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1 Introduction 

We give a bun<lle method for the structured convex nunimization problem 

0. := inf{ 0(-) :=a(-)+ rr() }, (l.l) 

where a : IR"' ---> (-00 , 00] and n: : C---> IR are closed proper convex functions , and C := 

dom a:= {u: a(u) < 00 } is the effective domain of a . Such problems may apperu· via duali ty 
when the prima! has a certain structure. For instance, consider the minimization problems 

J. := inf{f(Ax) :x EX}= inf{f(y) :y=Ax,xE X}, (1.2) 

where X CIR" and A is an m x n matrix. For the Lagrangian L(x,y; u) := f(y) + (u,Ax-y), 
minimization over (x,y) EX x IR"' yields a dual problem of the form (1.1) with 

a(u) := f*(u) := supy{ (u,y) - f(y)} ru1d rr(u) := sup{ (-AT u,x): x EX}. (1.3) 

We assume that a is "sirnple", i.e., minimizing a plus a separable convex quadratic 
function is "easy". On the other hand, ,r is only known via an oracle, which at any u E C 
delivers an affiue minorant of ,r (e.g., (-Ax,-) for a possibly iuexact maximizer x in (1.3)). 
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2 K.C. Kiwiel 

Our method is an approximate version of the proximal point algorithm [17,20] which 
generates a sequence 

1/+1 =argminCJ(·)+n(·)+łi,1•-iil2 fork=l,2,. (1.4) 

starting from a point a' E C, where I· I is the Euclidean norm and tk > O are stepsizes. Ie com
bines two basie ideas: bundling from the proximal bundle methods [8], [6, Sect. XV.3] and 
their extensions [11, 12] to inexact oracles, and alternating linearization (AL for short) from 
[10, 12, 15]. Here bundling means replacing n in (1.4) by its polyhedral model itk ::; n de
rived from the past aracie answers. Since the resulting subproblem may stili be tao difficult, 
we follow the AL approach in which a subproblem involving the sum of two functions (here 
CY and itk) is replaced by two subproblems in which the functions are alternately represented 
by linem· models . Thus, (1.4) is replaced by the two easier subproblems 

vk+l • - ( ) V ( ) I I , kl2 u := argmmCYk- I · +nk · +Ę ·-u , 

i/+I := argmin CY(-)+ itk(·) + łi,-1 · -ii 12. 

(1.5) 

(1.6) 

The first subproblem (1.5) employs a linearization 0i- I ::; CY obtained at the previous itera
tion. Its solution yields by the usual optimality condition a linearization itk ::; itk which may 
a posteriori replace itk in (1.5) without changing its optima! value and solution. Similarly, 
the solution of ( 1.6) provides a linearization Ch ::; CY which may rep lace CY in (1.6). 

Our method coincides with that of [12] in the special case of CY being the indicator 
function ie of C (ic(u) = O if u EC,= otherwise). Then i/+ 1 in (1.6) is the projection 01110 

C of ii - tk V itk; this projection is straightforward if the set C is "simple". For mare difficult 
cases, it is crucial to allow for approximate solutions in (1.6). We show (cf. Sect. 4.2) thai 
such solutions can be obtained by solving the Fenchel dual of (1.6) approximately; this is 
conceptually related to the use of Fenchel's duality in (6, Prop. XV.2.4.3 and p. 306]. 

For dual applications, we restrict our attention to the setup of (1.2)- (1.3) with f closed 
proper convex and X compact and convex (since other examples of [15] could be treated 
in similar ways). As in [12], even when the dual has no solutions, our method can stili 
asymptotically find c,r-optimal prima! solutions, where En- is an upper bound on the oracle's 
errors; in fact only the asymptotic aracie errors matter, as discussed in [12, Sect. 4.2). 

Actually, aur theoretical contributions outlined above were motivated by applications to 
nonlinear multicommodity flow problems (NMFP for short); mare concretely, by the good 
experimental results of [1], where the analytic center cutting piane method (ACCPM for 
short) exploited "nice" second-order properties of CY in (1.1). We show that our method can 
exploit such properties as well, obtaining significant speedups on most instances used in [l]. 

As for the state-of-the-art in NMFP, we refer the reader to [l] for the developments 
subsequent to the review of [18], adding the more recent references of [13, 16]. 

The paper is organized as follows. In Sect. 2 we present our method for generał models 
of n. Its convergence is analyzed in Sect. 3. Useful modifications, including approximate 
solutions of (1.6), are given in Sect. 4. Application to the Lagrangian relaxation of (1.2) is 
studied in Sect. 5. Specializations to NMFP are given in Sect. 6. Implementation issues are 
discussed in Secl. 7. Finally, numerical comparisons with ACCPM are given in Sect. 8. 

2 The alternating linearization bundle method 

We first explain our use of approximate objective values in (1.5), (1.6). Our method gener
ates a sequence of trial points {il};- 1 C C at which the aracie is called. We assume that for 
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a fixed accuracy tolerance E,r 2 O, at each il EC the oracle delivers an approximate value 
:n:i and an approximate subgradiellt In- of :n: that produce the approximate linearization of 
:n:: 

:n:k(·) :=:n:~+ (g~, · - uk) .S :n:(·) with :n:k(tl) = :n:,~ 2 :n:(tl)-E,r- (2.1) 

Thus :n:,~ E [:n:(uk) - Err, :n:(uk)], whereas gt Iies in the E,r-subdifferential of :n; at J 

a,.:n:(uk) :={grr: :n:() 2 :n:(uk)-Err+(g,r, -il)}. 

Then e,~ := CJ,~ + :n:,~ is the approximate value of e at J, where CJ,~ := CJ(uk). 
At iteration k 2 1, the currentprox (or stability) center rf := uk(I) EC for some k(l)::; k 

has the value e,f := e,~U) (usually eJ = min,- 1 ed); note that, by (2.1), 

(2.2) 

If :n:A < itk(,i) in (1.6) due to evaluation errors, the predicted descent 

(2.3) 

may be nonpositive; hence, ifnecessary, tk is increased and (l.5)-(1.6) are solved again until 
vk 2 Juk+! - akJ 2/2tk as in (11, 12, 14]. A descent step to rf+l := uk+ 1 is taken if 

(2.4) 

for a fixed KE (O, 1). Otherwise, a null step rf+l := ak occurs; then itk and the new lin
earization :n:k+ł are used to produce a better model itk+ł 2 max{itk, rrk+d-

Specific rules of our method will be discussed after its forma! statement below. 

Algol"ithm 2.1 

Step O (lnitiation). Select u1 EC, a descent parameter KE (O, l), a stepsize bowid tmin > O 
and a stepsize ti 2:: Imin· Call the aracie at u1 to obtain :n;~ and g~ of (2.1). Set fto := :n:1 

by (2.1), and a-o(·):= rJ(u 1) + (p~.- -u 1) with p~ E iJrJ(u 1). Set a1 := u1, eA := 
ei) := CJJ + :n:,) with rJi) := rJ(u1 ), if := O, k := k(O) := 1, I:= O (k(l) -1 will denote 
the iteration of the /th descent step). 

Step l (Model selection). Choose itk : IR"' --, IR convex and such that 

(2.5) 

Step 2 (Solving the :n:-subproblem). Find if+I of (1.5) and the aggregate linearization ofitk 

itk():=itk(ii+ł)+(pt,-Li+ł) with pt:=(ti-t/+1)/tk-Pt- l. (2.6) 

Step 3 (Solving the CJ-subproblem) . Find J+l of (1.6) and the aggregate linearization of rJ 

CJ"k(·) := rJ(t/+ 1) + (p~,- - t/+ 1) with Pt:= (uk -uk+1)/tk-P~- (2.7) 

Compute vk of (2.3), and the aggregate subgradient and linearization error of e 

/:=(ak-uk+ 1)/tk and Ek:=vk-tkl/J 2 . 

Step 4 (Stopping criterion). If max{JIJ. ą} = O, stop ce;_::; e.). 
Step 5 (Noise attenuation). If vk < -Ek, set tk := lOtk, i7 :=kand go back to Step 2. 
Step 6 (Oracle call). Call the oracle at i/+l to obtain :n:i+ 1 and t,..+1 of (2.1). 

(2.8) 
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Step 7 (Desce11t test). If the descent test (2.4) holds with 0,~+I := a(i/+I) + 11:t+', set 
ii+ 1 := uk+l, 0,~+l := 0,~+1, i~+I := O, k(/ + 1) := k + 1 and increase I by l (de

sce/li step); otherwise, set ak+I := ii, 0,1+' := 0,}, and i}+' := i} (llull step). 
Step 8 (Stepsize updati11g). If k(l) = k + l (i.e., after a descent step), select tk+l 2 !min; 

otherwise, either set tk+J := tk, or choose tk+J E [tmin,tk] if i~+I = O. 
Step 9 (Loop). Increase k by l and go to Step l. 

Severa! comments on the method are in order. Step l may choose the simplest model 
ii:k = rnax{itk - i ,rrk}. More efficient choices are discussed in [12, Sect. 4.4] and [14, Sect. 
2.3]. For polyhedral models, Step 2 may use the QP methods of (3, 7,9], which can handle 
efficiently sequences of subproblems (1.5). 

We now use the relations of Steps 2 and 3 to derive an optimality estimate, which in
volves the aggregate linearization Bk:= ak + itk and the optimality measure 

Vk := max{J/1,ek + (p\Cl) }. (2.9) 

Lemma 2.2 (I) The vectors p~ and Ir, defined in (2.6) and (2.7) are in/act subgradie11ts: 

(2.10) 

and the linearizations itk and ak defined in (2.6) and (2 .7) pivvide the minorizations 

(2.11) 

(2) The aggregate subgradient I defined i11 (2.8) and the lillearizatioll Bk above satisfy 

(2.12) 

(2.13) 

(3) The predicted descent vk of (2.3) and the aggregate linearization envr ą of (2.8) satisfy 

(4) The aggregate linearizatio11 Bk is expressed in terms of land Ek asfollows: 

(5) The optimality measure Vk of (2.9) satisfies Vk ~ max{JpkJ,Ek}(l + Juki) and 

0,} ~ 0(u) + Vk(l + lul) /orali u. 

and 

vk 2 max{tklPkl 2/2, leki} if Vk 2 -Ek, 

Vk ~ max{ (2vdtk) 112 , vk}( 1 + JiiJ) if Vk 2 -Ek, 

Vi < (2t:,c/tk) 112 (1 + lill) if Vk < -Ek. 

(2.14) 

(2.15) 

(2. 16) 

(2 .17) 

(2.18) 

(2. 19) 

• 
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P,vof (I) Let <P! and </)~ denote the objectives of (1.5) and (1.6). By (2.6), the optimality 
condition OE acp~(ii+1) for (1.5) with Vo-k- l = p~-I by Step O and (2.7), i.e., 

o E acp!(i/+1) = arrk (ii+ 1) + P~- 1 + (ii+1 - rl)/tk = arrk(i/+1) - p~. 

and the equality ftk(i/+ 1) = frk(i/+I) yield p~ E arrk(i/+I) and ftk :S itk. Similarly, by (2.7), 

0 E d</J~(uk+ł) = p~ + Ja(uk+ł) + (uk+ł - fi)/tk = Ba(uk+I) - p~ 

(using Vii:k = p},) and o-k(uk+ 1) = a(uk+1) give p~ E Ja(uk+ 1) and o-k ::; a. Combining 
both minorizations, we obtain that ii:k + O"k::; itk +a::; e by (2.5) and (1.1). 

(2) Use the linearity of {Jk := ii:k + O"k, (2.6), (2.7) and (2.8) . 
(3) Rewrite (2.3), using the fact that 0k(ak) = 0k(uk+ 1) +tkll12 by (2). 
(4) We have 0,}- ck= {Jk(ak) by (3), {Jk is affine by (2) and minorizes 0 by (1). 
(5) Use the Cauchy-Schwarz inequality in the definition (2.9) and in (4). 
(6) The equivalences follow from the expression of Vk = tklPkl2 + ck in (3); in particular, 

vk 2'. ck- Next, by (2.14), (2.11) and (2.2), we have 

-ck= {Jk(ak) - eJ :S 0(ii) - ef :S C,r 

Finally, to obtain the bounds (2.17)-(2.19), use the equivalences together with the facts that 
vk 2'. ck, -ck ::; cn and the bound on li from assertion (5). O 

The optimality estimate (2.16) justifies the stopping criterion of Step 4: 11: = O yields 
ef, ::; infe = e.; thus, the point il is c,r-optimal, i.e. , 0(ii)::; e. +cn by (2.2). Ifthe aracie 
is exact (cn = O), we have Vk 2'. ck 2: O by Lemma 2.2(6), and Step 5 is redundant. When 
inexactness is discovered at Step 5 via vk < -ck and the stepsize tk is increased, the stepsize 
indicator i1 =/ O prevents Step 7 from decreasing tk after null steps until the next descent step 
occurs (cf. Step 6). At Step 6, we have ~+ 1 E C and vk > O (by (2.17), since max { li I, ck} > 
O at Step 4 ), so that ak+ 1 E C and ef,+ 1 :S ef, for all k. 

3 Convergence 

With Lenuna 2.2 replacing [12, Lem. 2.2] , it is easy to check that the convergence results of 
[12, Sect. 3] will hold once we prove [12, Lem. 3.2] for our method. To this end, as usual in 
bundle methods, we assume that the oracle's subgradients are locally bowided: 

{g},} is bounded if {u"} is bounded. (3.1) 

Further, as in [12], we assume that the model subgradients I,, E Jitk(ii+ 1) in (2.10) satisfy 

{p},} is bounded if {il} is bounded. (3.2) 

Remark 3.1 Note that (3.1) holds if C = IH:.111 or if rr can be extended to become finite-valued 
on a neighborhood ofC, since g; E a,,n(uk) by (2.1), whereas the mapping a,,rr is locally 
bounded on C in both cases [6, Sect. XI.4.l]. As discussed in [12, Rem. 4.4], typical models 
itk satisfy condition (3.2) automatically when (3.1) holds . 

A suitable modification of the proof of [12, Lem. 3.2] follows. 

Lemma 3.2 Suppose the re exists k such that for all k 2'. k, only null steps occur and Step 5 
does11 't increase tk. Then Vi ...., O. 
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Proof Let i/>~ and i/>~ denote the objectives of subproblems (1.5) and (1.6). First, using partia! 
linearizations of these subproblems, we show that their optima! va lues i/>~ (il+I) :S: i/>~ (i/+l) 
are nondecreasing and bounded above for k ?: k. 

Fix k?: k. By the definitions in (1.5) and (2.6), we have itk(i/+I) = ifk(i/+I) and 

(3.3) 

from Vefi!(ii+1) =O.Since efi: is quadratic and efi:(i/+I) = 1>:(ii+1 ), by Taylor's expansion 

efi:C) = i/>~(t/+ 1) + t,;I · -i/+112. 

Similarly, by the definitions in (1.6) and (2.7), we have crk(i/+ 1) = a(uk+I ), 

i/+I = argmin{ efiio := ftk(·) + a-k(-) + t,;I · -ii12 }, 

efiio = 1>i(il+ 1) + z!; 1-i/+' 12. 

(3.4) 

(3.5) 

(3.6) 

Next, to bound the objective values of the linearized subproblems (3.3) and (3.5) from above, 
we use the minorizations ftk :s; n and ĆYk- I , ĆYk :S: cr of (2.11) for 0 : = n + cr: 

1>!(ii+1) + t,;lii+I -iil2 = f!(ii) :S: 0((/), 

1>i(il+1) + z!; ii/+1 - iil2 = efii([/) :s: 0(ak), 

(3.7a) 

(3.7b) 

where the equalities stem from (3.4) and (3.6). Due to the minorization a-k- l :s; a, the ob
jectives of subproblems (3.3) and (1.6) satisfy efi: :s; i/>~- On the other hand, since r/+1 = rl, 
tk+I :S: tk (cf. Step 7), and ifk :S: ifk+1 by (2.5), the objectives of (3.5) and the next subproblem 
(1.5) satisfy $~ :s; q,~+1. Altogether, by (3.4) and (3.6), we see that 

1>!(i/+1) + zl;ii/+1 -i/+112 = efi!(i/+ 1) :s: 1>i(i/+1), 

1/>i(i/+I) + t,;li/+2 - i/+112 = efii(i/+2) :s: q,;+1 (ii+2). 

(3.8a) 

(3.8b) 

In particular, the inequalities i/>~(ii+1) :S 1/>~(i/+1) :s; q,~+ 1 (ii+2) imply that the nondecreas
ing sequences {1>:(ii+ 1)h2k and {i/>~(i/+1)}k2'.k• which are bounded above by (3.7) with 

ii = r,k for all k?: k, musi have a common limit, say 1/>oo :S: 0(iik). Moreover, since the 
stepsizes satisfy tk :s; tk for all k?: k, we deduce from the bounds (3 .7)-(3.8) that 

(3.9) 

and the sequences {if+l} and {i/+l} are bounded. Then the sequences {t'r} and {p~} are 
bounded by (3.1) and (3.2). 

We now show that the approximation error i\ := n~+I - ftk(i/+I) vanishes. Using the 
form (2.1) of nk+1, the minorization nk+1 :S: ifk+J of (2.5), the Cauchy-Schwarz inequality, 
and the optima! values of subproblems ( 1.5) and ( 1.6) with d = fi< for k ?: k, we estimate 

fk := n,~+l - ftk(t/+I) = TT:k+I (i/+Z) - ftk(i/+I) + (g~+l, i/+I -ii+2) 

:s: ifk+ i(il+2) - itk(i/+I) + lg~+111i/+I - 1i+21 

= q,~+1 (i/+2) - 1>i(uk+1) + LI,~ +Lli + lg~+I lluk+I - i/+21, (3.10) 

whereLl,~ := /i/+1-a"/2/2tk-lii+2-ilk/2/2tk+1 and LI~:= cr,~+1 -crk(1i+2 ); in fact,LI~ = 
-(p~, ii+2 - 1/+1) by (2.7). To see thai LI,~ --> O, note that 

/i/+2 - il12 = 11/+' - i-ikl2 + 2(t'/+2 - i/+', i/+' - cl)+ lii+2 - il+' 12, 
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fuk+ 1 - 1if2 is bounded, uk+2 -1/+l _,Oby (3.9), and Imin::; tk+ł ::; tk for k?: k by Step 7. 
These properties also give Ll~ -, O, since by (2.7) and the Cauchy-Schwarz inequality, 

where {p~} is bounded. Hence, using (3.9) and the boundedness of {fn:+ 1} in (3.10) yields 
1imk Ek ::; O. On the other hand, Ek = e:+1 - 0k(uk+1) from a-k(i/+I) = cr;+I in (2.7), while 
for k ?: k the null step condition e:+1 > ef, - Kvk gives 

by (2.14), where K < I by Step O; we conclude thati:k _, O and vk _, O. Finally, since vk _, O, 
tk?: Imin (cf. Step 7) and ri = ri for k?: k, we have vk _,Oby (2.18). O 

We may now state our principal result on the asymptot ie objective value e,:;" := limk ef,. 

Theorem 3.3 (1) We have e,} l e,i ::; e •. and additionally limk Vi = O if e. > - 00• 

(2) e.::::: li.u.k e(1i)::::: limk e(ii)::::: e;;- + E". 

Proof Use the proof of [12, Thm. 3.5], with obvious modifications. 

4 Modifications 

4.1 Looping between subproblems 

o 

To obtain amore accurate solution to the prox subproblem (1.4) with n replaced by itk, we 
may cycle between subproblems (1.5) and (1.6), updating thei.r data as if null steps occured 
without changing the model itk . Specifically, for a given subproblem accuracy threshold 
ie E (O, 1), suppose that the following step is inserted after Step 5. 

Step 51 (Subproblem accuracy test). If 

(4.1) 

set a-k - 1 (-) := a-k(·), p~- ł := p~ and go back to Step 2. 

The main aim of this modification is to avoid "unnecessary" null steps. Namely, if the 
test (4.1) holds with ie::; Kand the oracle is exact enough to deliver ~+l ?: itk(uk+ł ), then 
the descent test (2.4) can't hold and a null step must occur, which is bypassed by Step 'J. 

When the oracle is expensive, the optional use of Step 5' with ie E [K, 1) gives room for 
deciding whether to continue working with the current model itk before calling the oracle. 

Convergence for this modification can be analyzed as in [12, Rem. 4.1]. Omitting details 
for brevi ty, here we just observe that for the test (4.1) written as (cf. (2.14)) 

the Ek above may play the role of Ek in (3.10). 
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4.2 Solving the CY-subproblem approximately 

For a given tolerance KN E (O, 1 - K), suppose Step 3 is replaced by the following. 

Step 3' (Solvi11g the CY-subproblem approximately). Find a linearization crk::; CY such that 

(4.2) 

CY(i/+ 1)- C5k(i/+I) s; KNVk, (4.3) 

for uk+I given by (3.5) and vk by (2.14). Set land f.k by (2.8), and la:= Vcrk. 

Before discussing implementations, we show that Step 3' does not spoił convergence. In 
Sect. 2, crk(i/+I) replaces CY(uk+ 1) in (2.3), (2.7) and (2.10). In Sect. 3, it suffices to validate 
Lemma 3.2. 

Lemma 4.1 Lemma 3.2 stili ho/ds for Step 3 replaced by Step 3' above. 

Proof We only sketch how to modify the proof of Lemma 3.2. First, referring to (3.5) instead 
of (1.6), replace </>~ by ~~ tlu·oughout, and (3.8a) by (4.2). Second, Jet~ := crk(i/+ 1) -

crk(i,k+2 ) in (3.10). Third, by (4.3), the null step condition yields 

C5k(1/+I) + n,~+I > 0,} - KVk + C5k(1/+I) - CY(i/+I) 2 0,}- K:Vk 

for ie:= K+ KN< I, and hence 

so that the proof may finish as before. • 

Step 3' can be implemented by solving the Fenchel dual of (1.6) approximately. Indeed, 
using the representation CY(·) = sup,{ (z,·) - CY*(z)} in (1.6), consider the Lagrangian 

L(u, z):= (z, u) - CY*(z) + ftk(u) + ti, lu - iii 2, 

and associate with each dual point z Edom CY* the following quantities: 

(4.4) 

u(z) := arg min„ L(u, z) = ii -tk (p~ +z), (4.5) 

cr(-;z) :=(z,·) - CY*(z), (4.6) 

e(z) := CY(il(z))- cr(ii(z);z) = CY(ii(z)) + CY*(z)- (z,ii(z)), (4.7) 

v(z) := 0,} - [ ftk(ii(z)) + cr(it(z); z)], (4.8) 

where fi(z) is the Lagrangian solution (with ~ = Vftk), a(-;z) is the linearization of CY, e(z) 
is its linearization error at a(z), and v(z) is the predicted descent. Maximizing L(a(z),z) or 
equivalently minimizing w(z) = -L(a(z),z) leads to the following dual problem: 

w.:= min,{ w(z) := CY*(z) + tlP~ +zl 2 -(z,tl)-ftk(ak) }, (4.9) 

with a unique solution z* giving u* := a(z*) such that u* E aCY*(z*), z* E aCY(u*) and 

CY(u*) + CY*(z*)-(z*,u*) = O; (4.10) 

not suprisingly, u* is the exact solution of (1.6) and z• is the corresponding la in (2.7). Note 
that (4.9) can be restricted to the set D := dom a CY*:= {z: aCY*(z) f= 0}, which contains z*. 

Now, suppose thai we have a method for solving (4.9) with the following properties: 
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(1) Itstartsfrom thepointz1 :=p~-I E Osuch thatcYk-i(·) = (z 1,-)-cr'(z1); thus, by(3.3), 
(3.4) and (4.4)-(4.6), theinitial w(z1) = -<1>!(1i+1) from w(z1) = -L(u(z1),z1). 

(2) It generates points I. E D with w(/):::; w(z1) such that /--+ z', cr'(/)--+ cr'(z') and 
cr(ii(z;))--+ cr(u*), where a(/)--+ u' by (4.5). 

Then E(/) --+Oby (4.7) and (4.10), whereas v(t) --+ v(z*) by (4.8). TllllS, if v(z') > O, 
we will eventually have 1::(/) :::; KNv(i). Then the method may stop with J<+I := a(/), 
vk := v(z;), a-k(-) := a(·;z;) and p~ := z; to meet the requirements of Step 3', with (4.2) 
following from -$~(i/+I) =w(/):::; w(z 1) =-</>!(ii+'); see (I) above and (3.5). 

As for the assumptions in (2) above, note that cr'(z;)--+ cr*(z') if o-* is continuous on 
D := domao-• (e.g., in Sect. 6.3). Similarly, o-(ii(z;))--+ o-(u') holds if cr is continuous on 
dom aa and ii(/) E dorn a o- for large i. 

S Lagrangian relaxation 

We now consider the application of our method to (1.2) treated as the prima/ problem 

<p, := sup { <p(y) := -f(y)} s.t. VJ(x,y) := y-Ax = O, x EX, (5.1) 

assuming that / is closed proper convex and the set X =f 0 is compact and convex. In view 
of (l.3) and (2.1), suppose that, at each J< EC, the oracle delivers 

g~ := -Axk and n:k(·) := (-Ax",-) forsome,ł EX. (5.2) 

For simplicity, lei Step I retain only selected past 1..i.nearizations for its kth model 

(5.3) 

Then (see (2.10) and [12, Sect. 4.4]) there are convex weights 1-J ~Osuch that 

(ftk,P~, 1) = I vj(n:j,g~, 1) with /2 := {i E lk: vj > O}, (5.4) 
jEfic 

and for convergence it suffices to choose lk+l :) fk U { k + l }. Using these weights and (2.7), 
we may estimate a solution to (5.l) via the aggregate prima/ solution (i,/) with 

s" := I vjxj and I:= p~ 
jEJk 

We first derive useful expressions of rp(/) and V'(x" ,/). 

Lemma 5.1 We have i' EX, rp(/) = et - Ek - (pk, Cl) and VJ(i' ,i) = pk. 

(5 .5) 

Proof First.i' Eco{xj}jElk cX, ftk(-) = (-AJ·",·) andp~ = -A.i" byconvexityof X, (5.2), 

(5.4) and (5.5). Then I= /-A.i'= VJ(.i",/) by (2.12), (5.1) and (5.5). Next, by [19, Thm. 
23.5], the inclusion fi':= p~ E acr(uk+l) of (2.10) with o-:= f' in (1.3) yields cr(i/+ 1) = 
(i/+I ,_ii) - /(/); thus rp(/) := -/(/) = a-k(O) by (5.1) and (2.7). Since ftk(O) = O in 
(2.11), (2.15) gives a-k(O) = ek (O) = et - Ek + (pk ,cl), as required. O 
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In terms of the optimality measure Vk of (2.9), the expressions of Lemma 5.1 imply 

(5.6) 

We naw show that {(x\l)} has cluster points in the set of E,c-optimal solutions of (5.l) 

z,. := { (x,y) EX x IR111 : <p(y) 2 <p. - E,r, 1/f(x,y) =O}, (5.7) 

unless rp. = -=, i.e., the prima! problem is infeasible. Note that (5.2) with X compact and 
(5.4) yield (3.l)-(3.2), as required for Theorem 3.3. 

Theorem 5.2 Either e. = -= and et, l -=, in which case the prima/ problem (5.1) is 
infeasible, or e. > -=, et, le;:; E [e. - E,r, e.J, limk B(ii) ::; e; + E,r and limk vk = o.In 

the latter case, let KC N be a subsequence such that Vk Ł O. Then: 

(I) The sequence { (xk ,/) hEK is bounded and all its cluster points /ie in the set X x IR"'. 

(2) Ler (i"",_v') be a cluster point of the sequence {(.ł,/)hEK• The11 (x=,r) Ez, •. 

(3) I (( -.k -k))·-· f' , l('.k :-.k) (· )I Ko cz,, x ,Y .- m (x,y)EZ,, x ,y - x,y --, . 

(4) If En= O, then e,t le., rp(/) Ł rp. = e., and 1/f(xk,/) Ł o. 

Proof The first assertion follows from Theorem 3.3 (since e. = -= implies prima! infea

sibility by weak duali ty). In the second case, using e,} l 0,1 2 e. - E,r and Vk Ł O in the 
bounds of (5.6) yields limkEKrp(/) 2 e. -E,r and limkEK 1/f(xk,/) = O. 

(l) By (5 .6), {i'} lies in the compact X; then WhEK is bounded by (5.1) and (5.6). 
(2) We have r EX, <p(_v') 2 e. - En and 1/f(?,_v') =Oby closedness of <pand conti

nuity of 1/f· Since e. 2 <p. by weak duality (cf. (l.l), (1.3), (5.1)), we get <p(y°) 2 <p. - E,r, 
Thus (?,_v') Ez,. by the definition (5.7) . 

(3) This follows from (l), (2) and the continuity of the distance function dz, •. 
(4) In the proof of (2), e. 2 <p. 2 <p(_v') 2 e. yields <p. = <p(_v') = e., and for K' c K 

such that / ~ _v' we have <p(y') 2 limkEK' rp(/) 2 1.i!lliEK' rp(/) 2 e., i.e., rp(/) ~ <p •. 

So considering convergent subsequences in (I) gives rp(fl') Ł <p.. • 

6 Application to multicommodity network flows 

6.1 The nonlinear multicommodity flow problem 

Let (JV,d) beadirectedgraph withN := IJY'I nodes andm := l.0"1 arcs.LetE E JRNx 111 be 
its node-arc incidence matrix. There are n commodities to be routed through the network. 
For each com modi ty i there is a required flow 1; > O from its sow-ce node o; to its sink node 
d;. Lei s; be the supply N-vector of commodity i, having components Sio; = r;, s;d; = - r;, 
su= O if I c/ o;,d;. Our nonlinear multicommodity flow problem (NMFP for short) is: 

Ili 

min f(y) := I fh1) 
J=I 

li 

s.t. y= Ix;, 
i=l 

X; EX;:= {x;: Ex;= s; ;O::; X;::; .i:;}, i= 1: 11, 

(6.la) 

(6.lb) 

(6. lc) 

.. 

• 
I 
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where each arc cost function !J is closed proper convex, y is the total flow vector, x; is the 
flow vector of commodity i, and i; is a fixed positive vector of flow bounds for each i. 

Our assumptions seem to be weaker than those employed in the Iiterature. We add that 
if domf' CIR+, then the flow bounds i; are not needed in (6.!c): Even if they are absent, 
our algorithm will proceed as if we had i;j = r; for all i and j; cf. (13, Sect. 7.2). 

6.2 Primal recovery 

We may treat problem (6.1) as (5.1) with Ax = I;'.,, 1 x;, X= IT;'.,, 1 X;, and the oracle solving 
shortest path problems to evaluate :n:( il) = - I;'.,, 1 min { (uk,x;) : x; EX;} at each il. Thus the 
results of Sect. 5 hold. Yet, as in (13, Sect. 7.3), for stopping criteria it is useful to employ 
another aggregate solution (.i, I) with i' given by (5 .5) and 

Il 

l:=Ax'= IA'. (6.2) 
i=l 

which satisfies the constraints of (6.1). Thus f(y') 2: f., where the optima! value f. of (6.1) 
satisfies - f. = rp. :S 0. by weak duality. Hence, if the oracle is exact, 0,} 2: 0. implies that 
the method may stop w hen /(y') + 0,} :S efor a given tolerance e > O, in which case (i" ,I) 
is an e-so/ution of (6.1). This stopping criterion will be met for some k under conditions 
similar to those in [13, Prop. 7.1]. 

Proposition 6.1 Suppose problem (6.1) is feasible and has a u11ique optima/ total flow I 
(e.g., fis strictly co11vex O11 IR+ n dom/) that satisfies y* E [O, c) c dom/ for same c E IR+. 
Furthe1; Jet e,r = O (i.e., the aracie is exact), and let K C N be a subseque11ce such that 

Vk _15__, O. Tlze11 y' _15__, y*, f(y') _15__, f. = -0. and f(I) + 0,} _15__, O. 

Pmof By Theorem 5.2(3) and the uniqueness of y', y1' _15__, y*. Hence ł _15__, y* from i -
/ = 1/f(,C·k,_yk) _15__, O (cf. Theorem 5.2(4)), where y' 2: O by (6.2) with x' EX (Lem. 5.1). 
Consequently, y* E [0,c) gives y' E [O, c) for all large k E K. Since each function fj in (6. la) 

is continuous on domfj ::i [0,cj), we have JCI) _15__, f(y*) = f •. The conclusion follows 
from Theorem 5.2(4) with 0, = rp. = - f. . • 

An extension to the case where some arc costs are linem· follows. 

Proposition 6.2 Let problem (6.1) befeasib/e. Suppose that the first 111 co111po11e111s ofa11y 
optima/ total flow y• are unique (e.g., fj are strictly convex on IR+ n dom fj for j :S 111) a11d 
smisfy yj E [0,cj) C dom/j for same Cj > O, wlzereas the costs fi are linear Jor j > 111. 
Furt/ie,; /et e,r = O (i.e., the aracie is exact), a11d /et K C N be a subseque11ce such thai 

Vk _15__, O. Then J1 _15__, yj for j :S 111, J(f) _15__, f. = -0. and J(/) + 0,} _15__, O. 

Proof The proof of Proposition 6.1 gives yJ,yJ _15__, yj and fJ(y})J1U1) _15__, fJ(yj) for 

j :S 111, since y1' E domf by (5.6). For j > 111, fj(yj) = ajyj for some aj E IR; thus <3j(uj) := 

Jj(uj) = i{aj)(uj)- Then uJ+ 1 = aJ = aj in (1.6) yields ~=O in (2.8), so 1/'j(x',Y) =Oby 

Lemma 5.1; since i-/= l/f(i.k,y1'), we have 7J = yJ for j > 111. Therefore, by (6.la), 

J(l) = J(l) + I U1(Y}) - /J(5J}lL 
J~,r, 

where the sum vanishes as k _15__, =; Theorem 5.2(4) with rp := - f gives the conclusion. O 
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6.3 Specific arc costs 

For specific arc costs, as in (1, 13], we shall consider Kleinrock's average delays 

{

oo ifyJ2CJ, 
fh1) := y1/(cry1) ify1 E [O,c1), 

YJ/CJ 1f YJ < 0, 

F(u) := { (M7- l)2 if u1 2 l/c1, 
1 1 oo ifu1 < l/c1, 

with arc capacities c1 > O, the BPR (Bureau of Public Roads) nonlinear delays 

fhJ) := {am+ {31y? if YJ 2 o, 
Ct.JYJ 1f YJ < O, 

{ 
~ (u - a )YJl(rr 1) /({3 y) 1/(Yj - I) if u > a 

Jj(uJ) := r1 1 1 1 1 . 1 - 1, 
oo 1fu1 <a.1, 

with parameters a.1 2 O, {31 > O, y1 2 2, as well as BPR linear delays with a1 2 O: 

f 1(y1):=a.1y1 forally1, 

F(u ) := { O if u1 = a.1, 
1 1 oo 1f u i f= a i· 

K.C. Kiwiel 

(6.3a) 

(6.3b) 

(6.4a) 

(6.4b) 

(6.5a) 

(6.5b) 

Our costs are linearly extrapolated versions of the "standard" costs used in (13], where 
fJ(y1) is setto 00 for YJ < O, so that Jj (u1) becomes O instead of 00 for u1 < J1(0). Note that 
the value of / 1 at YJ < O does not matter for (6.1), where the constraints yield YJ 2 O. Further, 
if (6.1) is feasible, the assumptions of Propositions 6.1 and 6.2 hold for our Kleinrock and 
non linear BPR costs, and for a mixture of our nonlinear and linem· BPR costs, respectively. 
Finally, since dom O' = domf* C IR.';'. for our costs, the oracle has to solve shortest path 
problems with nonnegative arc lengths ,1 only; hence, we may assume that t:,r = O. 

6.4 Solving the O'-subproblem for specific arc costs 

We now specialize the results of Sect. 4.2 with a* := f for the costs of Sect. 6.3. Since a* 
is separable, we may handle (4.9) by solving m one-dimensional subproblems to determine 
components of an approximate solution, say z. Thus we need a stopping criterion for each 
subproblem. To this end, we replace the criterion E(t) :S KNv(zi) by E(z) :S KNv(z) for 

-( ) k -( -k ) I k 12 ( ) [ k - ( 'k) l vz :=o-,1 -au;z +tkP,r+z =vz - n:a-n:ku , (6.6) 

where the second equality follows from (4.5), (4.6) and (4.8) with ąl' = o-t + n:r Moreover, 
o-,} - a-(1i; z) 2 O yields ii(z) 2 O, whereas by the results of Sect. 4.2, v(z) = O only if 
z= z.''= -p},; since checking if ii(-p;) = O is easy, we may assume that ii(z*) > O. Finally, 
ii(z) :S v(z) from En= O. The resulting "natura!" subproblem criteria are discussed below. 

To simplify notation, we assume temporarily that m = 1, drop the subscript j in (6.3)
(6.5) and Jet I := lk in (4.5). We first consider the Kleinrock and nonlinear BPR costs in 
(6.3)-(6.4). For finding an approximate solution z, we exploit the following properties: 

• f(z) = J' (O)z for z :SO with J' (O) 2 O; 
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• f"(z) > O for z> O in F :=dom/ = (-00 ,c), with c := 00 in theBPRcase; 
• a•= fis continuous on F with dom Ja•= F; 
• a:= f' is continuous on dom a= [f (O),oo) with dom da= dom a; 
• w'(z) = f'(z) -ii(z) and w"(z) = J"(z) +r for z EF in (4.9) by (4.5). 

If w'(O) 2'. O, then z:= -w'(O)/r is optimal (w'(z) = O), t:(z) = O and i'i(z) = f (0). 
If w'(O) < O, then z• E (O, -w'(O)/t), since for z 2'. -w'(O)/t, f (z)> f (O) yields 

w'(z) = J'(z)-ii(z) > J'(O) -ii(z) = w'(O) +tz 2'. O. 

13 

Further, z* E (O,z"P) for z"P := min{-w'(0)/1,c} from z* EF, and ii(z) Edom a for z E 
(0,z"P), since ii(z) > f'(O) iff z< -w'(O)/t. These properties and the results of Sect. 4.2 
yield the following. Suppose we minimize w over (O,t'P) via a descent method, starting 
from z1 := p~- 1 if p~-t E (O,z"P) orany z1 E (O,z"P) otherwise, which generates points 
t E (O, z"P) such that t ---, z*. Then r(t) ---, O and v(t) ---, v(z*) > O in (6.6) imply thai we 
will eventually have t:(z;) :5: K'Nii(ziJ, in which case the method may stop with z:= t. 

N ext, for the linear BPR costs in (6.5) with w' (z)= f' (O) -ii(z), z:= -w' (0)/t is optima! 
(w'(z) = O), t:(z) = O and ii(z) = f'(O) (as in the case of w'(O) 2'. O above). 

Form> 1, expressing t:(z) in (4.7), w(z) in (4.9) and ii(z) in (6.6) as sums of E1(z1), 
w1(z1) and ii1(z1) respectively over j = 1, ... ,m, for each j we may find ZJ as above so 
thai t:1(z1) :5: K'Nv1(z1), and w(z)::; w(p~- , ); since v(z) :s; v(z) in (6.6), we also have t:(z)::; 
K'Nv(z). Thus, as in Sect. 4.2, we may set ,/+I := ii(z), Vk := v(z), a-k(·) := a(,;z) and 

k -Pa:= z. 

7 Implementation issues 

We now describe the main issues in our implementation of each step of Algorithm 2.1 for 
the network applications of Sect. 6. We also highlight aspects where our implementation 
could be less efficient than that of [l); improving these aspects is left for future work. 

7.1 Initial settings 

In the Kleinrock case of (6.3), the initial u} := ( 1-p.)-2/c1 for all j, with p. := ¼ estimating 

the maximum traffic intensity max1Yj/c1 as in (5, 13); then p~ := v'a(u 1 ). In the BPR case 

of (6.4)-(6.5), u; := a1 for all j, and we let p~ := O. 
As usual in bundle methods, we use the descent parameter K' = O.I in (2.4). We set the 

initial stepsize to 11 := 1, corresponding to the inverse of the initial proximal coefficient of 
(1), and !et t,nin := 10-2011. 

7.2 Subproblem solution 

For the polyhedral models frk of (5.3), subproblem (1.5) is solved by the QP routine of (9). 
This routine has at least two drawbacks. First, being designed for bound-constrained prob
lems, it employs data structures that are not efficient in the unconstrained case. Second, its 
lineai· algebra is behind the cun-ent state of the art (in contras! with the MATLAB implemen
tation of[!), where linear equations are solved more efficiently). 
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The one-dimensional subproblems of Sect. 6.4 are solved for the tolerance ivv = 10-3 by 
Newton's method with Armijo's backtracks for a descent tolerance of 10-6 , where at each 
iterntion the initial unit stepsize is reduced if necessary to 0.9 limes the maximum feasible 
stepsize, and the stepsize is divided by 2 for each Annijo's failure. This works quite well, 
but implementations based on self-concordant ideas (as in [l]) could be more efficient. 

The looping Step 5' of Sect. 4.1 employs the tolerance K = 0.2, but the number of loops 
at any iteration is litnited to 30. 

7.3 Shortest-path oracle 

Let S :S li be the number of common sources (different source nodes) in (6.1). To evalu
ate rr(i/+I ), we call S times subroutine L2QUE of [4], which finds shortest paths from a 
given source to all other nodes. Being quite old, L2QUE is unlikely to be competitive with 
Dijkstra's algorithm with binary heap structures employed in [l] . 

7.4 Termination criterion 

In view of Sect. 6.2, we stop after Step 6 when the relative optimality gap is small enough: 

(7.1) 

where fopt = 10-5 as in [l], whereas 1:P and J.,~w are the best upper and !ower bounds 

on J. obtained so far. Specifically, ffow := -min19+1 0,1, whereas fukp is the 1ninimum of 
J('i) over iterations j :S k, j = 10, 20, ... , at which J(yi) is computed. A more frequent 
computation of J(yi) could save work on small instances. 

7.5 Stepsize updating 

Our implementation of Step 8 uses the following procedure, in which f,. 1 is the relative gap 
of (7.1), Yk := 1:P - J.,~w is the absolute gap, lk is the number of loops made on iteration k, 
and lik counts descent or null steps since the !atest change of tk, with 11 1 := 1. 

Procedure 7.1 (Stepsize updating) 

(1) Set tk+I := tk. 

(2) lf ri+1 = ak or lk > O go to (5). 
(3) If lik 2'. 10, or vk < n/2 and t,1 :SO.Ol, set tk+ 1 := 2tk. 

(4) Setnk+I :=max{,1k+l,l}.lftk+1 #tk,setnk+I :=l.Exit. 
(5) If if+ 1 = O, lik :S -10, and either vk > n/2 or t,1 > O.Ol, set tk+l := max{tk/5,tmin}
(6) Set11k+1 :=1nin{11k-l,-l}.If1k+1 'Ftk,setllk+1 :=-1.Exit. 

The counter nk introduces some inertia, which smooths out the stepsize updating. In 
generał, tk should be increased (respectively decreased) if "too many" descent (respectively 
null) steps are occuring, but vk should be of order Yk, since descent steps with vk « Yk bring 
little. Of course, our procedure is just an example and there is stili room for improvement. 
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8 Numerical illustrations 

To get a feeling for the practical merits and drawbacks of our approach, we benchmark our 
AL implementation against the ACCPM results of [l). 

8.1 Test problems 

We used the same four sets of test problems as in [l). Their features are given in Table 8.1, 
where N is the number of nodes, mis the number of arcs, 11 is the number of commodities, 
S is the number of common sources, and _t!(leinrock and J!PR are the optimal values of (6.1) 
for the Kleinrock and BPR costs respectively, with relative optimality gaps of at most 10- 5 . 

Table 8.1 corrects some values of [l, Tab. 2]; see [2) and below. 
For the first two sets of planar and grid problems1, the cost functions are generated as in 

(1, Sect. 8.1); we add that problem planarl50 is missing in [I]. 
The third set of telecommunication problems includes a coJTected version of problem 

ndo22 [2); the BPR costs are generated as in [l). 
The fourth set of transportation problems2 uses original BPR costs, and Kleinrock costs 

generated as in [I]. To clarify the description of [l], we add that in the Kleinrock case the 
demands are divided by 2 for Sioux-Falls, 2000 for Winnipeg, 5100 for Barcelona, 2.5 for 
Chicago-sketch, 6 for Chicago-region, and 7 for Philadelphia. We also observe that although 
[l, Tab. 2] gives wrong Kleinrock values for Chicago-sketch, Chicago-region and Philadel
phia, their entries in (1, Tab. 5) are apparently correct. In contras!, for the BPR versions of 
Barcelona and Philadelphia, (1, Tab. 6] musi be corrected as in [2]. 

8.2 Numerical results 

Tables 8.2 and 8.3 give our results for the problems of Sect. 8.1. In these tables, 

• kand / are the numbers of iterations and descent steps respectively; 
• Sigma is the average number of subproblems solved at Step 3 per iteration; 
• Newton is the average number of Newton's iterations for the one-dimensional subprob-

lems solved approximately at Step 3 (cf. Sect. 7.2); 
• CPU is the total CPU time in seconds; 
• %Si is the percentage of CPU time spent on the subproblems of Step 3; 
• %Or is the percentage of CPU time spent on the oracle's shortest path subproblems; 
• AC/AL is the ratio of the CPU limes of ACCPM from [l, Tabs. 5 and 6]3, [2, Tab. l] and 

our AL, with our times increased to 0.1 if necessary. 

As for CPU comparisons, we used a Dell M60 notebook (Pentium M 755 2 GHz, 1.5 GB 
RAM) under MS Windows XP and Fortran 77, with SPECint2000 of 1541 and SPECfp2000 
of 1088. On the other hand, [l] used a desktop PC (P4 2.8 GHz, 2 GB RAM) under Linux, 
Matlab for linear algebra and C for the shortest path computation, with SPECint2000 of 
1254 and SPECfp2000 of 1327. Hence our CPU times are comparable with those of [I]. 

Thus it is interesting to compare the CPU performance of ACCPM and AL. Here we ig
nore the smallest problem ndo22. In the Kleinrock case (Tab. 8.2), AL is substantially faster 

1 Available at http://www.di.unipi.it/di/groups/oplimize/Data/MMCF.html. 
2 Available al hllp://www.bgu.ac.il/bargera/tntp/. 
3 The CPU times for problem planar!S0 were provided by F. Babonneau. 
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Table 8.1 Test problems 

Problem N Ili Il s J:Kldnrm:k /!3PR 

Pla11ar problems 

pla11ar30 30 150 92 29 40.5668 4.44549 X [(jl 
pla11ar50 50 250 267 50 109.478 J.21236 X lol 
pla11ar80 80 440 543 80 232.321 l.8[906 X lol 
pla11arlOO 100 532 1085 100 226.299 2.291l4x toi 
planarl 50 150 850 2239 150 715.309 5.27985 x Jol 
planar300 300 1680 3584 300 329.120 6.90748 X lol 
planar500 500 2842 3525 500 196.394 4.83309 X ló' 
planar800 800 4388 12756 800 354.008 l.l6952x ló' 
planarlOOO IOOO 5200 20026 1000 1250.92 3.41859 x Ió' 
planar2500 2500 12990 81430 2500 3289.05 1.23827 X tolO 

Grid problems 

gridl 25 80 50 23 66.4002 8.33599 X [{f 

grid2 25 80 100 25 194.512 1.72689 x IW 
grid3 100 360 50 40 84.5618 1.53241 X l(r 
grid4 100 360 100 63 171.331 3.05543 x IW 
grid5 225 840 IDO 83 236.699 5.0792[ X [(r 

gridG 225 840 200 135 652.877 1.05075 X J07 

grid7 400 1520 400 247 776.566 2.60669 x I 07 

grid8 625 2400 500 343 1542.15 4.2l240x 107 

grid9 625 2400 1000 495 2199.83 8.36394 X 16' 
gridlO 625 2400 2000 593 2212.89 1.66084 X lol 
gridl I 625 2400 4000 625 1502.75 3.32475 X Jol 
grid l2 900 3480 6000 899 1478.93 5.81488 X toi 
gridl3 900 3480 12000 900 1760.53 1.16933 x Hf' 
gridl4 1225 4760 16000 1225 1414.39 1.81297 X ló' 
gridl5 1225 4760 32000 1225 1544.15 3.61568 X ló' 

Telecommunicalion problems 

11do22 14 22 23 5 103.412 1.86767 x J(Y 
ndol48 61 148 122 61 151.926 1.40233 x I (f 
904 106 904 11130 JOG 33.4931 1.29197 X [07 

Transporlalion problems 

Sioux-Falls 24 76 528 24 600.679 4.23133 X l(r 
Winnipeg 1067 2836 4344 135 1527.4 1 8.25673 x I{? 
Barcelona !020 2522 7922 97 845.872 1.22856 x HP 
Chicago-skelch 933 2950 93135 386 614.726 1.67484 X J(jl 
Chicago-region 12982 39018 2296227 1771 3290.49 2.58457 x I ó' 
Philadelphia 13389 40003 1149795 1489 2557.42 2.24926 X [c)! 

than ACCPM on most instances, and slower than ACCPM on a single instance of Barcelona. 
In the BPR case (Tab. 8.3), AL is substantially faster than ACCPM on all instances except 
for planar800 and Barcelona, where its speedups over ACCPM a.re quite modest. 

In conclusion, AL is competitive with ACCPM. 
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Table 8.2 Peformance of AL for Kleinrock costs 

Problem k Sigma Newton CPU %Si %Or AC/AL 
planar30 125 62 4.7 1.9 O.I 60 o li.O 
planar50 214 73 3.2 2.2 0.2 31 IO li.O 
planar80 308 80 3.0 2.2 0.6 28 28 10.8 
planar!0O 312 75 3.9 2.4 0.8 24 28 7.5 
planar150 979 95 1.7 2.1 12.2 3 17 10.8 
planar300 303 84 6.4 2.7 4.7 27 46 4.7 
planar500 253 77 8.3 2.6 9.7 23 55 2.5 
planar800 341 82 7.7 2.7 28.1 16 69 2.7 
planarlO00 648 104 4.1 3.0 74.8 8 73 4.1 
planar2500 1530 103 2.5 2.6 1092.1 2 86 2.2 
gridl 92 65 8.2 2.3 O.I 20 20 5.0 
grid2 185 62 2.9 2.4 O.O o o 8.0 
gricl3 222 74 6.7 2.2 0.4 43 13 5.7 
grid4 247 79 5.3 2.7 0.4 43 9 7.7 
grid5 290 82 5.5 2.3 1.2 40 19 IO.O 
grid6 453 89 2.9 2.5 2.3 17 26 10.6 
grid7 646 98 3 O 2.4 8.3 12 32 li.O 
grid8 940 102 2.1 2.3 21.0 8 42 18.3 
grid9 900 99 2.2 2.4 24.3 7 49 12.6 
gridl0 730 100 2.8 2.7 22.0 9 54 9.1 
gridl I 424 85 5.6 3.3 14.0 19 51 6.9 
gridl2 458 96 5.8 3.4 26.9 16 59 4.0 
grid I 3 423 94 6.4 3.7 26.0 20 58 4.8 
gricll4 470 106 7.1 3.9 49.2 18 62 3.4 
gridl5 451 102 7.7 4.1 49.4 19 62 3.3 
ndo22 361 187 17.9 2.0 O.I 30 o 2.0 
ndol48 94 53 2.3 2.0 O.O o o 8.0 
904 240 58 7.5 3.1 1.5 53 22 5.1 
Sioux-Falls 497 252 2.4 2.1 O.I 8 o 16.0 
Winnipeg 1298 482 4.6 1.8 123.7 4 IO I.I 
Barcelona 2611 434 1.7 1.6 127.6 2 17 0.6 
Chicago-sketch 375 92 8.1 2.5 18.3 18 60 1.6 
Chicago-region 303 73 7.7 2.1 901.0 4 88 9.6 
Philadelphia 433 89 8.4 3.2 1431.3 5 85 9.1 
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