87'.?.!) 701.0

