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Abstract

A procedure for approximating fractional-order systems by means of integer—order state—space models is
presented. It is based on the rational approximation of fractional-order operators suggested by Oustaloup. First,
a matrix differential equation is obtained from the original fractional-order representation, Then, this equation is
realized in a state-space form that has a sparse block—companion structure. The dimension of the resulting integer—
order model can be reduced using an efficient algorithm for rational Ly approximation. Two numerical examples
are worked out to show the performance of the suggested technique.

I. INTRODUCTION

Many natural and artificial systems can profitably be modelled or controlled by means of fractional—-
order systems [1], [2], [12]. Indeed, there is already a vast and qualified literature on this subject [7], [3],
[15], [14] so that further motivation for their study is superfluous.

One drawback of the use of fractional-order models is the irrational nature of their transfer function and,
therefore, the infinite dimensionality of their state space. Therefore, various methods have been developed
to obtain from these models other models that are more suitable for simulation and control purposes.
Most of them are based on the approximation, possibly over a suitable frequency range, of the fractional
order system by means of an integer—order model (see, e.g., [18], [20], [23], [11], [21].

This paper, which expands and updates a previous paper of the same authors [10], adheres to the same
philosophy. Precisely, starting from the original state—space form of the original fractional-order system
(Section II) and applying the integer—order approximation of a fractional operator suggested in [20], a
matrix fraction description of the integer—order approximating model is obtained (Section III). From this
model it is easy to derive a block—companion integer—order state—space representation that is particularly
suited to simulation (Section IV). However, the dimension of this model increases with its accuracy, which
can make the design of a controller difficult. To reduce this dimension without diminishing appreciably
the response accuracy, resort can be made to the efficient algorithm for L, model reduction suggested in
{1 (Section V). Two numerical examples taken from the literature confirm the validity of such an approach
(Section VI).




II. BASIC NOTIONS

Let us briefly recall the basics of fractional-order system representation. Various definitions of fractional-
order operators have been proposed over the years; it suffices to mention those of Griinwald—Letnikov,
Riemann-Liouville and Caputo [19]. The last one is probably the most frequently used in engineering
applications. Indicating by D*z(t) = %, A € R, the Caputo derivative of the time—dependent variable

z(t), its Laplace transform is
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where [A] denotes the integer part of A.
The standard input—output representation of a time—invariant fractional-order system is:
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where, as usual, u(t) and y(t) denote the input and output functions, and a;, b; € R, o, 5; € R,
The system transfer function G(s) can immediately be obtained by transforming (2) according to (1) with
zero initial conditions: » e
=20 - _Zgh ®
a(3) ~ T+ S, aus
Clearly, if all powers in (3) are multiples of the same real number p € (0, 1) (which qualifies the system
as a commensurate—order one), (3) simplifies to
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which is a rational function of s”.
The standard state—space model of a fractional-order system takes the form:
DY@)(t) = Az(t) + bu(t), 5)
y(t) = ex(t) +du(t), )

where vector £ = (1,22, - ,T¢|" denotes the state, ¥ = [y, V2, -+, Ye|T with 0 < 3, < 2,
D(;’)(z) — [DwthszZ, . 7Dnsz

and A € R, b € R, c € RV, d € R. A general method for realizing a fractional-order transfer
function in a state-space form has been presented in [4].

1II. APPROXIMATION OF FRACTIONAL OPERATORS

Among the various approaches to find a rational filter approximating a fractional differentiator [16], [11],
the most popular is almost certainly the one due to Oustaloup [17] by which the fractional differentiator
operator s, 0 < o < 1, is replaced by a rational filter D*(s) whose zeros and poles are distributed over

a frequency band [wy,, wa| centred at
Wy = /W Wat- 7N

Precisely the approximating filter is formed by the cascade of 2V + 1 first—order cells, ie.,
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where w;, and w; are computed recursively according to
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The gain K, is chosen so as to ensure that s* has the same magnitude as (8) at w,.The number of filter
cells is clearly related to the goodness of the approximation.
Variants of (8) have also been suggested to avoid the so—called border effects and compensate for the null
asymptotic behaviour at low and high frequencies [25], [24].

The fractional~order integrator operator 1/s* can be approximated in a way consistent with that adopted
for the differentiator operator. Precisely, the approximation of the fractional integrator operator can be
taken [20] as

K N 1+—S—/
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which behaves (almost) like 1/s% in an interval |wy,, wp).

Functions D*(s) and Z%(s) allow us to find rational (integer—order) models of practically any fractional
system. However, the direct application of these operators often leads to high-dimensional models.
Consider, for example, the fractional system put forth in {21] whose transfer function is

S156 4 4
5346 4 105269 + 205156 +4 )
By setting w,,, = 1073, wp; = 108, N = 10, and using (8), the order of the integer—order approximating
transfer function turns out to be 84.

(10)

G(s) =

IV. SYSTEM APPROXIMATION

Equation (5) corresponds to the set of scalar equations:

£
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Dgy = Zle 02, T; + by, (11)

DA”I[ = Zle apT; + b[U. B
By transforming (11) with zero initial conditions and approximating the fractional~order integrators 1/s%

according to (9) as . )
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where m = 2N + 1, the following set of equations is obtained:
3 2;';0 gl,jstl = Z;":o fl,ij(Zle aX; + b U),

s Z;":[) 9255 Xs = 2;'":0 fa58 (Zle axiX; + U),
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530908 Xe = YLy feis (Ui 06X+ 00),
in which, due to the aforementioned approximation, X; does not coincide with the Laplace transform of

L.
The time-domain differential equations obtained from this set by inverse Laplace transformation can be

expressed in compact form as:
A1 20 4 Az o A 20 4 Az =
Bpu™ + -+ B + Byu, (13)

where B o -
SE= (T, Ey, e, By = LTHX = (X1, Xy, -, XY,
- the integers between round brackets denote the orders of differentiation, and

Amir =diag{gim, 92.m: "+ Jem b,
Ay = diag{g1 k-1, 925-1," ", gek 1} —
diag{fi, fo, - fex} A, k=1,...,m,
Ag = ~diag{f10, f20,- -, feo} 4,
By = diag{fiy, fox, -+, e} b, k=0,...,m.

Since coefficients g m,Jom, " ,gem are different from 0 according to (8) and (9), A,,+1 can be taken
as the identity matrix /. Eqn. (13) is thus equivalent to the left MFD:

X= (s + ™Ay +-- + "4 + Ao)_l(BmSm+

Bm_1$m71+'--+Blsl+Bo)U (14)
from which the following state—space integer—order model approximating (5)—(6) is immediately obtained:
&) = Az(t) + Bu(t), (15)
g(t) = C&(t) + du(t), (16)
where £ € RN+ matrix A € RPN +2XCN+DE hag the block—companion form
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A=l o0 ], an
00 -+ 0 —Ayy
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matrices B, C are given by
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with ¢ and d as in (5).

The method proposed in [21] brings about approximating models of the same order. The present method,
however, leads in a straightforward way to accurate models (see Section VI) whose sparse structure is
particularly suited to simulation and model reduction.

V. MODEL REDUCTION

The simplest way to improve the approximation of a fractional-order system is to make N larger. As a
result, the dimension of the integer—order models increases significantly, which leads, e.g., to the design
of complex and expensive controllers.

This problem can be avoided as follows. First, a large value of N is selected, thus arriving at a very
accurate integer—order model of high dimension. Then, a suitable order—reduction procedure is applied to
this model.

An approach of this kind has been suggested in [13], [22] where the high—order model initially obtained
has been reduced using either balanced truncation, singular perturbation or Padé techniques. However,
as pointed out in Section III, a critical factor in the approximation of fractional-order systems is the
frequency range |w,,, wy]. In fact, the deviation of D*(s) from the fractional differentiator s* becomes
smaller as this frequency interval becomes wider [20]. The reduction criterion based on the minimization
of the unweighted L, norm of the impulse—response error seems to be more appropriate [26] since it
involves an infinite frequency band. To this purpose, the efficient iterative—interpolation algorithm for Ly
model reduction [8], [5], [6], [9] is used in Section VI. The implementation of this algorithm also benefit
from the particular structure of the approximating model derived according to the procedure of Section

Iv.
VI. EXAMPLES

Three examples taken from the literature are considered in this section which has essentially three
purposes: (i) to test the approximation technique, (i) to evaluate the effects of the value of N on
the approximation accuracy and the dimension of the approximating model , and (iii) to show that the
dimension of the integer—order models initially derived can be reduced by means of the aforementioned
iterative—interpolation algorithm for L, model reduction without deteriorating appreciably the response
accuracy.

A. Example ]
Consider first the system put forth in [21] whose state-space equations are:

lexﬁzl (t)
D1'131‘2(t) —
DOA77$3(t)

0 1 0 0

0 0 1 |zy+ |0 |u®), a9

-4 —20 —10 1

y(H)=1[4 1 0]a@). (20)

Choosing N = 5, wy, = 1073 and wy = 10°, the procedure outlined in Section IV leads to a 36-th
order model with block—companion structure. This integer—order model has subsequently been reduced to
a 4-th order one by means of the aforementioned iterative~interpolation algorithm for L, model reduction
The step responses of these two models are compared in Fig. 1 with the original step response computed
according to the Matlab code described in [3] The responses practically coincide so that the 4th~order
model can be used safely for controller design.

It is interesting to notice (see Fig. 2) that the 12-th order and 18-th order models obtained with the
procedure of Section ITI for N = 1 and, respectively, N = 2 exhibit a response that is much worse than the
response of the L,-optimal 4-th order model obtained from the intermediate 36~th order approximation.



Fig. 1. Sicp responscs of: (i) the system (19)~( 20) (solid linc), (ii) the 36-th order modcl obtained for N = 5 and w.n = 1073, war = 10°
(dashed linc), and (iii) the 4-1h order L»—optimal reduced model (dotted line).
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Fig. 2. Step responscs of: (i) the system (19)—20) (solid line), (ii) the 18-th erder model obtained for ¥ = 2 (dashed line), and (iii) the
12~1h order model obtained for N = 1 (dotted line).

B. Example 2
Consider now the fractional-order system put forth in [13] whose state—space equations are:
D%z (t)
DMIZ(t) -
DO.BI3(t) -
DD'6$4(t)
0 1 0 0 0
—-164 20 0 0 164
0o o0 o 1 z(t) + 0 u(t), 2n
800 0 -—-800 —40 0
yt)=[0 0 1 0]az@). (22)

Choosing N = 10, w,, = 1075 and wps = 10° leads to an 88~th order model whose response reproduces
accurately the original response, as shown in Fig. 3. Any attempt to obtain a simpler model with an
acceptable response by lowering the value of N leads to models whose responses differ too much from
the original one (see Fig. 3 where the effect of the bandwidth [w,,, wa] on the response accuracy is also
pointed out).

However, the order of the model corresponding to N = 10, i.e., 88, can subsequently be reduced using
the aforementioned procedure for Ly model reduction. Fig. 4 shows the excellent response of the 6-th
order model obtained in this way.
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Fig. 3. Step responses of: (i) the system (21)-(22) (solid linc), (ii) the 88—th order model obtained for N = 10, wy, = 1075 and wy = 10°
(dotted line), (iii) the 48-th order model obtained for N = 5, wy, = 1075 and wa; = 10° (dashdot linc), and (iv) the 88-1b order model
obtaincd for N = 10, w, = 1072 and wxy = 10 (dashed linc).
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Fig. 4. Step responscs of: (i) the system (21)-(22) (solid linc), (ii) the 88-th order model obtained for N = 10, w,, = 107° and wa; = 10°
(dotted line), and (iii) the 6-th order Lz—oplimal reduced model (dashed line).

C. Example 3
Let us finally apply the suggested approximation procedure to the state-space model:

DO‘BCIIl (t)







Step Rewponss

o3y - v ¥

Ampinds

75 i 3% 0 a5
Tiem (s0c)

Fig. 6. Step responscs of: (i) the original sysicm (23)-(24) (dashed linc), (ii) the L,-optimal 7-th order model obtained from the 96-th
order model (solid ling), and (iii) the L,—optimal 7-1h order model oblained from the 72-nd order model (dashed linc).
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