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Abscracl. 
The paper deals with the analysis and numerical solution of the topology optimization of system 

governed by the variational inequalities using the combined level set and phase field rather than stan­
dard level set approach. Standard level set method allows to evolve a given sharp inte1face but is not 
capable to genetrate holes unless the topological derivative is used. The phase field method indicates 
the position of the interface in a blurry way but is flexible in hole generation. In the paper two-phase 
topology optimization problem is formulated in terms of the modified level set method and regular­
ized using Cahn-Hilliard based interfacial energy tenn rather than the standard perimeter term. The 
derivativc fonnulae of the cost functional with respect to the level set function is calculated. Modified 
reaction-diffusion equation updating the level set function is derived. The necessary optimality condi­
tion for this optimization problem is fonnulated. The finite element and finite difference methods are 
usecl to solve the state and adjoint systems. Numerical examples are provided and discussed. 
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I. INTRODUCTION 

Shape or topology optimization problems of systems governed by PDEs arise in 

many applications. Examples include different branches of industry, biology or image 

processing [I, 2, 11, 12]. The paper is concerned with the topology and/or shape 

optimization problem for an elastic body in unilateral contact with a rigid foundation. 

The contact phenomenon with Tresca friction is governed by the second order elliptic 

variational ineąuality [3, I 5, 30]. The structural optimization problem consists in 

fincling such materia! clistribution in a given design clomain occupiecl by the body 

and/or the shape of its boundary that the norma! contact stress along the boundary 
of the body is minimized. 



Shape and topology optimization problems are studied in literature both from 
analytical point of view as well as numerical. Topology optimization problems are 

usually ill-posed and reąuire regularization [6, 8, 21, 27, 28, 30, 33]. The existence 
results for this class of optimization problems may be found in (6, 7). The materia! 

derivative (30] or topology derivative methods [29] are employed to calculate the 

derivatives of the cost functional with respect to the shape boundary variations or 

to the inserting or removing a void (hole) from the materia! of the body, respectively 

and to formulate a necessary optimality condition. 

Many successful numerical methods have been proposed to solve shape and topol­

ogy optimization problems. For the review of these methods see [I I, 12]. Especially, 

Sim ple Isotropic Materia! Penalization metod, Evolutionary Structural Optimization 

approach [IO] or topology derivative method (29] are the main methods used to solve 

topology optimization problems. Recently the use of the level set methods (26] and 

the phase field methods (13, 16, 19, 20, 25] has been proposed to solve the topology 

optimization problems [3, 4, 5, 6, 7, 8, 12, 21, 24, 27, 31, 32, 33]. In numerical algo­

rithms of structural optimization the level set method is employed for capturing the 

evolution of the domain boundary on a fixed mesh and finding an optima! domain 

[I, 2]. The level set method is a sim ple and versatile method to compute and analyze 

the motion of an interface in two or three dimensions. It is based on the implicit 

representation of the boundaries of the optimized structure. It introduces a contin­

uous auxiliary function over the whole global domain and embedds the optimized 

domain interface as the zero level set of this higher dimensional function, i.e. the 

position of the domain boundary is described as an isocountour of a scalar function of 

a higher dimensionality. In standard level set approach the evolution of the domain 

boundary is governed by Hamilton - Jacobi equation. The speed vector field driving 

the propagation of the level set function is given by the Eulerian derivative of the 

cost functional with respect to the variations of the free boundary. Therefore the 

interface is propagated exactly as the zero level set of the level set function. Since the 

standard level set method is not capable to generate voids, requires reinitialization 

and the use of Heaviside and Dirac functions it has been generalized to reduce these 

drawbacks. Especially, binary and piecewise constant level set functions have been 

introduced. Using two phase formulation of the original topology optimization prob­

lem and the radia! [22] or the piecewise constant level set approach the evolution of 

the domain boundary is governed by the gradient flow equation. 

While level-set methods have become an accepted tool in structural topology op­

timization the use of phase field methods in this field has not yet . become popular. 

The topology optimization problem in multiphase setting can be transformed further 

into a phase field problem where the optima] topology is characterized as the steady 

state of the phase transition. Phase field models in the form of Cahn-Hilliard or 



Allen-1-Iillard equations (6, 7, IO, 14, 19, 32) have been first introduc·ed in metalurgy 

to describe phase separation in binary alloy systems. Next these approaches have 

been used to provide mathematical models in different areas, including crack propa­

gation, image processing, tumor growth. Phase field models have many similarities 

with the level set approach. The basie concept of the phase field model is the rep­

resentation of two fluid or materia! phases by two minima of a double-well potentia! 

with a smooth transition region representing the interface. The form and width of 

the transition region between the two phases gives rise to the surface ten·sion forces. 

The phase field method can be considered as a physically motivated level set method. 

The evolution eąuations for the smooth fields corresponding to the phase field vari­

able are obtained using a variational approach associated to searching minimum of 

the corresponding free energy or entropy. 

The paper is concerned with the analysis and numerical solution of the topology 

optimization of system governed by the elliptic variational inequalities modelling the 

elnstic unilateral contact problem with Tresca friction. The aim of the optimization 

problem is to find such distribution of the materinl of the body in unilateral contact 

with the rigid foundation to minimize norma] contact stress. The combined level set 

and phase field rather than standard level set approach is used. Two-phase topology 

optimization problem is formulated in terms of the modified level set function. This 

problem is regularized using Cahn-1-Iilliard interface energy term rather than the 

perimeter term. Derivatives formulae of the cost functional with respect to the 

level set function are calculated. Interface evolution is governed by the modified · 

gradient flow eąuation of reaction-diffusion type. The necessary optimality condition 

for this optimization problem is formulated. The numerical implementation issues 
are described. Numerical examples are provicled and discussed. 

2. PROBLEM FORMULATION 

Consider deformations of an elastic body occupying two-dimensional domain f1 

with the smooth boundary r (see Fig. 1). Assume f1 c D where D is a bounded 

smooth hold-all subset of R2 . The body is subject to body forces f(x) = _(h(x), 
fz(x)), x En. !Vloreover, surface tractions p(x) = (p 1(x) ,p2 (x)), x Er, are applied 

to a portion r1 of the boundary r. We a.ssume, that the body is clamped along the 
portion r 0 of the bounclary r, and that the contact conditions are prescribed on the 

portion r 2' where r i n rj = 0, i =lej, i, j = o, 1, 2, r = f o uf I uf 2· 

Let p = p(x) : f1 -+ R denote the materiał density function at ~ny generic point 

x in a design domain n. It is a phase field variable taking value close to 1 in the 

presence of materiał, while p = O corresponds to regions of f1 where the materia! is 

absent , i.e. there is a void. In the phase field approach the interface between materiał 
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FIGURE I . !nitial domain S1. 

and void is describecl by a diffusive interfacial layer of a thickness proportional to 
a small lenght scale parameter c > O and at the interface the phase field p rapidly 

but smoothly changes its value (10]. We require that O :S p :S 1. The p values 

outside this range do not seem to corresponcl to aclmissible materia! distributions. 

The elastic tensor A of the materiał body is assumed to be a function depending on 
density function p: 

(2.1) A= g(p)Ao, Aa= {aijkdT,;,k,l=l 

and g(p) is a sui table chosen function [3, 6, 1 O, 29]. 

We denote by u = ( u 1 , u2 ), u = u(x), x E n, the displacement of the body and by 

a(x) = {aij(u(x))}, i,j = 1, 2, the stress field in the body. Consider elastic bodies 
obeying Hooke's law, i.e., for x En and i, j, k, l = 1, 2 

(2.2) aij(·u(x)) = g(p)aijkl(x)ekl(u(x)). 

We use here and throughout the paper the summation convention over repeated 

inclices [15]. The strain ek1(u(x)), k, l = 1, 2, is defined by: 

1 
(2.3) eki(u(x)) = 2(-u.k,i(x) + ·u1,k(x)), 

where u1,;,1(x) = 0•~~\x). The stress field a satisfies the system of- equations in the 
domain n [ 15] 

(2 .4) -a;j(x),j = f;(x) XE 0,i,j = 1,2, 



l · ( ·) - 8"'•;(x) · · - 1 2 Tl f 11 · b d d·t· · d wie1e r:J;j x ,i - Bx1 , i,J - , . ie o owmg oun ary con 1 1011s are 1mpose 

on the boundary 8!1 

(2.5) 

(2.6) 

(2.7) 

(2.8) 

·u;(x) = o 011 ro, i= 1, 2, 

(J;1(:c)n1 =p; on f 1 , i,j=l,2, 

UN '.S 0, (JN '.S 0, UN(JN = 0 011 f2, 

I (Jr 1:S 1, ·ur(Jr+ I ur I= o on r2, 

where n = (n1 , n2 ) is the unit outward versor to the boundary r. Here UN = u;n; 

and (JN = (J;fn;-nj, i,j = 1, 2, represent the normal components of displacement ·u 

and stress (J, respectively. The tangential components of displacement ·u and stress 

(J are given by (-ur); = u; - u N n; and (r:Jr ); = (J;f11j - (J N'ni, i, j = 1, 2, respectively. 

[ ny [ denotes the Euclidean norm in R2 of the tangent vector ur. The results 

concerning the existence of unique solutions to (2.4)-(2.8) can be found in [ 15, 30]. 

2.1. Variational Formulation of Contact Problem. Let us formulate contact problem 

(2.4)-(2.8) in the variational form. Denote by Vs„ and K the space and the set of 

kinematically admissible displacements: 

(2.9) 

(2.10) 

Vsp = {z E [H1 (l1)] 2 : z;= O on fo, i= 1, 2}, 

K={zEV:,,,: ZN:SO on f2}. 

H 1 (!1) denotes Sobolev space of square integrable functions and their first derivativc,s 

(15 , 30]. [H1(l1)] 2 = H 1 (l1) x H 1 (l1). Denote also by A the set 

Variational formulation of problem (2.4)-(2.8) has the form: fine! a pair (u,,\) E K x A 

sarisfying 

(2.11) 

(2.12) 

L g(p)a;1k1e;1(11,)ek1(<p - u)dx - L f;(<p; - u;)dx -

l p;(<p, - -u;)ds + l >-(<pr - ur)ds ~ O \/<p E K, 
.lr1 lr2 

/ (( - >-)urds :SO V( E A, 
lr2 

·i, j, k, l = l, 2. Function ,\ is interpreted as a Lagrange multiplier corresponding to 

term [ ur [ in equality constraint in (2.8) (15]. This function is equal to tangent stress 

a.long the boundary r2 , i.e., ,\ = r:Jr1r,. Function ,\ belongs to the space H- 1/ 2 (f2 ), 



i.e., the space of traces on the boundary r2 of functions from the space H 1 (D). Here 

following (15] function ,.\ is assumed to be mare regular, i.e., ,.\ E L2(r2 ). The results 

concerning the existence of solutions to system (2.11)-(2.12) under the introcluced 

assumptions can be found, among others, in (15, 30), i.e, 

Theorem 2.1. T/Jere exists a unique so/ution (·u,,.\) E I< x A to system (2. I I )-(2.12). 

2.2. Topology Optimization Problem. Before formulating a structural optimization 

problem for (2.11)-(2.12) let us introduce the set Uad of aclmissible domains. Denote 

by Vol(D) the volume of the domain n eąual to 

(2.13) Vol(D) = In p(x)dx. 

Domain n is assumed to satisly the volume constraint of the form 

(2.14) Vol(D) - Vol 9iv ś O, 

where the constant V ol9 iv = const0 > O is given. In a case of shape optimization 

of problem (2.11) - (2.12) the optimized domain n is assumed to satisfy equality 

volume condition, i.e., (2.14) is assumed to be satisfied as equality. In a case of 

topology optimization Volgiv is assumed to be the initial domain volume and (2.14) 

is satisfied in the form Vol(D) = rf,.Vol 9 iv with 1'Jr E (O, 1) [29]. The set Uad has 

the following form 

Uad = {D EC n CD C R2 

(2.15) n is Lipschitz continuous, n satisfies conclition (2.14)}, 

where EC R2 is a given domain such that n as well as all perturbations of it satisfy 

E c n. The constant const 1 > O is assumed to exist. The set Uad is assumed to be 

nonempty. In order to define a cost functional we shall also need the following set 

].;[st of auxiliary functions 

M st = {·17 = ("IJ1,"IJ2) E [H1(D)] 2 : 7Ji ś O on D, i= 1,2, 

(2. 16) il ·17 lł[H'(D))' Ś l}, 

where the norm li 7/ IIIH'(D))2= o::::=! li "/)i 11i'(D)) 1l 2 . Recall from [21, 22, 24] the 
cost functional approximating the norma! contact stress on the coi1tact bounclary 

(2.17) J,1(u(O)) = ( uN(u)17N(x)ds, Jr, 



depen<ling on the auxiliary given bounded function ·17(x) E l\1st . ON and 7)N are 

the norma! components of the stress field (J' corresponding to a solution '/J. satisfying 

system (2.11)-(2.12) and the function 17, respectively. 

Consider the following structural optimization problem: for a given fimction 17 E 

J\,f5t, find a clomain O* E Uad such that 

(2.18) J,7(u(O*)) = min J,lu(O)). 
neu,.,, 

Adcling to (2.15) a perimet.er constraint Po(O):::; const1, where Po(ll) = frdx 
is a perimeter of a domain O in D [7, 21, 30) and const1 > O is a given constant 

the existence of an optima] clomain O* E Uart to the problem (2.18) is ensurecl (see 

(6, 7, 30]). 

Theorem 2.2. Assume the number of connected components of the complement set oc 
of donrnin O with respect to D C R 2 is bounded. There exists a solution to D, C Uad to the 

problem (2.18). 

Proof The class of admissible domains is endowed with the complementary Hausdorff 

topology that guarantees the class itself to be compact. The existence of an optima! do­

main O* E Uud to the topology optimization problem (2.18) follows from Sverak theorem 

and arguments provided in [7). O 

3. HYBRID APPROACH TO TYOPOLOGY OPTIMIZATION 

3.1. Le vel set based topology optimization. In [I, 12, 2 I) the standard level set method 

[26] is employed to salve numerically problem (2.18). Consider the evolution of a domain 

O under a velocity field V. Let t > O denote the mtificial time variable and I an identity 

operator. Under the suitable regular mapping T(t, V) we have 

Ot= T(t , V)(O) = (I+ tV)(O), t > O. 

By 0 1 we denote the interior of the domain 0 1 and by ot we denote the outside of the 

domain 0 1. The domain Oi and its boundary 801 are defined by a function r/; = !/;(x, t) . 
R2 x [O, t0 ) -> R satisfying: 

(3.1) 

</J(x, t) o, if x E aot, 
!/;(x , t) < O, 

!/;(x, t) > O, 

if x E 0 1, 
if XE Ot 

Function r/; satisfying (3.1) is called the level set function. Recall [26), the gradient of the 

implicit function is defined as 'vr/; = (-#t, ;;: ), the loca! unit outward norma! n to the 



boL1ndary is equal to n = 1~:I, the mean curvature 1,, = '7 · n. In the level set approach 
Heaviside function H(rp) and Dirac function 8(rp) are used to transform integrals from do­

main !1 into domain D [3]. These functions are defined as 

(3.2) 

(3.3) 

(3.4) 

H(rp) = 1 if rp?. O, H(rp) = O if rp < O, 

8(</;) = H'(rp), 8(x) = 8(</;(x)) I '7</;(x) I, x E D. 

1n f(x)dx = l f(x)H(rp)dx 

/' .f(x)ds = /' f(x)8(cp) I '7</; I ds Jan Jn 
Assume that velocity field V = V(x, t) is known for every point x lying on the boundary 
8!1t, i.e., such that cp(x, t) = O. Therefore the eqL1ation governing the evolution of the 
interface 8!11 in D x [O, t0 ), known as Hamilton-Jacobi equation, has the form [I, 26] 

(3.5) 
oq;(x, t) 
- 0-t - + V(x, t) · '7 xr/J(x, t) = O. 

(3.6) cp(x, O)= c/;o(x), 

where rp0 (x) is a given signed distance function of the set !11. Velocity field V is chosen as 

the shape derivative of the cost functional (2.18) with respect to the boundary vaiiations of 

the domain. Topology derivative of this cost functional has to be used to indicate the areas 

of the weak materiał. The shape and topology derivatives of the cost functional (2.17) are 

provided as well as a necessary optimality condition is shown in [21]. 

3.2. Phase field based topology optimization. Consider a two phase problem. Let mate­

ria! density function O ~ p ~ 1 be a variable desctibing the concentraation of one of the 

phases in the domain !1. The other phase is obtained as (1 - p). This variable is LISed to de­

scribe the phase transition [ I OJ. To indicate the evolution of the materia! density function p 

!et LIS assume this function depends not only on x E !1 but also on the artificial time variable 

t E [O, T), T > O given, i.e. p = p(t, x). Let LIS introduce the regL1la1ized cost functional 

J(p, ·u) in the form: 

(3.7) J(p, u)= J,1(u) + E(p), 

where the functionals J11 (u) is given by (2.17) and Ginzburg-Landau free energy term E(p) 
(3, 4, 6, 7, 10, 12, 32] satisfies: 

(3.8) E(p) = }n 1/J(p)d!1, 



with the total free energy function 1/J(p) in the form 

(3.9) 'Yf. 2 'Y 
1/J(p) = 2 I 'vp I +-;-1/Js(P), 

where 'Y > O is a constant, f. > O is a parameter related to the inte1facial energy density and 

1/1s(p) is a double-wel! potentia! which characterizes the two phases (3, 10]. Usually it is 

taken as an even-order polynomial of the form [ 19] 

(3.1 O) 1/Js(p) = /(1 - /). 

The first term in (3.9) is called the interface energy. It represents [IO] a measure of the 

perimeter of the interfaces between the phases and in this sense it is the relaxed version 

of the global perimeter constraint. The term (3. I 0) is called the bulk energy. It is a non­

convex smooth function attaining minimum in the pure phases p = O and p = 1. The values 

assumed by 1/18 (p) for intermediate values of p are larger than for pure phases and are not 

prefered in the optimization process. Parameter f. measures the width of the transition zone. 

The structural optimization problem (2.18) takes the form: fine/ p* E u:d such thar 

(3.11) J(p*, -u*) = min J(p, ·u), 
pEU:/,t 

where ·11.* = ·u(p*) de notes a solution to the state system (2.11 )-(2.12) depending on p* and 

U/,'d = {p: Vol(D) = Vol 9 i"} denotes the set of admissible materia! density functions. 

The definition of the phase transition model is based on the concept of the flow of the 

gradient "il L of the Lagrangian of the problem(3. I I} with respect to p in the norm of a 

sui table chosen Hilbert space H: 

(3. I 2) 
8p 8L 
Bt (t, x) = - Bp (p) in l1, 'v't E [O, T), 

and the initial condition 

(3.13) p(O, x) = Po(x) t = O ,; E l1. 

Selecting the space H [19] as the subspace ofa space [H 1 (l1))' dual to H 1 (l1) (3.12)-(3.13) 

leads to a necessary optimality condition in the form of the modified Cahn-Hilliard equation. 

For de tai Is see [24]. 

4. HYBRID APPROACH TO TOPOLOGY OPTIMIZATION 

Hybrid interface tracking models, joining the level set approach and the phase field ap­

proach, are u sed in fluid dynamics govemed by Navier-Stokes equations [ 16] or in modelling 



su1face tension interface (19]. Among others, in (17, 18] to avoid singularities at the contact 

point between the fluid and the wali hybrid interface evolution model has been used com­

bining convective transport equation in the bulk domain and Cahn-Hilliard equation in the 

vicinity of the interface. The numerical tests indicate the computational efficiency of the 

hybrid model compared to plain phase field one. 

The relation between level set and phase field approaches are studied among others in 

(3, 5, 9, IO, 28, 33]. Based on application of both models in Mumford-Shah functional 

minimization for image registration and segmentation [9], it is stated that these 111odels are 

well-known due to their topological flexibility. Both approaches are very flexible and allow 

a wide range of extensions for model-based matching, registration and segmentation, optical 

flow with discontinuities, fluid flow. In these methodologies the process of splitting a curve 

inio severa! curves is a smooth one. However these two approaches differes significantly in 

the representation of the discontinuity set . The level set method al!ows to represent, trace 

and evolve a given sharp interface. This fils very well to the framework of the calculus of 

shape derivatives in which the current interface is given precisely. On the other hand the 

phase field function is capable to indicate the position of a inteface in a blurry way only 

determined by the order of a grid size. The classical level set framework is restricted to 

closed curves and thus it does not allow to represent crack tips or to generale a hole using a 

single level set function. Topological derivative is used to generale holes in the framework 

of the level set method[7]. On the other hand the phase field method appears to be more 

flexible and practicable for the aforemntioned applications. The phase field representation is 

global by definition and respects the features of the topology in the entire domain occupied 

by a structure without requiring any initialization. 

As far as it concerns algorithmic implementation of these approaches [9], the phase field 

method, especially in the form of Allen-Cahn equation, seems to be easier to implement. 

The phase field method can be implemented by solving parabolic equations with coefficients 

dependent on spatial va1iables. Such problems are standard and can be solved with PDE 

toolboxes. Since the interface is represented by a smooth phase field function the solution 

of Helmholtz problems in the domains divided by free discontinuity is straightforward and 

does not require any additional effort to take care of free boundaries. The sharp interface 

approach requires to evaluate the velocity along the interface. 

Structural optimization problems with a level set function and different phase field like 

gradient flow equations are considered in [8, 28, 31 , 33]. The relation between phase field 

and sharp interface tracking models in optima! control problems is considered in [3]. Us­

ing the method of the matched asymptotic expansions it is shown that for the compliance 

topology optimization problem in linear elasticity the sharp interface limit of the necessary 

optimality condition for the phase field model when the interface width parameter is pass­

ing to zero coincides with the necessary optimality condition for this optimization problem 

obtained-by the shape calculus [I]. 

IO 
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4.1. Hybrid optimization problem fommlation. Consider slightly modified level set 

function q; compare to the standard one (3.1 ), 

(4, I) 

0 < q;(x) ~ l for x E D\ćJD, 

</J(x) = O for x E ćJD, 

-1~</J(x)<O for xED\D 

Remark the level set function (4.1) is close to the phase field variable goveming the evolution 

of phases in the phase field method or to the so-called binary level set method [IO]. This 

function is bounded and takes values close to + I or - I in regions sufficiently distant from 

the interfaces. Consider the regulaiized cost functional (2.17): 

T > O is a regularization parameter. The structural optimization problem (2. I 8) takes the 

form: find c/J E U,~~ such that: 

(4.3) 

where the admissible set U,~1 (2.15) in terms of </J has the form: 

(4.4) uf;1 ={<PE H 1(D): Vol(</))= / H(</>)dx - Volgiv ~ O}. 
j D 

(11, >-) E K x A solves the state system (2.11 )-(2.12) in the domain D rather than rl: 

(4.5) 

(4.6) 

}~ H(cp)aijkleij(u)ek1(<p - u.)dx - l H(</>)f;(<pi - "ll.;)dx -

/ p; ( <p; - ·u; )ds + / >-( 'PT - ·ur )ds ?. O 'ciep E K, 
.Ir, ./r2 

/ (( - >-)v.rds ~ O V( EA. 
.lr2 

The existence of a unique solution to (4.5)-(4.6) follows from Theorem 2. 1. 

li 



5. NECESSARY OPTIMALITY CONDITION 

Let us formulate the necessary optimality condition for problem (4.3)-(4.6). In order to 

do it we introduce the Lagrangian L(<f;, >-) : H 1 (D) x R--, R 

L(<f;,>-) = L(<f;, ·u.,>.,,pa,qa)) = JR(<P) + 

}~ H(<f;)aijkleij(u,)ek1(pa)dx - l H(<f;)f;(p't))dx -

(5.1) / p;pfds+ f >.,(Pr)ds+ Jr, Jr2 
f qau,rds + >-c(<f;) + f c2 (<f;), Jr2 -µ 

where>- E R,c(<f;) =[Vol(</;)),µ> Oisagivenreal. By (pa,qa) E !(1 x A1 wedenotean 

adjoint state. Using the results on differentiability of varaitional inequalities (30] we obtain 
(2 I] the adjoint state satisfies: 

and 

(5.3) f ((Pr+ 17r)ds = O V( E A1. Jr2 
The sets K 1 and A1 are given by 

(5.4) 

(5.5) A1 = {(EA ((x) = O on E1 U E2 U Et U Et}, 

while the coincidence set Ast = {x E r 2 : ·uN + v = O}. Moreover E 1 = {x E r 2 : 

>.(x) = -1}, E2 = {x E r2 : >.(x) = +l}, B; = {x EE; : UN(X) +V= O}, i= 1, 2, 
B; = E; \ B;, i= 1, 2. 

Using (5.2)-(5.5) we can calcu late the derivative of the Lagrangian L with rescpect to <f;: 

l !~ (<f;))(dx = j~[H(<f;)(a,jkleij(u,)ekl(Pa + 17) -

(5.6) f(pa + 17)) + r 6 <f;j(dx + f (A+ ~c(<f;))(dx V( EH, Jo µ 

The necessary optimality condition for problem (4.3)-(4.6) follows from standard argu­

ments [15, 30]: 

12 



Theorem 5.1. If(J, A*) E U!d x R is an optima] solution to problem (4.3)-(4.6) than: 

(5.7) 

with A 2: O. 

(5.7) implies [15, 30] that for all r/; and A 

(5.8) 
EJL(J)) EJL(r/;,A*) ---'----'- > O and ---'--,--- <_ O 

ar/> - EJ>-

6. IMPLEMENTATION ISSUES 

Uzawa type algorithm is employed to solve numerically optimization problem (4 .3). First 

as in (3.1) we assume that due to the evolution of the subdomains </> is also time dependent. 
The minimization of the Lagrangian L(</>, A) with respect tor/; is realized by solving the time 

dependent PDE [26] 

ar/>(,:, t) . 
-EJ-t - = '7 q,L(r/;, >-) in D x (0, oo), 

(6.1) cp(x, O)= c/Jo(x) in D, \Je/;· n= O on EJD 

to reach the steady state %1/ = O. It implies gradient V q,L(r/;, A) given by (5.6) equals to 

zero. rp0 (:1:) is a given function. The explicit Euler scheme [2) is u sed to solve nume1ically 

the equation (6.1 ), i.e., 

(6.2) 

8L(cJ," >.") where c/;'' = ą;(x , t"), 6tn denotes the n-th time step and acJ,' is given by (5.6). To 

satisfy CFL stability condition the stepsize 6t" is assumed to satisfy [26] 

(6.3) 6t" I/ I EJL(ą;"(x), ,5_n) I 
= en ~1~ f)rp , 

where o· is a suitable given number and h is the uniform mesh size. The updating scheme 

for the Lagrange multiplier A is as follows: 

(6.4) 
. . 1 
>,"+ 1 = >-" + -;:;Vol(r/;), 

µ 

with the penalty parameter µ"+ 1 E (O,µ."), JLo > O given. 
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FIGURE 2. Optima] domain !1*. 

6.1. Numerical example. The discretized topology optimization problem (4.3) - (4.6) is 

solved numelically. As an example a body occupying 2D domain 

(6.5) l1 = {(x1,x2) E R2 : OS x1 S 8 /I O< v(xI) S x2 S 4}, 

is considered. The boundary r of the domain l1 is divided into three pieces 

(6.6) 

ro= {(x1,X2) E R2 : XJ = 0,8 /I o< v(xI) s X2 s 4} , 

f1 = {(x1,x2) E R2 : OS x1 S 8 /I x2 = 4}, 

f2 = {(x1,x2) E R2 : OS x1 S 8 /I v(xJ) = x2}-

The domain l1 and the boundary f2 depend on the function -u. The initial position of the 

boundary r 2 is given as in Fig. I. The computations are canied out for the elastic body 

characterized by the Poisson's ratio v = 0.29, the Young modulus E = 2.1 • 10 11 N/m2. 
The body is loaded by boundary traction p 1 = O, p2 = -5.6 · 106 N along f 1, body forces 

f i = O, i= l, 2. Auxiliary function 17 is selected as piecewise constant (or linem") on D and 

is aproximated by a piecewise constant (or bilinear) functions. The computational domain 

D = [O, 8] x [O, 4] is selected. Domain Dis discretized with a fixed rectangular mesh of 80 

X 40. 

Fig. 6.1 presents the optima! domain obtained by solving structural optimization problem 

(4.3) in the computational domain D using Uzawa type algolithm and employing the opti­

mality condition (5.7). The areas with low values of density function appeare in the central 

part of the body and near the fixed edges. The obtained norma! contact stress is al most con­

stant along the optima! shape boundary and has been significantly reduced compming to the 

initial one. 
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7. CONCLUDING REMARKS 

The topology optimization problem for elastic contact problem with the prescribed f1ic­

tion is analyzed and solved numerically in the paper. The level set approach cofnbined with 

the phase field approach are used. The friction term complicates both the form of the gradi­

ents of the cost functional as well as numerical process. Obtained numerical results seems to 

be in accordance with physical reasoning. They indicate chat the proposed method allows for 

significant improvements of the structure from one iteration to the next and is mare efficient 

than the algorithms based on standard level set approach. Comparing to the standard level 

set approach the proposed approach do not require to salve Hamilton - Jacobi equation and 

to perform the reinitialization process of the signed di stance function. The proposed method 

has also a hole nucleation capabilieties as topological gradient based methods. 
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