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Chapter 1 

Fractional-order system forced-response 
decomposition and its application 

Daniele Casagrande • , Wiestaw Krajewski t , and Umberto Viaro • 
• Polytechnic Department u( En/iineerin/i and Archilecture, University uf Udine, 1•ia delle Scien~e 

206, 33100 Udine, Italy, t Sys/ems Research l11slitute, Polish Academy u/ Sciences, 11/. Newelska 6, 

0/-447 Warsaw, Poland 

ABSTRACT 
This chapter deals with the additive decomposition of the forced response of a fractional­
order system. Precisely, it is shown how, by solving a simple polynomial Diophantine 
equation, this response can almost always be decomposed into the sum of a system­
dependent component and an input-dependent component. The system-dependent com­
ponent is formed from the same modes as the system and, assuming stabi li ty, charac­
terises the transient behaviour of the system in the response to sustained inputs. The 
input-dependent component is formed from the same modes as the input, and accounts 
for the steady-state or long-term response of a stable system to a persistent input. Sim­
ple conditions based on the classical Routh and Mikhai lov criteria are provided to check 
the system input-output stability. Several examples show that the aforementioned de­
composition can profitably be exploited to find simplified models in such a way that the 
asymptotic response is kept unchanged and, at the same time, the transient behaviour 
is well approximated. The decomposition proves useful also for solving the so-called 
model-matching problem that is of particular interest in controller synthesis. 

KEYWORDS 

Rational-order system, Continuous-time system, LT! system, Polynomial Diophantine 
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1.1 INTRODUCTION 

The theory of fractional-order systems has already attained sufficient maturity 
to allow its systematic presentation in several books (Azar et al., 2017; Tepl­
jakov, 2017; Kaczorek, 2011; Caponetto et al., 2010; Monje et al., 2010) and 
to be the subject of many special journal issues (Caponetto et al., 20 J 6; Ionescu 
et al., 2016; Psychalinos et al., 2016). Despite its increasi ng popularity, how­
ever, some important aspects need further investigation, among them the de­
tailed analysis of the system forced response to inputs with rational-order trans-
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form, of which the harmonic and singularity inputs (integrals of the impulse) 
are distinctive cases. In particular, relatively little attention has been paid to 
the separate study of the transient and asymptotic responses with some notable 
exceptions limited to canonical inputs (Monje et al., 2010; Trigeassou et al., 
2012; Jakubowska & Walczac, 2016; Semary et al., 2016; Kesarkar & Selva­
ganesan Narayanasamy, 2016). A more thorough characterisation of the system 
dynamic behaviour requires the consideration of both the short- and long-term 
behaviour of the responses to more general inputs. Such an analysis is par­
ticularly meaningful in the derivation of simplified models that retain essential 
properties of the original system, such as stability and performance, and in the 
synthesis of controllers that satisfy both transient and asymptotic specifications, 
e.g. on overshoot and steady-state error. 

The present contribution aims at a more systematic study of the constituent 
parts of the forced-response that characterise different aspects of the system 
behaviour and can conveniently be considered separately. To this purpose, ref­
erence is made to the fairly numerous class of inputs with rational-order trans­
form. Following a path similar to that taken in (Casagrande et al., 2017) for 
integer-order systems and based on (Dorato et al. , 1994), the forced response 
of a stable fractional- order system to a persistent input of this kind is decom­
posed into the sum of two component: (i) a component with the same pseudo­
polynomial denominator as the system transfer function, and (ii) a component 
with the same pseudo-polynomial denominator as the input transform. The first 
is called the system component of the forced response and the second is called 
the input component because the first is characterised by the same evolution 
modes of the impulse response, which depends on the system only, and the sec­
ond by elementary functions that exhibit similar structure (Mittag-Leffler func­
tions) but depend only on the input and will therefore be called "input modes". 
If there are common modes between the input and the system, a third resonant 
component is also present. However, for the sake of simplicity, this possibility 
is ruled out (which is necessarily true when the system is stable, so that all of its 
modes tend to zero as time tends to infinity, and the input is anti-stable, so that 
all of its modes are persistent). 

To ascertain the stability of the rational-order system, resort can be made 
either to efficient numerical algorithms or to Routh- Hurwitz- like criteria for 
polynomials with real and complex coefficients. A section of this chapter is 
dedicated to this problem. As is know, it entails determining the distribution 
of the roots of a characteristic polynomial with respect to two radii delimiting 
a sector of the right half-plane (instead of the entire right half- plane, as is the 
case for integer-order systems). 

Robust stability issues are outside the scope of the present contribution and, 
therefore, are not treated in the sequel. Let us only observe, in this regard, that 
many results concerning the so-called D-stability can easily be extended to 
fractional-order systems (Tempo, 1989). 

The rest of this chapter is organised as follows. Section 1.2 introduces some 
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essential notation and specifies the families of fractional- order systems and in­
puts to which the aforementioned decomposition of the forced response applies. 
Section 1.3 shows how such a decomposition can uniquely be obtained from 
the Laplace transform of the forced response and, for stable systems, defines its 
transient and steady-state components. Section 1.4 presents some simple sta­
bility conditions. Section 1.5 shows how the decomposition can be used to find 
simplified models that reproduce the asymptotic response of original complex 
systems while still approximating well the transient behaviour. Some illustrative 
examples are worked out in Section 1.6. The results are discussed in Section 1.7 
where the relationship between the suggested response decomposition and the 
model- matching problem, strictly related to controller synthesis, is also pointed 
out. Possible directions of future research are indicated in Section 1.8. 

1.2 NOTATION AND PRELIMINARIES 

The transfer function of a continuous- time LTI strictly-proper rational- order 
system can be written as 

m m - 1 I 

- bmS" + bm-JS" + . . . + bts<i + bo 
G(s) = ,, 11 - 1 1 , (l. l) 

an s <i +an- JS,,+ .. . + a1s<i + ao 

where q, m, n are positive integers, m < n, q ;:,>: I is the least common denom­
inator (led) of the (commensurate) fractional exponents of the Laplace variable 
s. The numerator and denominator coefficients of (1.1) are assumed to be real. 

Consider now the class of inputs whose rational- order Laplace transform 
can be written as 

(1.2) 

where k and tare positive integers, k < t , and the numerator and denominator 
coefficients are real. ft follows that the led of the fractional exponents of both 
(l. l) and (1.2) is q. This assumption is not much restrictive because it is always 
possible to express the fractional powers of s in (I.I) and ( 1.2) in terms of a 
common led, even if this led may be larger than the led of either function. The 
class of inputs ( 1.2) is fairly numerous and includes all inputs whose Laplace 
transform has only integer powers of s, such as the singularity and harmonic 
inputs. 

By the change of variable 

( 1.3) 

functions (l. l) and (1.2) are transformed , respectively, into the following strictly­
proper rational functions of w: 

B(w) D(w) 
G(w) = A(w), U(w) = C(w), (1.4) 
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where 

B(w) = 
A(w) = 
D(w) = 
C(w) = 

bm Wm + bm- 1 wm-l + . .. + b1 w + bo , 

a,,w" + a 11 - 1w"- 1 + ... + a1w + ao , 

dkwk + dk - 1wk-l + ... + diw + do, 

cewe + ce- 1 w e- , + ... + c 1 w + co . 

(1.5) 

( 1.6) 

(1.7) 

(1 .8) 

Correspondingly, the Laplace transform Y(s) of the forced response of the sys­
tem with transfer function (1.1) to the input with transform (1.2) is converted 
into the following rational function of w : 

B(w) D(w) 
Y(w) = G(w) U(w) = ---. 

A(w ) C(w) 
(l.9) 

With some abuse of terminology, G(w) , U(w) and Y(w) will simply be referred 
to as system, input and output functions, respectively, because they are directly 
related via (1.3) to G(s) , U(s) and Y(s) = G(s)U(s). 

It has been long recognised that the denominator of the rational- order func­
tion (1. 1) is a multivalued function of s which becomes a single- valued function 
on a Riemann surface consisting of q sheets with branch cuts along the negative 
real semi- axis. The first, or principal, sheet contains the physical poles of ( l.l) 
(Radwan et al., 2009) corresponding to the so-called structural, or relevant, 
roots of its denominator (Petras, 2009). The stability of the rational- order sys­
tem depends on their location with respect to the imaginary axis . The right half 
of the first sheet, corresponding to the unstable region, maps into the (minor) 
sector of the w plane defined by 

S £ { w = pe11b : p E IR+ , ip E [-~, ~]} . (I.IO) 

As is known, the time-domain expressions of the fractional-order system 
responses are easily obtained from the partial fraction expansions of the w­
domain expressions (Semary et al., 2016; Valerio et al. , 2013). It has right­
fully been observed in this regard that the Mittag- Leffler functions play for 
fractional-order systems a role analogous to that played by the exponential 
modes characterizing the time- domain response of integer- order systems (Rivero 
et al. , 2013; Trzaska, 2008). 

Next Section, shows how the expression (1.9) of the forced- response of a 
fractional- order system can be separated into a component consisting of the 
same modes as G(w) and a component consisting of the same modes as U(w). 

1.3 DECOMPOSITION OF THE FORCED RESPONSE 

The rati onal output ( 1.9) can be expanded into elementary partial fractions cor­
responding to its poles which are poles of either G(w) or U(w). If no pole- zero 
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cancellation occurs, all (and only) the poles of G(w) and U(w) are poles of 
Y(w). However, if pis a pole of both G(w) and U(w ), the multiplicity of pole p 
in Y(w) is the sum of the multiplicities of the same pole in G(w) and U(w) , so 
that at least one elementary fraction appears in the expansion of Y(w) that is not 
present in G(w) or U(w). This typically happens in the presence of resonance 
phenomena where an input frequency coincides with a natural frequency of the 
system. For the sake of simplicity, in this chapter the following assumption is 
made. (Indications on the extension of the following procedure to the general 
case are given in Remark l at the end of this section.) 

Assumption 1. Polynomials A(w), B(w), C(w) and D(w) have no common 
factors. 

Therefore the (strictly- proper) representations (1.4) and (1.9) are irreducible 
and no cancellation occurs in (1.9); in particular, resonance phenomena are not 
possible. Under Assumption 1, ( 1.9) can uniquely be decomposed as 

Y(w) = XA (w) + Xe(w) 
A(w) C(w) 

(1.1 l ) 

where XA (w) and X e (w) are the solutions of the polynomial Diophantine equa­
tion (Ferrante et al., 2000; Kucera, 1993) 

XA(w)C(w) + Xe (w)A(w) = B(w)D(w) (1.12) 

with deg[XA(w)] < deg[A(w)] = n, deg[Xc(w)] < deg[C(w)] k and, 
by the strict properness of G(w) and U(w), deg[B(w)D(w)] < deg[A(w)] + 
deg[C(w)]. In this case, in fact, equation (l.12) is equivalent to a set of n + k 
linear equations in then+ k unknown coefficients x; and y; of polynomials: 

XA(w) = 
Xc(w) = 

XA .n- 1 Wn - l + XA,n - 2Wn- 2 + · · · + XA, I W + XA ,0, 

xe,n- 1 wk - I + xe,n - 2Wk - 2 + · · · + xe.1 w + xe,o , 

( 1.13) 

(1.14) 

obtained by equating the coefficients of the equal powers of w on both sides of 
(1.12). By properly ordering the unknowns, this set can be written in a matrix 
form where the coefficient matrix is nonsingular (Antsaklis & Michel , 2006; 
Henrion, 1998) (being the Sylvester matrix associated with the polynomials 
A(w) and C(w) that are co-prime by Assumption l). It follows from Cramer's 
rule (Brunetti, 2014) that the aforementioned set of equations admits one, and 
only one, solution. For clarity of exposition , this result is restated next in the 
form of a proposition. 

Proposition 1. If A(w) and C(w) are co-prime and if 

deg[B(w)D(w)] < deg[A(w)] + deg[C(w)] , 

there is a unique pair of polynomials XA(w) and Xe(w) with deg[XA(w)] < 
deg[A(w)] and deg[Xe (w)] < deg[C(w)] that solves the polynomial Diophan­

tine equation ( 1.12 ). 
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The two addenda in (1.11) will be denoted by 

XA(w) Xc(w) 
Yi:(w) = A(w) , Yu(w) = C(w) ( I. 15) 

and, borrowing the terminology adopted for integer- order systems (Dorato et 
al., 1994), will be called the system component and input component of the 
output, respectively, because Yi:(w) is characteri sed by exactly the same modes 
as the system (l.l) and Yu(w) by exactly the same modes as the input (1.2). 

lf the fractional-order system is asymptotically stable (Petras, 2009), so is 
also lhe system component, and ils time-domain counlerparl, obtainable by 
inverse Laplace transformation of the s-domain expression corresponding lo 
Yi:(w) via (1.3), lends asymplolically lo zero. In this case, Yi:(w) can rightfully 
be referred to as the transient response to input U(w). Instead, if the input is 
persistent, then the time- domain counterpart of the input component Yu (w) also 
persists and can rightfully be referred to as the steady-state response or, more 
in general, the asymptotic response. 

Since very efficient and fast algorithms exist today to find the roots of a 
polynomial (Akritas et al., 2008; Jenkins & Traub, 1970) and the related com­
puter programs are readily avai lable, the easiest way to check the stability of 
a fractional-order system is probably to determine numerically the precise lo­
cation of the roots of A(w) and see whether some of them lie in the instability 
sector ( 1.10). Nevertheless, the problem of finding the root distribution with 
respect to suitable contours (in particular, the perimeter of circular sectors with 
hounded radius, because upper bounds on the "size" of polynomial roots can 
be determined easily (Hirst & Macey, 1997)) is certainly of interest for other 
purposes, such as rool clustering or 1)-slabilily analysis (see Yedavalli, 2014; 
Gutman & Jury, l 981 and bibliographies therein), transient characterisation, and 
stability margin evaluation. This problem is discussed in lhe following section. 

Remark 1. If; contrary to Assumption 1, A(w) and C(w) are not co- prime, 
they may be factored as: 

A(w) = A(w) IA(w) , C(w) = C(w) lc(w), ( 1.16) 

where IA (w) is the factor of A(w) containing all and only the roots of A(w) 
that are roots of C(w) too (with their multiplicities), and lc(w) is is the fac­
tor of C(w) containing all and only the roots of C(w) that are roots of A(w) 
too (with their multiplicities). Clearly, if all of the common roots are simple 
IA(w) = lc(w). Let l(w) ~ /A(w) lc(w) . Since the three pairs [A(w),C\w)], 
[A(w),l(w)] and [J(w),C(w) ] are co-prime, Y(w) can uniquely he expressed 
(Ferrante, 2000) as 

X-(w) X-(w) X (w) 
Y(w) = G(w)U(w) = ~ + ~ + - 1 - , 

A(w) C(w) /(w) 
(1.17) 
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where the first addendum is a combination of modes proper to G(w), the sec­
ond is a combination of modes proper to U(w), and the third is a combina­
tion of modes proper to the "interaction" or "resonant" component YR(w) ,@, 

X1 (w)/ /(w). Some of the modes of YR (w) are not contained in both G(w) and 
U(w) because the multiplicities of the roots of l(w) are greater than the multi­
plicities of the same roots in A(w) and C(w). 

As already said, the possibility of decomposing the forced response into a 
transient and a steady-state component depends on the system stability. The 
next section deals with the problem of checking this fundamental property. 

1.4 STABILITY CONDITIONS 

Although Routh- Hurwitz- like conditions have been derived to determine how 
the roots of the characteristic pseudo-polynomial of a fractional-order system 
are distributed among the LHP and RHP half-planes of its principal Riemann 
sheet or its sectors (Liang et al., 2017), no simple rules are as yet available to es­
tablish directly from polynomial A(w) whether some of its roots belong to given 
sectors of the w-plane (for arc angles different from rr), except for those given 
in (Ahmed et al., 2006) that deal with very special cases. Indeed, conditions for 
all of the roots of a polynomial, or the eigenvalues of a matrix, to lie inside a 
minor LHP sector symmetric with respect to the real axis have been obtained 
in the Seventies (Gutman, 1979; Anderson et al., 1974) from properties of Kro­
necker products of matrices (Graham, 1981) or rational maps (Gutman & Jury, 
1981). However, the same result, i.e., the confinement of all the roots in the 
aforementioned minor LHP sector (no roots in the corresponding major sector), 
had already been obtained well before by means of Routh-Hurwitz arguments 
(Usher, 1957; Luthi, 1942-43) or could easily have been achieved based on gen­
eralisations of the Routh-Hurwitz criteria (Hurwitz, 1895; Routh, 1877) to poly­
nomials with complex coefficients (Frank, 1946; Billarz,1944). New formula­
tions, extensions and improvements of similar algebraic conditions, including · 
the analysis of the critical cases and different tabular-form presentations, can 
be found in (Sivanandam & Sreekala, 2012; Chen & Tsai, 1993; Benidir & 
Picinbono, 1991; Agashe, 1985; Hwang & Tripathi; 1970) and, more recently, 
in (Bistritz, 2013) where numerically very efficient variants are presented . A dif­
ferent approach has been followed in (Kaminski et al., 2015) where, for q > 1, 
a test based on regular chains for semi-algebraic sets (Chen et al., 2013) has 
been suggested. Here, some sin;iple cnnditions based on the direct application 
of the Routh test to A(w) are suggested to check whether some (not necessarily 
all) roots of A(w) lie in an RHP sector symmetric with respect to the real axis. 

To this purpose, consider the "forbidden" RHP sector defined by (1.10) (sim­
ilar considerations hold, of course, for the opposite sector). If no roots of A(w) 
are in the RHP, which may be checked by means of the standard Routh test, then 
this sector, as well as the two sectors containing the points of the RHP which do 
not belong to S, do not contain any root, too . Therefore, the method in (Usher, 
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1957) can be adopted to determine the number of roots inside any LHP sector 
symmetric with respect to the negative real semi- axis. 

Also, since the number of the real roots in any interval of the real ax is can 
be found easily on the basis of the classic Sturm algorithm (see, e.g., the lecture 
notes in (Jia, 2016)), whose computational complexity is not greater than that of 
the Routh algorithm (i.e., 0(n2 )), only the root distribution of the roots with a 
nonzero imaginary part need actually be determined. Therefore, for notational 
simplicity and without loss of generality, the following assumption is made. 

Assumption 2. The real polynomial A(w) has no real roots. 

It follows that the degree n of A(w) is even because its complex roots with 
nonzero imaginary part are in conjugate pairs. 3 

By combining the information on the root distribution with respect to the 
imaginary axis with the information on the root distributions with respect to 
each of the two slanted straight lines with slope ±1r /2q (see again (1.10)), some 
interesting results can be established straightaway. To state them in a compact 
form, the following notation, illustrated in Fig. 1.1, is introduced: 
(i) n 1", n II denote the number of roots above and, respectively, below the slanted 
line through the origin with positive slope 1r /2q, 
(ii) n2,., 1121 denote the number of roots above and, respectively, below the 
slanted line through the origin with negative slope -1r / 2q, and 
(iii) n+, n_ denote the number of roots in the closed RHP and in the open LHP, 
respectively, 
(iv) the difference between the number of roots in S (unstable roots) and the 
LHP sector (symmetric of S) is denoted by ti. 

Clearly, 

( I. 18) 

The following result is obvious . 

Proposition 2. If o > 0 the fractional-order system is unstable. 

When t5 ~ 0, the system may be stable, but the stability conditions also 
depend on n, n+ and n_ = n - n+. By considering that, in the absence of real 
roots, all of the above numbers are even, the following two stability conditions 
can easily be proved. The first only requires the knowledge of n. 

Proposition 3. If o = -i, i nonnegative, and n < i + 4, the fractional-order 
system is slahle. 

a In other words, A (w) can be though of as the even-degree factor containing all of the complex 
conjugate roots of an original polynomial A(w) = A(w)Ar(w), where Ar(w) is the factor 
containing all of the real roots of A(w). For simplicity, the following analysis refers to A(w) 
on ly. The results, however, can easily be extended to include the real roots. 
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FIGURE 1.1 Notation for : (i) the number of roots in each of the two half-planes separated by each 
of the two slanted straight lines through the origin with opposite slope (n 1,, , 1111 and 112,. , n21 ), and 
(ii) Jhe number of roots in each of the two half- planes separated by the vertical axis Cn+ and 11_ ), 

Proof Assume that the fractional-order system is unstable. Since all roots 
appear in conjugate pairs, the number of roots in the instability sector is 2 or 
more. Therefore, in order for 6 = -i, the sector opposite to the instability sector 
must contain at least i + 2 roots, and the polynomial degree n, which is greater 
than , or equal to, the sum of the roots in both sectors, must be equal, at least, to 
i + 4, contrary to the assumption that n < i + 4. • 
Proposition 4. If 6 = -i, i nonnegative, n_ = i + ), j nonnegative, and n < 
i + j + 2, the fractional-order system is stable. 

Proof It is enough to consider that, under the adopted assumptions, n - n_ < 2 
so that no root may lie in the instability sector. • 

More general stability conditions require the acquisition of additional in­
formation, which in some cases may be worthwhile. For instance, to determine 
whether some roots lie inside the instability sector S , the slope of the two slanted 
lines (i.e., the angle 2:) can gradually be taken to zero. If the difference between 
the numbers of roots in the LHP and RHP sectors decreases monotonically to 
zero as the sectors angle tends to zero, then the system is stable. A similar 
procedure can be applied to detect roots with damping factor in a given range. 

By simple adaptation to fractional order systems of the classic Mikhailov sta-
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bility criterion for integer-order systems (Buslowicz, 2008; Mikhailov, 1938),, 
the following graphically- based criterion also holds. 

Proposition 5. The fractional-order system is stable if and only if the phase 
variation of the nth degree polynomial 

A(p) ~ A(pe1TZi) 

asp varies .from Oto +oo is equal ton 2:: 

7f 
i'larg[A(p)J1000) = n-. . 2q 

Proof. Express A(pe1 TZi) in factored form as 

" 
A(pe1 TZi) = a11 n(pe1 TZi -p;), 

i=I 

( 1.19) 

(1.20) 

( 1.21) 

where the p;, i = 1,2, ... ,n, are the (possibly repeated) roots of A(w). The 

phase variation of ( 1.21) as point p e1 TZi moves along the slanted half- line leav­
ing the origin and making an angle ,r/(2q) with the positive real axis is the sum 
of the phase variations of its factors which can be regarded as vectors applied 

at the p; 's and pointing to p e1 TZi. Now, if a real root, say Pk , is outside the 
instability sector and thus negative, the initial phase of the corresponding fac­

tor (when pis equal to zero and the point pe1TZi coincides with the origin) is 

zero and its final phase (when pe1 TZi tends to infinity along the aforementioned 
slanted half-line) is ,r/(2q) . If a complex root, say Ph , is outside the instabil­
ity sector, consider the two factors associated with the pair of conjugate poles 

Ph and Pt The sum of the initial phases of the two vectors pe1TZi - Ph and 

pe1 f;; - p; is also zero, while the final sum of their phases is 2 · ,r/(2q), as 
shown in Fig. 1.2. Therefore, if all the 11 roots are outside the instability sector, 
the overall phase variation is ( 1.20), which proves necessity. The sufficiency 
of (1.20) can be proved by contradiction. To this purpose, assume that (1.20) 
holds true but that a real root, say Pj, lies inside the instability sector. The phase 

variation of the factor associated with Pj, i.e., p e1 TZi - Pj, is - [,r - ,r /(2q)] (see 
Fig. l.2) so that the overall phase variation is less than ( 1.20), which contradicts 
the assumption that ( l.20) holds true. A similar reasoning can be used for a pair 
of conjugate roots inside the instability sector. 

Once system stability has been ascertained, efficient approximation meth­
ods can be applied to simplify an original complex model. The next section is 
devoted to such a problem. 

1.5 MODEL REDUCTION 

The separate consideration of the two components ( 1.15) of ( 1.9) can be used 
for analysis, synthesis and approximation purposes . In this section, it is shown 
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Ph 

Pk 

-1r/ (2q) 

FIGURE 1.2 Vector representation of the phase variation of the factors in ( 1.20) associated with 
either real or complex roots outside or inside the RHP minor sector with central angle n / q straddling 
the positive real axis. 

how to obtain reduced-order models that retain the original asymptotic response 
along the lines of (Casagrande et al., 2017). Essentially, the suggested procedure 
operates as follows. 

1.5.1 Approximation procedure 

(i) Find the fractional-order system transfer function (1.1) and determine the 
Laplace transform (1.2) of the input whose response is of interest. 
(ii) Via the change of variable (1.3), convert the Laplace transform of the 
related response into the rational function Y(w) (see (1.9)). 
(iii) Decompose Y(w) according to (1.11) into a system component YE(w) 
and an input component Yu (w) (see ( 1. 15)). 
(iv) Find a rational function Y{ (w) of order v < n (usually, v « n) approx­
imating the original system component Yr(w) according to any criterion for 
rational approximation. 
(v) Form the reduced- order w-domain transfer function Gr ( w) of the reduced­
order model in such a way that the reduced-order model response Yr(w) to 
U(w) admits Yu(w) as its input component and Y{(w) as its system compo­
nent up to an auxiliary additive term of negligible importance Y£ ( w), namely: 

Y,.(w) = Gr(w) U(w) = Yu(w) + Y{(w) + Y£(w). (1.22) 

(vi) Construct the simplified transfer function Gr (s) from Gr (w) using again 
( 1.3). 

To clarify step (v), some remarks are opportune. 
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Find the fractional- order transfer function and choose the input 

Transform via (1.3) t hP s- domain response into a rational function Y (w) 

According to (1.11) decompose Y (w) into the sum of Y,,(w) and Y,, (w) 

Approximate YE(w) by means of Y£(w) according to a given criterion 

Find the reduced w- domain t ransfer function Gr(w) to satisfy (1.22) 

Convert Gr(w) into the corresponding transfer function Gr(s) via (1.3) 

FIGURE 1.3 Basic fl ow chart of Procedure 1.5.1. 

Remark 2. As explained in detail in (Casagrande et al., 2017), the introduction 
of the auxiliary term is necessary to make the number of unknowns in ( 1.22) 
equal to the number of equations. if the poles of Y£ ( w) are fixed, this result is 
obtained when the orders of Y£(w) and U(s) are equal, i.e., the degree of the 
denominator of Y£ ( w) coincides with the degree nu of the denominator of U ( w ). 
The solution is then obtained by equating the coefficients of the equal powers of 
w at the numerators of the product wr (w) U(w) and of Yu (w) +Y{ (w) +Y£ (w), 
respectively. The problem turns out to be linear. • 
Remark 3. Jf the poles of Y-£(w) are located far to the left of the imaginary 
axis, this additional term does not alter appreciably the transient dynamics of 
the system while it leaves unchanged the input component. • 
Remark 4. Due to the introduction of the auxiliary term, the order r ofWr (w) 
is greater than the order v of the function Y{ (w) approximating the original 
system component YL(w). However, since usually v « n, the order r = v + n,, is 
still much smaller than nfor the canonical inputs (n,, ::; 2for steps, ramps and 
sinusoids). • 
Procedure 1.5.1 is schematically represented in Fig. 1.3. It has been applied 
to several benchmark examples with considerable success; three of them are 
illustrated in the next section. 
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1.6 EXAMPLES 

The following examples show that the response of the simplified model to the 
desired input matches closely the original response even during the transient. 

1.6.1 Example 1 

Consider the fractional-order system described by the transfer function 

- s4 + 9s3·2 + 3ls2 .4 + 58 0lsl.6 + 60 0ls0·8 + 16 03 G(s) = . . . (1 23) 
s4 -8 + 6s4 + 48s3-2 + 286s2 .4 + 935sL6 + 1580s0-8 + 888' · 

which has also been adopted in (Tavakoli-Kakhki & Haeri, 2009) and (Jiang & 
Xiao, 2015), and assume that the system is driven by the input 

- 1 
U(s) = :;o.s· (1.24) 

Remark 5. Input ( 1.24) can also be wrillen as 

U(s) = s 0·2 (1.25) 
s 

whose time-domain counterpart is 

(1.26) 

which is the fractional derivative of order 0.2 of the usual step function 1{ (t). 
It seems reasonable to consider the inputs with Laplace transform: 

- I 
U(s) = -sa 

and time-domain expression (Caponetto et al., 20/0) 

ta - I 

u(t) = f(a)' 

(1.27) 

(I .28) 

as the fractional-order equivalents of the canonical inputs for integer-order 
systems (also called singularity inputs (Tewari, 201/)). Fig. 1.4 shows the time 
course of ( 1.28) for three values of a. • 
By the change of variable 

I 
w = ss (1.29) 

the response of system (1.23) to input (1.24) is given in thew- domain by the 
24th-order rational function 

Y(w) = G(w) U(w) = 

w20 + 9w 16 + 3lw 12 + 58.0lw8 + 60.0lw4 + 16.03 

w24 + 6w20 + 48w16 + 286w 12 + 935w8 + 1580w4 + 888 w4 (1.30) 
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1
- u . 0.1 

- a - 0.8 
······• a - o.9 

oL....:::::====,,.,,,-----------__I 
0 3 

time 

FIGURE 1.4 Input signals of form (1.28) with a = 0.1 (lower solid line), a = 0.8 (upper solid 
line), and a = 0.9 (dotted line). 

whose poles are outside the minor sector delimited by the radii p e±J fo (see 
equation ( 1.10)) so that the fractional- order system is stable. 
Since, in this special case, all powers of ware multiples of the same integer 4, 
the decomposition and reduction procedures can more conveniently be applied 
to the 6th-order rational function 

z5 + 9z4 + 3l z3 + 58.0l z2 + 60.0l z + 16.03 
Y( z) = ---------------

z6 + 6z5 + 48z4 + 286z3 + 935z2 + 1580z + 888 z 
( 1.31) 

obtained from (1.30) by setting z = w4 . Clearly, the poles of (1.31) are the 
fourth powers of the poles of ( 1.30), which means, in particular, that the insta-

4rr 
bility sector in the z-plane is delimited by the radii pe±Jw instead of the radii 
p e±J fo that enclose the instability sector in thew- plane. Of course, (1.31) could 
directly be obtained from ( 1.23) by setting z = s415. 

Function (1.31) can be decomposed into a system- dependent and an input­
dependent component as 

Y( z) = 

-0.018 l z5 +0.8917 z4 +8.1335 z3 + 25 .8372z2 +41.1316z + 31.4882 0.0181 
------------------------+---. 

z6 + 6z5 + 48z4 + 286z3 + 935z2 + I 580z + 888 z 
(1.32) 

Applying the shifted Pade approximation method suggested in (Tavakoli-Kakhki 
& Haeri, 2009) with so = 133, we find the following 2nd- order approximation 
of the system-dependent component (first addendum at the right- hand side of 
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( 1.32)): 
-2 -0.018lz + 1.0407 
Y. (z)=-------

i: z2 - 2.25382 + 40.6760 · 
( 1.33) 

Adding the input-dependent component (second addendum at the right- hand 
side of (1.32)) to (1.33) as well as an auxiliary !st- order term with the far- off 
pole at z = -100 (step (v) of Procedure 1.5.1), we find the following 3rd-order 
approximation of the z-domain system transfer function: 

z2 + 100.7402z + 73.4276 
Gr ( z) = -z3,...+_9_7 __ 7-z-2 -_-1_8_4 __ 7_z_+_4_0_6_7-.6 (1.34) 

which, via the change of variable z = s415 , corresponds to the stable fractional­
order transfer function : 

- sl.6 + 100.7402s0·8 + 73.4276 
G,.(s) = s2.4 + 97.7sl.6 - 184.7s0-8 + 4067.6 · 

(1.35) 

Instead, by applying the shifted Pade method with so = 133 directly to (1.23), 
as in (Tavakoli-Kakhki & Haeri, 2009), without consideration of the input com­
ponent of the forced response, the following simplified stable fractional-order 
model is obtained: 

- sl.6 + 5.0349s0·8 + 0.3743 
Gr TH (s) = ---------------. 

' s2.4 + 2.0349sL6 + 29.2696s0-8 + 145 .3930 
( 1.36) 

The responses to input ( 1.24) of the reduced system ( 1.35) obtained according 
to the method suggested in this section and of the reduced system (1.36) are 
compared in Fig. 1.5 with the response to the same input of the original system 
( 1.23). It is apparent that the retention of the steady-state component leads to a 
better approximation in the medium to long run. 

Since fractional-order systems are infinite-dimensional, or long-memory, 
systems (Sabatier et al., 2014), it might be argued that the transfer function 
of a fractional-order system can be considered "simple" if it contains a small 
number of parameters. From this point of view, functions (1.35) and (1.36) in 
the previous subsection are indeed simpler than the original transfer function 
(1.23). Instead, from the point of view of system dimensionality, any integer­
order input-output or state- space model simulating the behaviour of a given 
fractional-order system can be regarded as a simplified model of the fractional­
order system (see, e.g., (Krajewski & Viaro, 2014)). In a sense, thew-domain 
rational function G(w) itself, having a finite integer order, represents the original 
fractional system in a more compact form . 

In this section, simplification is considered to be achieved if the maximum 
fractional degree of the s-domain approximation is smaller than the maximum 
fractional degree of the original transfer function, which corresponds to the fact 
that the (integer) degree of the denominator of Gr(w) is smaller than that of 
the denominator of G(w), even if the number of parameters in Gr(w) might 
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o.,,--~~~~~~~~~~~-;,====== 
- - - Original system 
- - - Approximation {2.26) 

0.25 - Approximation (2.36) 

0.2 
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i 0.1 
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--0.1 

-0.15~-~-~~~~~~~~~~~~-~~~ 
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time [sec] 

FIGURE 1.5 Responses to U(s) = 1/s 0·8 of: (i) the original system (1.23) (blue upper dashed 
line), (ii) the approximation ( 1.36) (red lower dashed line), and (iii) the approximation ( 1.35) retain­
ing the steady-state component (green solid line). 

sometimes be greater than that in G(w). The last situation typically occurs when 
a number of intermediate coefficients (between the leading term and the term of 
lowest degree, usually a constant) in the numerator and denominator of G( w) are 
missing. Of course, also the choice of the input whose asymptotic term should 
be preserved influences the model complexity because the fractional powers of 
sin U(s) contribute to the determination of the minimum common denominator 
of all fractional exponents of Y(s) = G(s)U(s). 

1.6.2 Example 2 

As a second example, consider the system analysed in (Tavazoei, 2016; 2011) 
whose transfer function turns out to be 

ccs) = 

s2.1 + 2sl.8 + s0.9 + 2 

s6-3 +4.9s5.4+ l l .05s4·5 + 14.07 s3-6 + l0.53s2-7 +4.55s 1-8+ l .05s0 •9 +0. l · 
( 1.37) 

By the change of variable w = s1!1° , we obtain 

G(w) = 

w27 + 2w' 8 + w9 + 2 

w63 +4.9w54 + l l.05w45 + 14.07w36 + l0.53w27 +4.55w18 + l .05w9 +0. l 
(1.38) 
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whose poles are outside the instability sector. Since all powers are multiples 
of 9, in this case too, the reduction procedure can profitably be applied to an 
integer- order rational function of smaller degree in the variable z = w9, namely: 

z3 + 2z2 + z + 2 
G(z) = z7 + 4.9z6 + l l.05z5 + 14.07z4 + 10.53z3 + 4.55z2 + 1.05z + 0.1 

(1.39) 
whose 3rd-order optimal Hankel- norm approximation (Glover, 1984) turns out 
to be 

0 .5592z2 - 0.4066z + 0.4178 
Gr,HN( Z) = z3 + 0.584l z2 + 0.1885z + 0.0204 

and in the s-domain with z = s9I 10 

- 0.5592sl. 8 - 0.4066s0·9 + 0.4178 
Gr H N (s) = -----------,--,---. 

· s2·7 + 0.584lsL 8 + 0.1885s0•9 + 0.0204 

(1.40) 

( 1.41) 

Let us apply now the procedure based on the retention to the asymptotic 
response to the input 

- 1 
U(s) = s0.9 . (1.42) 

To this purpose, the original forced response to input ( 1.42) is decomposed into 
the sum of a system-dependent component and an input- dependent component, 
which in the domain of z = w9 = (s 1l 10)9 turn out to be, respectively, 

-20z6 - 98z5 - 22l z4 - 281.4z3 - 209.6z2 - 89 z - 20 
Yi:( z) = --------------------, 

z 7 + 4.9z6 + I I.05 z5 + 14.07 z4 + 10.53z3 + 4.55z2 + I.05 z + 0.1 

- 20 
Yu (z) = -. 

z 
The 2nd- order optimal Hankel- norm approximation of (1.43) is 

- 2 -15 .9384z - 9.9977 
Yi: (z) = z2 + 0.3796z + 0.0511 · 

( 1.43) 

(1.44) 

(1.45) 

By adding to (1.45) an auxiliary term with a far- off pole at -100 (step (v) of 
Procedure 1.5.1), and combining the resulting sum with the original input­
dependent component (1.44), the reduced system transfer function in the z­
domain turns out to be 

- 402 .2097z2 - 239.7748z + 102.1383 
Gr(Z) = z3 + 100.3796z2 + 38.0102z + 5.106 

and in the s-domain with z = s9I 10 

- 402.2097sl. 8 - 239.7748s0·9 + 102.1383 
Gr (s) = 2 I 8 0 9 · s ·7 + 100.3796s · + 38.0102s · + 5.1069 

(1.46) 

(1.47) 

The responses to ( 1.42) of the original system ( 1.37) and of the approximating 
models (1.41) and (1.47) are shown in Fig. 1.6. 
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······· Approxlmaflon(2.41 ) 
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FIGURE 1.6 Responses to U(s) = 1/s 0-9 of: (i) the original system (1.37) (blue solid line), (ii) 
the approximating model ( I .41) (red dotted line), and (iii) the approximating model ( 1.47) retaining 
the asymptotic component of the response (green dashed line). 

1.6.3 Example 3 

Consider finally the transfer function 

- 5~·6 +2 
G(s) = .....,...,,------,--,,--------,---,--------,---

s3.3 + 3.ls2-6 + 2.89s 1-9 + 2.5s 1.4 + 1.2 
( 1.48) 

taken from (Xue & Chen, 2007), and assume that the input whose asymptotic 
response must be retained is 

- 10 
U (s) = _s_o_-2 ___ 0 __ 7_s_o_-, ( 1.49) 

which has been chosen, rather arbitrarily, to test the system long- term response 
to non-decaying inputs. The corresponding time-domain signal u(t) is shown 
in Fig. 1.7. It can be obtained as the step response of a filter with transfer 
function 

IOso.9 
F(s) = o I • 

s - -0.7 
(1.50) 

For w = s 0-1 function ( 1.48) becomes 

G(w) = 5w6 + 2 
w33 + 3.lw26 + 2.89w 19 + 2.5w 14 + 1.2' 

(1.51) 

A 4th-order approximation of ( 1.51) has been obtained by interpolating ( 1.51) 
at s = 1 and s = 2 with intersection number 2 (retention of 2 time moments) 
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FIGURE 1.7 Time- domain input signal u(t) corresponding to ( 1.49). 

according to the multipoint Pade technique via Lanczos' iteration method (Gal­
livan et al. , 1996). The corresponding simplified fractional-order transfer func­
tion turns out to be 

- 9 .6597 SO.J + 50.106s0·2 + 56.107 SO. I + 4. 753 
Gr PL(s) = o · 

' s0 .4 + 35.5s0-3 + 161.08s0-2 + 173.02s ·1 + 14.037 
(1.52) 

By applying instead the suggested reduction method based on: 
(i) the decomposition of Y(w) = G(w)U(w) into a system-dependent com-

ponent 

YL(w) = XA(w) 
w33 + 3. lw26 + 2.89w 19 + 2.5w 14 + 1.2 

(1.53) 

and an input-dependent component 

y, (w) _ Xc(w) 
u - w2 + w + I 00 ' 

(1.54) 

(ii) the approximation of (1.53) by means of the same method used to find 
( 1.52) from ( 1.48), and 

(iii) the retention of ( 1.54), 
the following approximating fractional-order transfer function is obtained (after 
substituting s0· 1 for w) 

- 68.447s0.3 + 357.2ls0·2 + 528.5s0· 1 + 157.17 
Gr(s)= 3 02 01 · s0-4 + 3.7838s0- + 103.73s · + 279.32s · + 94.3 

( 1.55) 

Fig. 1.8 shows the responses to the input with Laplace transform (1.49) of: 
(i) the original system ( 1 .48) , (ii) the approximating model ( 1.52), and (iii) the 
approximating model (1.55) retaining the asymptotic response. 
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FIGURE 1.8 Responses of: (i) the original model (1.48) (blue solid line). (ii) the approximating 
model (1.52) (red dotted line), and (iii) the approximating model (1.55) retaining the asymptotic 
component of the response (green dashed line) 

The previous examples show that the suggested response decomposition can 
be applied satisfactorily in many approximation problems. On the other hand, as 
outlined in the next section, some difficulties arise in achieving a simplification 
in terms of number of model parameters. A similar problem arises in the use of 
the suggested decomposition for solving the model-matching problem, strictly 
related to controller synthesis, as the example in the next section will show. 

1.7 DISCUSSION AND EXTENSIONS 

In the previous Section 1.5 the decomposition of the forced response has prof­
itably been applied to the derivation of "simplified" models of fractional-order 
systems. Tt has been observed, in this regard, that the definition of model com­
plexity is to some extent arbitrary. It may be related to the (finite) dimension 
of the integer- order models associated with the fractional-order systems via the 
variable transformation ( 1.3), or to the "compactness" of the fractional-order 
transfer functions, in particular, the number of non-zero parameters that appear 
in them, or to the maximum degree of the denominator of the transfer functions. 
The models obtained in the previous section can be considered simpler from all 
of these points of view. lt should be observed, however, that the results strongly 
depend on the input whose asymptotic component of the forced response must 
be retained. Jf the minimum common denominator (med) of the fractional ex­
ponents of the input transform does not coincide with the med of fractional 
exponents of the original transfer function, forcing U(w) and G(w) to have a 
common q might entail a considerable increase of the order of the integer- order 
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model obtained via (l.3) from the fractional-order transforms. 
Also the reduction criterion adopted to approximate the system component 

of the forced response is rather arbitrary. Even if its choice is outside the scope 
of the present contribution , it should be noted that not all methods cannot be 
applied. In fact, most reduction methods suggested in the literature for integer­
order systems are directly applicable only to (stable) systems with poles in the 
open LHP. To overcome this problem, it is sometimes suggested to preliminarily 
separate the stable and unstable parts of the systems with RHP poles and then 
apply the reduction procedure only to the first. Further difficulties arise in the 
case of fractional-order systems, because their stability is compatible with the 
presence of RHP poles in the integer-order function derived from the fractional 
one via (1.3), provided these poles are outside the instability sector. 

In this book chapter attention has been focused on the model reduction prob­
lem, but the relevance of the response decomposition goes beyond model sim­
plification. Suffice it to recall, in this regard, the interpolation problem, strictly 
related to the model matching problem (Doyle et al., 1992) or, more generally, 
the moment matching problem (Astolfi, 2010). Indeed, forcing the coincidence 
of the input components of two different systems in the response to a given input 
entails interpolating the values taken by the transfer function of either system at 
the roots of the denominator of the input transform. To clarify this, consider 
two systems whose respective transfer functions are G1 (w) = B1 (w)/A 1 (w) 
and G2(w) = B2(w)/A2(w). Under suitable coprimeness assumptions, their 
responses to U(w) = D(w) /C(w) can be decomposed as 

B1 (w) D(w) XA 1 (w) Xc 1 (w) 
~(w)=----=---+---

A1 (w) C(w) A1 (w) C(w) 
( 1.56) 

and 
B2(w) D(w) XA2 (w) Xc,(w) 

Y2(w) = ---- = --- + ---. 
A2(w) C(w) A2(w) C(w) 

(1.57) 

For Xc1 (w) = Xc2 (w) = Xe (w) (equality of the input- dependent components), 
from ( 1.56) and ( 1.57) we get 

B1 (w)D(w) = 
B2(w)D(w) = 

XA 1 (w)C(w) + Xc(w)A1 (w), 

XA , (w)C(w) + Xc(w)A2(w), 

so that, at the roots of C(w), i.e. , for C(w) = 0, we have 

( 1.58) 

( 1.59) 

(1.60) 

which means that G2(w) interpolates G1 (w) at the poles of U(w). As is well 
known, ifG2(w) and G1 (w) are realised in a unity-feedback fashion, this means, 
in turn , that their forward paths include an internal model of the (common) input 
(Francis & Wonham, 1976). 
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The previous considerations have obvious implications on the so- called di­
rect or analytic synthesis of control systems (Ferrante et al., 2000) whose first 
step consists in choosing an overall, or total, or complementary sensitivity, sys­
tem transfer function T(w) that satisfies the specifications, the next step being 
its realisation, possibly by means of a feedback structure with controller Ge (w) 

and plant Gp(w) located in the forward path so that 

and 

Gc(w)G,,(w) 
T(w) = ------'----

1 + Gc(w)Gp(w) 

1 T(w) 
Gc(w) = G,,(w) 1-T(w) 

(1.61) 

(1.62) 

In the case of fractional-order systems, to profit by the efficient techniques de­
veloped for integer- order systems, the rational function T(w) will be obtained, 
via (1.3), from an original fractional-order transfer function . To facilitate the 
synthesis procedure, it is convenient to choose the least common denominator 
(led) of the fractional powers in this function equal to the led of the powers in 
the fractional-order process transfer function. Correspondingly, also the led of 
the powers in the resulting fractional- order controller transfer function obtained 
from (1.62) via (1.3) will be the same. 

1.7.1 Example 4 

Let the fractional-order transfer function of a given process be 

- 1 
G (s)- ----

P - 1 + IO s 0.8 

whose response to the input u(t) with Laplace transform 

U(s) = 1/ s0·8 

(1.63) 

(1.64) 

(see Fig. 1.4) is shown in Fig. 1.9 (solid line). Assume that it is desired to 
speed up the response by resorting to a unity-feedback control system. To this 
purpose, the complementary sensitivity function of such a feedback system is 
chosen to be 

- 1 
T(s) = --o-8 

1 + s · 

whose response to u(t) is compared to that of 8,, (s) in Fig. 1.9. 

(1.65) 

This choice also ensures that the response to the aforementioned input con­
tains an input-dependent component equal to the input itself because Y(s) 
T(s)U(s) can be decomposed as 

- 1 1 
Y(s) = ---0-8 + -o 8 ' 

l+s· s · 
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so that it tends quickly to the chosen reference input. 
By the change of variable w = s0-1, Gp (s) is transformed into 

and T(s) into 

1 
G (w)- ---

JJ - l + 10w8 

l 
T(w) = --8 l + w 

( 1.66) 

( l.67) 

so that, according to (1.62), the controller transfer function in w-domain turns 
out to be 

1 + 10w8 
Gc(w)= 8 , 

w 
( 1.68) 

whence 

(1.69) 

As is expected, thi s controller contains an internal model of the input transform 
(Francis & Wonham, 1976). 

- plant response 
- - - feedback sys1am 

1.8 - Input signal 

1.6 

1.4 

1.2 

30 40 50 60 70 80 
time[sec] 

FIGURE 1.9 Responses to input (1.64) of: (i) the plant (1.63) (blue lower solid line), and (ii) the 
feedback control system (1.65) (red dashed li ne). The input ( 1.64) is represented by the green upper 
solid line. 

1.8 CONCLUSIONS 

It has been shown that the forced response of a fractional-order system to an 
input belonging to a very numerous class can uniquely be decomposed into a 
system component and an input component, as is the case also for integer- order 
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systems. The first is characterised by the same modes as the system and the 
second by the same modes as the input. Therefore, if the system is asymptoti­
cally stable and the input is persistent, the input component corresponds to the 
steady- state or asymptotic response to the selected input whereas the system 
component corresponds to the transient response. 

To ascertain whether the fractional-order system is BIBO stable without 
computing numerically the system poles, resort can be made to the Routh­
Hurwitz criteria for complex polynomials which allow us to determine the root 
distribution with respect to any straight line of the complex plane. On the basis 
of these criteria, simple stability and instability conditions have been provided 
that partly extend previous results of the same kind presented in the literature. 

The response decomposition can be used in various contexts, ranging from 
system approximation to system analysis and synthesis. In particular, it has 
been applied to find a simplified model that retains the asymptotic behaviour of 
the original system in the response to characteristic inputs, a result that most 
model-reduction techniques do not ensure even for integer- order systems. As 
shown by some examples, in most cases the approximation of the corresponding 
system component is not appreciably affected by the requirement of steady-state 
retention, which only entails a usually small increase of the reduced model order 
depending on the input complexity. 

Future research directions along the same lines include: (i) the character­
isation of the transient output component in the response to suitable inputs, 
(ii) the synthesis of feedback controllers that ensure the desired asymptotic be­
haviour, and (iii) the extension of the decomposition procedure to systems of 
non-rational order. 
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