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Abstract 

A procedure for approximating fractional--order systems by means of integer--order state-space models is 
presented. li is based on the rational approx.imation of fractional-order operators suggested by Oustaloup. First, 
a matrix differentia] equation is obtained from the original fractional--order representation. Then, this equation is 
realized in a state-space form that has a sparse block--companion structure. The dimension of the resulting integer­
order model can be reduced using an efficient algorithm for rational L2 approx.imation. Two numerical examples 
are worked out to show the performance of the suggested technique. 

I. INTRODUCTION 

Many natura] and artificial systems can profitably be modelled or controlled by means of fractional­
order systems [l] , [2] , [12]. lndeed, there is already a vast and qua]jfied literature on this subject [7] , [3], 
[15], [14] so that further motivation for their study is superfluous. 

One drawback of the use of fractional--0rder models is the irrational nature of their transfer function and, 
therefore, the infinite dimensionality of their state space. Therefore, various methods have been developed 
to obtain from these models other models that are more suitable for simulation and control purposes. 
Most of them are ba~ed on the approximation, possibly over a suitable frequency range, of the fractional 
order system by means of an integer-order model (see, e.g., [18], [20], [23], [11], [21]. 

This paper, which expands and updates a previous paper of the same authors [10], adheres to the same 
philosophy. Precisely, starting from the original state-space form of the original fractional-order system 
(Section II) and applying the integer--0rder approximation of a fractional operator suggested in [20], a 
matrix fraction description of the integer-order approximating model is obtained (Section III). From this 
model it is easy to derive a block-companion integer-order state-space representation that is particularly 
suited to simulation (Section N). However, the dimension of this model increases with its accuracy, w ruch 
can make the design of a controller difficult. To reduce this dimension without diminishing appreciably 
the response accuracy, resort can be made to the efficient algorithm for L2 model reduction suggested in 
[] (Section V). Two numerical examples taken from the literature confirm the validity of such an approach 
(Section VI). 



II . BASIC NOTIONS 

Lei us briefly recall the basics of fractional--order system representation. Various definitions of fractional­
order operators have been proposed over the years; it suffices to mention those of Griinwald-Letnikov, 
Riemann-Liouville and Caputo [19]. The last one is probably the most frequently used in engineering 
applications. Indicating by D>.z (t) = ~;: , A E IR+, the Caputo derivative of the time-dependent variable 
z ( t), its Laplace trans form is 

[>.) - ! . 

2'{D>.z(t)} = s>. 2'{z(t)} - L s>.-,- ,:t: (o) , 
i = O 

where [>-] denotes the integer part of A. 
The standard input--output representation of a time- invariant fractional--order system is: 

p 

y(t) + :Ea,D"' y(t) = Lb,Dfi' u(t) , 
i= l i= l 

where, as usual, u(t) and y(t) denote the input and output functions, and ai , b, E IR, ai, /3, E IR+ . 

(!) 

(2) 

The system transfer function G(s) can imrnediately be obtained by transforming (2) according to (I) with 
zero initial conditions: 

G(s) = b(s) = I:;=~ b, s13• • 
a(s) 1 + L i= l ais"'• 

(3) 

Clearly, if all powers in (3) are multiples of the same real number p E (O, 1) (which qualifies the system 
as a comrnensurate--order one) , (3) simplifies to 

G s = I:f=1 bi (sP )' 
( ) 1 + I:~=' a,(sP)i 

which is a rational function of sP. 
The standard state- space model of a fractional--order system takes the form: 

D(tl (x)(t) = Ax(t) + bu(t) , 

y(t) = cx(t) + du(t), 

where vector x = [x 1, x2 , · • · , x,JY denotes the state, t = [,1, 12 , · · · , "'fe f with O< "'fi < 2, 

DCtl(x) = [D' ' x 1 ,D' 2 x2 , · · · ,D''x,t 

(4) 

(5) 

(6) 

and A E 1Rixt, b E 1R'x 1, c E 1R1xt, d E IR. A generał method for realizing a fractional--order transfer 
function in a state-space form has been presented in [4]. 

III. APPROXIMATION OF FRACTIONAL OPERATORS 

Among the various approaches to find a rational filler approximating a fractional differentiator (16] , (11] , 
the most popular is almost certainly the one due to Oustaloup (17] by which the fractional differentiator 
operator s0 , O :S a :S 1, is replaced by a rational fil ter 1J0 ( s) whose zeros and poles are distributed over 
a frequency band [wm , wu] centred at 

Wu = ✓wmWAf. 

Precisely the approximating filler is formed by the cascade of 2N + 1 first- order cells , i.e., 
s 

N 1+ -, 

V " (s) = K a IT ------f, 
k=-N 1 +­

Wk 

(7) 

(8) 



where w~ and wk are computed recursively according to 

' 
Wk;l = Wk+l = ÓrJ > 1, 

Wk Wk 

with [18) 
o 1 - n 

Ó = (::) 2N+l, TJ= (::) 2N+I . 

The gain K 0 is chosen so as to ensure thai s" has the same magnitude as (8) at wu.The number of filler 
cells is clearly related to the goodness of the approximation. 
Variants of (8) have also been suggested to avoid the so-called border effect~ and compensate for the null 
asymptotic behaviour at low and high frequencies [25), [24]. 

The fractional-order integrator operator 1/ s" can be approximated in a way consistent with that adopted 
for the differentiator operator. Precisely, the approximation of the fractional integrator operator can be 
taken [20) as 

s 
N 1+----, 

I"(s) = K a II -----f, 
S k=- N 1 +­

Wk 

which behaves (almost) like 1/s" in an interval [wm, wM]-

(9) 

Functions 'D" ( s) and I " ( s) allow us to find rational (integer-order) models of practically any fractional 
system. However, the direct application of these operators often leads to high--dimensional models . 
Consider, for example, the fractional system put forth in [21) whose transfer function is 

8 t 56 + 4 
G(s) = 8 3 46 + 108 2 69 + 208 156 + 4 (IO) 

By setting Wm = 10- 3 , WM = 103 , N= 10, and using (8), the order of the integer-order approx.imating 
transfer function turns out to be 84. 

IV. SYSTEM APPROXIMATION 

Equation (5) corresponds to the set of scalar equations: 

I:;=, a1,x, + b1u , } 

I:;=1 a2,x, + /J.iu, 

I:;= 1 ae,x, + btu . 

(11) 

By transforming (11) with zero initial conditions and approximating the fractional-order integrators 1/ s' • 
according to (9) as 

(12) 



where m = 2N + 1, the following set of equations is obtained: 

S L-1=091,jSjX1 L.j=ofi.jsj(I:,f=I alixi + b1U), } 

s L-1=o92,jsJX2 L-1=oh,jsj(I:,;=1 a2;X, + b-,U), 

s L-1=o 9e,jsj Xe L-1=o fe,jsJ(I:,;=1 ae;X; + be U), 

in which, due to the aforementioned approximation, Xk does not coincide with the Laplace transform of 
Xk -

The time-domain differential equations obtained from this set by inverse Laplace transformation can be 
expressed in compact form as: 

Am+1X(m+I) + Amx(m) + · · · + A1x(I) + Aox = 

where 
- x = [x1, x2, • • • , xe] = .21- 1{X = [X1 , X2, • · · , Xe]}, 
- the integers between round brackets denote the orders of differentiation, and 

Am+I = diag{g1,m, 92,m, ... , 9e,m}, 

Ak = diag{g1,k- 1,92,k- t, · · · ,9e,k- d -

diag{ft,k, h,k, · · · , fe,k} A, k = 1, ... , m, 

A0 = - diag{fi.o , h,o, · · · , fe,o} A, 

Bk = diag{J1 ,k, h,k, · · · .Je,d b, k = O, ... , m. 

(13) 

Since coefficients g1,m, g2,m, · · · , 9e,m are different from O according to (8) and (9), Am+ 1 can be taken 
as the identity matrix I. Eqn. (13) is thus equivalent to the left MFD: 

X= (sm+IJ + smAm + · · · + s1A1 + Ao) - 1(Bmsm+ 

Bm- 1Sm- l + · · · + B1s1 + Bo) U (14) 

from which the following state-space integer--order model approximating (5)-(6) is immediately obtained: 

i(t) = Ax(t) + Bu(t), 

i}(t) = Cx(t) + du(t), 

where x E 111.(2N+2Je, matrix AE 111.(2N+2)ex(2N+2)e has the block--companion form 

A= [ OIOO ~~ ~ =1~ 1 
O - Am- I , 
I -Am 

matrices B, 6 are given by 

C= [ o o o Cl, 

(15) 

(16) 

(17) 

(18) 



with c and d a~ in (5). 
The method proposed in [21] brings abo ut approximating models of the same order. The present method, 

however, leads in a straightforward way to accurate models (see Section VI) whose sparse structure is 
particularly suited to simulation and model reduction. 

V. MODEL REDUCTION 

The simplest way to improve the approximation of a fractional-order system is to malce N larger. As a 
result, the dimension of the integer-order models increases significantly, which leads, e.g., to the design 
of complex and expensive controllers. 

This problem can be avoided as follows. First, a large value of N is selected, thus arriving at a very 
accurate integer-order model of high dimension. Then, a suitable order-reduction procedure is applied to 
this model. 

An approach of this kind has been suggested in [13], (22] where the high-order model initially obtained 
has been reduced using either balanced truncation, singular perturbation or Pade techniques. However, 
as pointed out in Section ID, a critical factor in the approximation of fractional-order systems is the 
frequency range [wm, wM]- In fact, the deviation of V " (s) from the fractional differentiator s" becomes 
smaller a~ this frequency interval becomes wider (20]. The reduction criterion based on the minimjzation 
of the unweighted L2 norm of the impulse-response error seems to be more appropriate (26] since it 
involves an infinite frequency band. To this purpose, the efficient iterative-interpolation algorithm for L2 

model reduction [8], [5] , [6] , [9] is used in Section VI. The implementation of this algorithm also benefit 
from the particular structure of the approximating model derived according to the procedure of Section 
IV. 

VI. EXAMPLES 

Three examples talcen from the Iiterature are considered in this section which has essentially three 
purposes: (i) to test the approximation technique, (ii) to evaluate the effects of the value of N on 
the approxjmation accuracy and the dimension of the approximating model , and (iii) to show thai the 
dimension of the integer-order models initially derived can be reduced by means of the aforementioned 
iterative-interpolation algorithm for L2 model reduction without deteriorating appreciably the response 
accuracy. 

A. Example I 

Consider first the system put forth in [21] whose state-space equations are: 

[ 
DL56x1 (t) ] 
D'-' 3 x 2 (t) = 
D077X;1(t) 

[ ] 4 _t _t ] x(t) + [ ~] u(t), 

y(tl = [ 4 1 o J x(tJ. 

(19) 

(20) 

Choosing N = 5, Wm = 10- 3 and WM = 103 , the procedure outlined in Section IV leads to a 36-th 
order model with block--<:ompanion structure. This integer-order model has subsequently been reduced to 
a 4-th order one by means of the aforementioned iterative-interpolation algorithm for L2 model reduction 
The step responses of these two models are compared in Fig. l with the original step response computed 
according to the Matlab code described in [3] The responses practically coincide so that the 4th-order 
model can be used safely for controller design. 

lt is interesting to notice (see Fig. 2) thai the 12-th order and 18-th order models obtained with the 
procedure of Section Ili for N = l and, respectively, N = 2 exhibit a response that is much worse than the 
response of the L2-optimal 4-th order model obtained from the intermediate 36-th order approximation. 



Fig. I. Step rcsponses of: (i) the system (I 9H 20) (solid line) , (ii) the 36--th order model obtained for N = 5 and w= = 10- 3 , w 111 = 103 

(dashcd line), and (iii) the 4-th order L 2--optimal rcduecd model (dotted line) . 

.. ~~~~ .. ~-~-.. ~~ .. ~-~~,.~-~~ 

Ume(S&C) 

Fig. 2. Step responses of: (i) the system (19)-(20) (solid line), (ii) the 18-th order model obtained for N = 2 (dashcd line), and (iii) the 
12- th order model obtaincd for N = l (dollcd line). 

B. Example 2 

Consider now the fractional-order system put forth in (13] whose state- space equations are: 

o Ol [Ol O O 164 
0 1 x(t) + 0 u(t) , 

-800 - 40 O 

(21) 

y(tJ = [ o o 1 o l x(t). (22) 

Choosing N= 10, Wm = 10- 5 and WM = 105 leads to an 88-th order model whose response reproduces 
accurately the original response, as shown in Fig. 3. Any attempt to obtain a simpler model with an 
acceptable response by lowering the value of N leads to models whose responses differ too much from 
the original one (see Fig. 3 where the effect of the bandwidth [wm, wM] on the response accuracy is also 
pointed out). 
However, the order of the model corresponding to N = 10, i.e., 88, can subsequently be reduced using 
the aforementioned procedure for L2 model reduction. Fig. 4 shows the excellent response of the 6-th 
order model obtained in this way. 
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Fig. 3. Step responses of: (i) the system (2l}-(22) (so)jd line), (ii) the 88--th order model obtaincd for N = IO, Wrn = 10- 5 and WAI = 105 

(cłottcd line), (iii) the 48--th order model obtained for N = 5, Wrn = 10- 5 and WAI = 105 (dashdot line), and (iv) the 88--th order model 
obtaincd for N = IO, Wm = 10- 3 and WAI = Hi' (dashcd line). 
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Fig. 4. Step responses of: (i) the system (21}-(22) (solid line), (ii) the 8S--th order model obtaincd for N = IO, wm = 10- 5 and WAI = 105 

(dottcd line), and (iii) the 6--th order L2--oplimal rcduced model (dashed line). 

C. Example 3 

Let us finally apply the suggested approximation procedure to the state-space model: 

r 
D

0
•
8
x 1(t) 1 DO.BX2(t) 

D0-8x3(t) 
Do.sx4(t) = 
Do.sx5(t) 
Do.sx6(t) 



- 6 - 4.4688 - 7.3047 - 6.1719 - 3.4688 1 
o o o o o 
8 O O O O 
O 2 O O O x (t ) 

O O 2 O O 
O . O O 1 O 

+ [ 2 O O O O O r u(t) , 

v(tl = [ o.5 o.5625 0.2422 0. 2266 0.1112 0.0313 J x(tl , 

corresponding to the transfer function : 
G(s) = 

(s0•8 + 4)(s l.6 + 2s0•8 + 4)(s l.6 + 3s0·8 + 1) 
(s"·" + l )(s"·" + 3)(s l.6 - 2so.s + 37)(s l.6 + 4s0.8 + 8) , 

(23) 

(24) 

(25) 

for which a simplified fractional-order model has been derived in [22]. Choosing Wm = 10- 5 , WM = 105 

and N = 5 leads to a 72-nd order model whose accuracy is already quite satisfactory (see dotted line in 
Fig. 5). For N= 7 and the same frequency interval [wm, wM ], the suggested procedure leads to a 96-th 
order model whose step response reproduces the original response almost perfectly (see solid line in Fig. 
5). 

Fig. 5. Siep responses of: (i) the system (23)-{24) (dashed line), (ii) the 72- th order model obtained for N = 5, w= = 10- 5 and w,r = 105 

(doued line), and (iii) the 96-th order model for N = 7, w= = 10- 5 and w,r = 105 (solid line). 

The iterative- interpolation algorithm for L2 model reduction has been app)jed to both these integer--order 
models. The step responses of the 7- th order models obtained in this way are compared with the original 
response in Fig. 6. Their accuracy is again remarkable. 

VII. CONCLUSIONS 

A simple procedure to !ind integer-order state- space models approximating a given fracti onal-order 
system has been presented. The sparse structure of these models lends itself well to simulation and control 
design. However, their state dimension increases rapidly with their accuracy. Examples have shown that, 
to reduce the dimension of the integer--order models without deteriorating appreciably the goodness of 
fit, resort can profitably be made to an efficient algorithm for L2-optimal model reduction which takes 
advantage of the privileged structure of the approximating models. 



Fig. 6. Step responses of: (i) the original system (23)-(24) (dashcd line), (ii) the L 2-optimal 7- th order model obtaincd from the 96-th 
order model (solid line), and (iii) the L2-optimal 7- th order model obtaincd from the 72-nd order model (dasbcd line). 
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