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Abstract 

In this paper we study an influence of the robustness measure, 
which is used in the robustness analysis for the generic combinatorial 
optimization problem, on the values of so-called robustness tolerances 
of weights . Two of such closely related measures are considered: the 
worst-case absolute regret and the worst-case relative regret. The 
robustness tolerances in the later case are studied in Li bura [12), where 
a method of calculating them is provided. In this note we show, that 
if the worst-case absolute regret is used as a robustness measure, then 
the problem of finding the robustness tolerances becomes very simple. 
Namely, it is shown that in this case any weight in the problem may be 
perturbed individually by 100% of its initial value without destroying 
the robustness of an optima! solution. 

Keywords: combinatorial optimization, robustness analysis, robust
ness measures, robustness tolerances. 



1 Introduction 

We consider a combinatorial optimization problem in the following generic 
form: 

v(F, c) = min{w(P, c): PE F}, (1) 

where the set of feasible solutions F is a family of nonempty subsets of a 
given ground set E = {e1, .. . , en} and c = (c(e1), ... , c(en)f E rn:.n denotes 
the vector of weights of the elements of E. For c E rn:.n and P E F, the 
objective function in (1) represents the total weight of this solution, i.e., 

w(P, c) = L c(e) . 
eEF 

Numerous discrete optimization problems, like e.g. the traveling salesman 
problem, the minimum spanning tree problem, the shortest path problem, 
the linear 0-1 programming problem, can be stated in this generał form. 

We will assume that the set of feasible solutions Fin problem (1) is fixed 
but the vector of weights can change or it is given with errors. Let C ~ rn:.n be 
a set of all possible realizations of the vector c, called the scenarios. Consider 
an initial scenario c0 EC and !et !1(c0 ) = argmin{w(P,c0 ): PE F} denote 
the set of optima! solutions in (1) for c = c0 • 

Given an optima! solution P 0 E !1(c0 ) an important question concerns 
the stability of this solution on the set of possible scenarios C. This question 
belongs to so-called sensitivity ( stability) analysis, which is regarded an es
sential step of any optimization procedure (see e.g. Greenberg [5], Libura [9], 
Sotskov et al. [17]) . The main goal of the sensitivity analysis for combinato
rial optimization problems consists in finding a subset of scenarios, for which 
the solution P 0 remains optima!. In Libura [11, 12, 13] a natura! extension 
of the standard sensitivity analysis called the robustness analysis of initially 
optimal solutions was proposed. The main goal of this analysis consists in 
determining a subset of scenarios for which the solution P 0 remains robust. 

There are various concepts of the robustness of solutions in optimization 
and there are many possible robustness measures as well (see e.g. Averbakh 
[l], Ben-Tal and Nemirowski [2], Bertsimas and Sim [3], Kasperski [6], 
Kouvelis and Yu [7], Mulvey et al. [15], Roy [16], and the references 
therein). In this paper we will consider two frequently used measures of the 
robustness: the worst-case relative regret and the worst-case absolute regret. 
We study an influence of the choice of the robustness measure on the values 
of so-called robustness tolerances introduced in Li bura [12] . 
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2 Robustness measures 

In the following we assume that for any F E F and c E C the inequality 
w(F, c) > O holds. 

Consider a feasible solution F E F and an initial scenario c" E C. The 
quality of the solution F for the scenario c0 can be measured by its relative 
regret E(F, c0 ), where 

E(F co) = max w(F, c0
) - w(F', c0

) = w(F, c0
) - v(F, c0

) ( 2) 
' F'EF w(F', c0 ) v(F, e°) · 

A feasible solution F 0 E F is called an optimal solution for the scenario 
c0 if and only if E(F0 , c0 ) ::; E(F, c0 ) for any F E F. Let !1(c0 ) denote the 
set of optima! solutions in problem (1) for the scenario c0 • Prom (2) we have 
immediately that E(F, c0 ) ::,: O, and that t(F, c0 ) = O if and only if FE !1(c0 ). 

There are various other measures of the quality of a given feasible solution 
F E F for a scenario c0 • The most frequently used is so-called absolute regret 

Ea(F, c0 ) = w(F, c0 ) - v(F, c0 ). (3) 
This measure leads to simpler models and it is more appropriate than 

the relative regret (2) when the absolute deviation from the optimality is 
more meaningful for a decision maker than the percentage deviation. On the 
other hand the relative regret leads usually to less conservative robustness 
approach. A comprehensive discussion of practical situations, where a par
ticula.r choice of the quality measure is relevant, can be found in Kouvelis 
and Yu [7] or Roy [16]. 

The considered quality measures (2) and (3) lead now directly to the 
corresponding robustness measures of the feasible solution F E F. These 
measures are defined with respect to the set of possible scenarios C as the 
maximum values of the quality measures of this solution on the set of sce
narios. We have therefore the worst-case relative regret of the solution F: 

Z(F, C) = max E(F, c) 
cEC 

and the worst-case absolute regret of F: 

Za(F,C) =maxEa(F,c). 
cEC 

A feasible solution F E F is called a robust solution with respect to 
the set of scenarios C if and only if its robustness measure is the minimum 
among all the feasible solutions, i.e., Z(F, C) ::; Z(F', C) for any F' E F, 
or (respectively) Z0 (F, C) ::; Z0 (F' , C) for any F' EF. 
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3 Robustness tolerances 

The robustness tolerances were defined in Libura [12] for a particular set of 
scenarios. Namely it was assumed, that only a single weight c(e) for same 
e E E can change and all the remaining weights are equal to their initial 
values given by the weight vector c0 • Moreover, this single weight may be 
increased or decreased by no mare than ó • 100% of its initial value c0 (e) > O, 
where ó E [O, 1). For a given e EE, c0 E Ilł. and ó E [O, 1) we will denote this 
particular family of scenarios by n(e, c0 ). Formally, 

Tó(e,c0 ) = {c E Ilł.n: /c(e)-c0 (e)/ :<:: Ó · c0 (e), c(e') = c0 (e') for e' o/ e}. 

Let F 0 be an optima! solution of the problem (1) obtained for the initial 
vector of weights c0 • The robustness tolerance of the weight of element e is 
defined as the maximum value of the parameter ó for which the solution F 0 

remains robust with respect to any set of scenarios n,(e, c0 ) for any ó' :<:: ó. 
In the following we will denote the robustness tolerance by tr ( e) if the worst
case relative regret is used as a robustness measure, and - respectively - by 
t: ( e) in the case of the worst-case absolute regret. 

The robustness tolerances defined in this way are direct analogues of 
the standard sensitivity analysis tolerances of weights, which are considered 
in numerous papers (see e.g. Chakravarti and Wagelmans [4], Libura [8], 
Libura et al. [14], van Hoesel and Wagelmans [20], Sotskov et al. [17], 
Tarjan [18], Turkensteen et al. [19], Wendell [21]), and which provide the 
maximum increase and the maximum decrease of the weight of the considered 
element preserving the optimalityofthe solution F 0 • It is easy to see that the 
optimality conditions corresponding to both quality measures: the relative 
regret and the absolute regret are the same. Consequently, the values of 
the standard tolerances do not depend on the fact, which one of these two 
measures is used in the sensitivity analysis. 

The situation appears quite different in the framework of the robustness 
analysis. The case of the relative regret ( and the corresponding worst-case 
relative robustness measure) is studied in Libura [12], where the following 
fact is obtained: 

Theorem 1 Let P ={FE F: e EF}. Then for F 0 E !1(c0 ), 

{ 
1 

tr(e) = 1 

min { 1, [ v(P, c0 ) 2 - v(F, c0 )2] 2 . c0 (e)-1 } 
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if e E F 0 , 

if er/. F 0 • 
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Theorem 1 states that if the worst-case relative regret is used as the 
robustness measure, then the robustness tolerance of the weight of arbitrary 
element belonging to the optima! solution P 0 is equal to 1. For any remaining 
element e E E \ P 0 its robustness tolerance t" ( e) can be calculated by finding 
the optima! value of an auxiliary optimization problem, which is obtained 
from the original problem (1) by requiring that e must belong to any feasible 
solution. 

In the following we will show that if the worst-case absolute regret is 
used as the robustness measure, then there is no need to solve any auxiliary 
optimization problem, because all of the robustness tolerances are simply 
equal to 1. This means, that the weight of any single element e E E can 
be increased oi· decreased individually by 100% of its initial value without 
destroying the robustness of the solution P 0 • 

Before proving this result we will first calculate the worst-case absolute 
regret Z.(P, Tó(e, c0 )) of the feasible solution PE F for the particular set of 
scenarios n(e, c0 ). We have 

Z.(P, Tó(e, c0 )) max (w(P, c) - v(F, c)) 
cETs(e,c0 ) 

max max (w(P, c) - w(P', c)) 
cET,(e,c') F'EF 

max max (w(P,c)-w(P',c)) 
F'E.F cETJ(e,c0 ) 

max (w(P,c0 )-w(P',c0 ) +ó • w((P®P') n {e},c0 )), 

F'EF 

where P ,g, P' = (P \ P') U (P' \ P). 

Denote P = { P E F : e E P}, Fe = { P E F : e <f_ P}, and let 

ae max (w(P, c0 ) - w(P', c0 ) + ó · w((P ,g, P') n {e}, c0 )) 
F1e.Fe 

w(P, c0 ) - v(P, c0 ) + ó • (c0 (e) - w(P n {e}, c0 )), 

ae max (w(P, c0 ) - w(P', c0 ) + ó • w((P ® P') n {e }, c0 )) 

F'EFe 

w(P, c0 ) - v(F., c0 ) + ó · w(P n {e }, c0 ). 

We have therefore for PE F, ó E [O, 1) , 

z.(P,Tó(e,c0 )) = max{a•, ae} • 
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It will be convenient to state a formula for calculating Za(F, T5(e, c0 )) 

separately in both cases: e E F and e rj. F. Prom (5), (6) and (7) we obtain: 

For FE P and ó E [O, 1), 

Za(F,T5(e,c0 )) = max{w(F,c0 )-v(F•,c0 ), 

w(F, c0 ) - v(F., c0 ) + Ó · c0 (e)}. (8) 

For FE Fe and ó E [O, 1), 

Za(F, T5(e, c0 )) = max{ w(F, c0 ) - v(P, c0 ) + ó · c0 (e), 

w(F, c0 ) - v(Fe, c0 )}. (9) 

The following result holds: 

Theorem 2 For F 0 E D(c0 ) and for any e EE, t~(e) = 1. 

Proof Let F 0 E D(c0 ) and e E E. The robustness tolerance t~(e) of the 
weight of the element e was defined as the maximum value of the parameter ó 
for which the solution F 0 remains robust with respect to any set of scenarios 
n,(e, c0 ) for any ó'::; ó, i.e., 

t~(e) = sup{ó E [0,1) : Za(F0 ,n,(e,c0 )) ::ó Za(F,T5,(e,c0 )) 

for any F E F and ó' ::; ó } . 

(i) Consider first the case when e E F 0 , which implies that 

w(F0 , c0 ) = v(F, c0 ) = v(F•, c0 ) ::ó v(F., c0 ). 

Using (8) we have, 

Za(F0 , T5(e, c0 )) = max{O, v(F, c0 ) - v(F., c0 ) + Ó · c0 (e)} . 

Now it is easy to see that for any F E F and o E [O, 1) the inequality 
Za(F, T5(e, c0 )) 2 Za(F0 , n(e, c0 )) holds. Indeed, for any F E P we have 
from (8) , 

Za(F, T5(e, c0 )) max{w(F, c0 ) - v(P, c0 ), w(F, c0 ) - v(F., c0 ) +o· c0 (e)} 

2'. max{O, w(F, c0 ) - v(F., c0 ) +o· c0 (e)} 

2'. max{O, v(F, c0 ) - v(Fe, c0 ) +o• c0 (e)} 

Za(F0 , n(e, c0 )) . 
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Similarly, for PE Fe we have from (9), 

Z 0 (P, Tó(e , c0 )) max{ w(P, c0 ) - v(P, c0 ) + ó · c0 (e), w(P, c0 ) - v(Fe, c0 )} 

::::: max{w(P,c0 ) - v(P,c0 )+ó•c0 (e), O} 
::::: max{ w(P, c0 ) - v(Fe, c0 ) + ó · c0 (e), O} 

::::: max{v(F,c0 ) -v(F. , c0 ) + ó · c0 (e), O} 
Z.(P0 , n(e, c0 )). 

(ii) Consider now the case when P 0 E Fe, which implies that 

w(P0 , c0 ) = v(F, c0 ) = v(Fe, c0 ) ~ v(F•, c0 ), 

and from (9) it follows that 

Z0 (P0 , T6(e, c0 )) = max{v(F, c0 ) - v(P, c0 ) + ó · c0 (e), O}. 

We will show that also in this case the inequality 

Z.(P, Tó(e, c0 )) ::::: Z0 (P0 , T6(e, c0 )) 

holds for any PE F and ó E [O, 1) . Indeed, for PE F, we have from (9) 

max{ w(P, c0 ) - v(P, c0 ) + ó • c0 (e), w(P, c0 ) - v(Fe, c0 )} 

::::: max{w(P, c0 ) - v(P, c0 ) + ó • c0 (e), O} 
::::: max{v(F,c0 )-v(P,c0 )+ó-c0 (e) , O} 

Z0 (P0 , Tó(e, c0 )). 

Similarly, for PE F• we have from (8), 

Z 0 (P, Tó(e, c0 )) max{w(P, c0 ) - v(P, c0 ), w(P, c0 ) - v(Fe, c0 ) + ó · c0 (e)} 

::::: max{0, w(P, c0 ) - v(Fe, c0 ) + ó · c0 (e)} 

::::: max{0, w(P, c0 ) - v(P, c0 ) + ó • c0 (e)} 

::::: max{0, v(F,c0 ) -v(P,c0 )+ó-c0 (e)} 

Z0 (P0 , Tó(e, c0 )). 

Consequently, given P 0 E O(c0 ) and e E E we obtain that for arbitrary 
PE F and for any ó E [O, 1) the inequality 

Z.(P, n(e, c0 )) ::::: Z0 (P0 , Tó(e, c0 )) 

holds, which implies that for arbitrary e EE, t:(e) = 1. 
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4 Conclusions 

In this paper we show that if the worst-case absolute regret is used as the 
robustness measure, then any single weight in the generic combinatorial opti
mization problem may be increased or decreased by 100% of its initial value 
without destroying the robustness of an optima! solution obtained for these 
initial values of weights. This means that the robustness tolerance problem 
in this case has an immediate solution contrary to the previously considered 
case of the worst-case relative regret, when solving an additional optimization 
problem is necessary for calculating the tolerances of weights. 
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