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Abstract 
We consider so-called generic combinatorial optimization problem, 

where the set of feasible solutions is some family of nonempty subsets 
of a finite ground set with specified positive initial weights of elements, 
and the objective function represents the total weight of elements of 
the feasible solution. We assume that the set of feasible solutions is 
fixed, but the weights of elements may be perturbed or are given with 
errors. All possible realizations of weights form the set of scenarios. 
A feasible solution, which for a given set of scenarios guarantees the 
minimum value of the worst-case relative regret among all the feasible 
solutions, is called a robust solution. 

In this paper we deal with so-called robustness analysis for the 
generic combinatorial optimization problem. Its main goal consists in 
finding subsets of scenarios for which an initially optima! solution of 
the problem remains robust. Thus, the robustness analysis may be 
considered as a natura! extension of the standard sensitivity analysis 
in combinatorial optimization. Main results of the paper concern the 
robustness region, the robustness radius and the robustness tolerances, 
which are introduced as direct analogues of the optimality region, the 
optimality radius and the weigts tolerances considered in the sensitiv
ity analysis. 

Keywords: combinatorial optimization, sensitivity analysis, robustness 
analysis, robustness region, robustness radius, robustness tolerances. 



1 Introduction 

We consider a combinatorial optimization problem in the following generic 
form: 

v(F,c) = min{w(P,c): PE F}, (1) 

where the set of feasible solutions F is a family of nonempty subsets of a 
given ground set E = {e1, . .. , en} and c = (c(ei), ... , c(en))1 E lRn denotes 
the vector of weights of the elements of E. For c E ]Rn and P E F, the 
objective function in (1) represents the total weight of this solution, i.e., 

w(P, c) = L c(e). 
eEF 

Numerous discrete optimization problems, like e.g. the traveling salesman 
problem, the minimum spanning tree problem, the shortest path problem, 
the linear 0-1 programming problem, can be stated in this generał form. 

We will assume that the set of feasible solutions Fin problem (1) is fixed 
but the vector of weights can change or it is given with errors. Let C ;:: ]Rn be 
a set of all possible realizations of the vector c, called the scenarios. Consider 
an initial scenario c0 EC and !et !1(c0 ) = argmin{w(P,c0 ): PE F} denote 
the set of optima! solutions in (1) for c = c0 • 

Given an optima! solution P 0 E !1(c0 ) an important question concerns 
the stability of this solution on the set of possible scenarios C. This ques
tion belongs to so-called sensitivity ( stability) analysis, which is regarded an 
essential step of any optimization procedure (see e.g. Greenberg [5], Liburn 
[9], Sotskov et al. [18)). The main goal of the sensitivity analysis for combi
natorial optimization problems consists in finding a subset of scenarios, for 
which the solution P 0 remains optimaJ. 

In this paper we consider a natura! extension of the standard sensitivity 
analysis, which we will call the robustness analysis of initially optima! solu
tions. Namely, as the main goal of this analysis, we will consider a problem of 
determining a subset of scenarios for which the solution P 0 remains robust. 

There are various concepts of the robustness of solutions in optimization 
and there are many possible robustness measures as well (see e.g. Averbakh 
[l], Ben-Tal and Nemirowski [2], Bertsimas and Sim [3], Kouvelis and Yu [7], 
Mulvey et al. [15], Roy [16], and the references therein). In this paper we will 
use as a robustness measure the worst-case relative regret, i.e., the maximum 
relative error of the solution considered over the set of all scenarios. 

In standard sensitivity analysis one seeks for the inclusion-wise maxima! 
subset of the weights vectors in problem (1) for which the solution P 0 remains 
optima!. Such a set is called the optimality region ( or - the stability region) 
of the solution P 0 • 
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It is obvious that an arbitrary optima! solution P 0 E r!( c0 ) is a robust 
solution for its optimality region. But this solution may remain robust for 
significantly larger set of scenarios. This motivates studying a natura! ana
logue of the stability region, which we will call the robustness region of the 
solution P 0 • Formally, we will define the robustness region of the solution 
P 0 as the inclusion-wise maxima! subset of the scenarios for which this so
lution remains a robust solution. Thus, the robustness region of an initially 
optima! solution P 0 provides a set of all the scenarios for which this solution 
guarentees the minimum value of the worst-case relative regret among all the 
feasible solutions of the optimization problem. 

It is important to note that in case of multiple optima! solutions, i.e. in 
case r!(c0 ) > 1, all of the solutions belonging to r!(c0 ) are indistinguishable 
from the optimality point of view, but they may appear quite different from 
the robustness point of view. The following simple example (see Libura [12]) 
illustrates this situation. 

Example 1 Consider an undirected graph G = (V, E) (see Fig. 1), where 
V= {l, 2, 3, 4, 5}, E = { {1, 2}, {1, 3}, {1, 4}, {2, 4}, {3, 4}, {3, 5}, {4, 5}} = 
{ e1, ... , e7}. Let F be a family of subsets of E corresponding to all spanning 
trees in G, and Jet c0 = (2, 2, 2, 2, 1, 2, 2)1 be a vector of the initial weights 
of edges in G. Then the combinatorial optimization problem (1) for c = c0 

is the minimum spanning tree problem in the weighted graph G. We will 
use this optimization problem with different weights vectors in the following 
examples, and therefore in Fig. 2 all of the spanning trees in graph G are 
presented. 

The set of optima] solutions in problem (1) for c = c0 contains exactly 
ten spanning trees: r!(c0 ) = {Ts, TB, Ts, Tg, T11, T12, T16, T17, T19, T20}, All of 
them are, obviously, robust for the set of scenarios C = {c0 }. But when we 
allow simultaneous independent perturbations of weights for all edges of the 

Figure 1: Weighted graph G from Example 1. 
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Figure 2: The feasible solutions in the minimum spanning tree problem. 
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graph G, then only two of them, namely T11 and T12, appear robust for some 
nonempty neighborhood of the initial vector of weights c0 (see Example 2). 
For all the remaining optima! solutions we can construct arbitrarily small 
nonzero perturbations of the weights which destroy their robustness. Such a 
solutions may be regarded unacceptable from the robustness point of view. 

It is therefore important to ask for a method of selecting the optima! 
solutions which preserve its robustness in a neighborhood of the initial vector 
of weights. In the following we will call such solutions the robust optima/ 
solutions. A characterization of robust optima! solutions was obtained in 
Libura [12]; Section 3.2 describes a generalization of that result. O 

2 Optimality and robustness regions 

In the following we will assume that for any F E F and c E C the inequality 
w(F, c) > O holds. 

Consider a feasible solution F E F and an initial scenario c0 E C. The 
quality of the solution F for the scenario c0 can be measured by its relative 
regret E(F, c0 ), where 

E(F co) = max w(F, c0
) - w(F' , c0

) = w(F, c0
) - v(F, c0

). ( 2) 
' F'EF w(F', C°) v(F, C°) 

A feasible solution F 0 E F is called an optima/ solution for the scenario 
c0 if and only if E(F0 , c0 ) ::, E(F, c0 ) for any F E F. Let .\1(c0 ) denote the 
set of optima! solutions in problem (1) for the scenario c0 • From (2) we have 
imediately that E(F, c0 ) 2:: O, and that E(F, c0 ) = O if and only if FE S1(c0 ). 

There are various other measures of the quality of a given feasible solution 
F E F for a scenario c0 • The most frequently used is so-called absolute regret 

€0 (F, c0 ) = w(F, c0 ) - v(F, c0 ). 

This measure leads to simpler models and it is more appropriate than 
the relative regret (2) when the absolute deviation from the optimality is 
more meaningful for a decision maker than the percentage deviation. On the 
other hand the relative regret leads usually to less conservative robustness 
approach. A comprehensive discussion of practical situations, where a par
ticular choice of the quality measure is relevant, can be found in Kouvelis 
and Yu [7] or Roy [16] . In the following we will use the relative regret E(F, c0 ) 

as a measure of the quality of the feasible solution F for the scenario c0 • 
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Consider now a particular optima! solution P 0 E n(c0 ). The main ob
ject studied in the sensitivity analysis for combinatorial optimization prob
lems is so-called optimality region S(P0 , C) of the solution P 0 , defined as the 
inclusion-wise maxima! subset of scenarios, for which this solution remains 
optimal, i.e., 

S(P0 ,C) = {c EC: E(P0 ,c) = O}. 

Denote S(P0 ) = S(P0 , lRn). We have immediately S(P0 , C) = S(P0 ) n C. 
It is well known that the optimality region S(P0 ) is a convex polyhedral 
cone in ]Rn (see e.g. Libura [9]). This fol!ows directly from the theory of 
linear programming. Namely, !et Ę(P) = (6(P), . . . , (n(P))1, denote the 
characteristic vector of the subset P \;; E, i.e., for i = 1, ... , n, Ę;(P) = 1 
if e; EP, and Ę;(P) = O, otherwise. The generic combinatorial optimization 
problem (1) is now equivalent (see e.g. Schrijver [17]) to the following linear 
program: 

v(F,c)=min{crx: xE<I?(F)} , 

where <I>(F) = conv.hull {Ę(P): PE F} . 
The set of feasible solutions F is finite, which implies that <I?(F) is a 

polyhedral convex set and it can be - at least in principle - described by a 
system of linear inequalities 

(3) 

for some h; E !Rn, h; E IR, i E /. Let I(P 0 ) \;; I be a subset of inequalities 
binding at vertex x 0 = Ę(P0), i.e., h"[x0 = h; for i E / 0 • Then 

S(P0 ) = - cone {h;, i E I(P0 )}. ( 4) 

Although a polyhedral description (3) of the set <I?(F) may contain very 
large number of facets, it can be exploited in various approximations of the 
optimality region S(P0 ) (see e.g. Libura et al. [14]) , and it appears useful 
in the sensitivity analysis. In the following we will define an analogue of the 
optimality region S(P0 ) in the robustness analysis framework. 

Let for a feasible solution P E F and for a given set of scenarios C \;; !Rn, 

Z(P, C) = max E(P, c). 
cEC 

We will call Z(P, C) the worst-case relative regret of the solution P over the 
set of scenarios C and we will use this concept in a definition of the robust 
solutions for problem (1 ). 
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Definition 1 A feasible solution F E F is a robust solution for the set of 
scenarios C ~ ]Rn if and only if the following inequalities hold: 

Z(F, C) ~ Z(F', C) for any P' EF. (5) 

Thus, a feasible solution F is robust for the set of scenarios C if it guarantees 
the minimum value of the worst-case relative regret on the set C among all 
the feasible solutions of the optimization problem (1). 

Consider now an optimal solution P0 E !1(c0 ). It is obvious that P0 is a 
robust solution for the set of scenarios S(F0 , C). But it may happen that P 0 

remains robust for significantly larger set of scenarios. Actually, we will be 
interested in the inclusion-wise maxima! subset of scenarios, for which the 
solution P 0 is a robust solution. Such a subset will be denoted R(P0 , C) and 
called the robustness region of the initially optimal solution F 0 • Formally, 

R(P0 ,C) = {c EC: Z(P0 ,R(P0 ,C)) ~ Z(P,R(P0 ,C)) for any PE F}. 

For C = llłn we will use a simplified notation R(P0 ) = R(P0 ,llłn). Observe 
anyway that this time - in contrast to the optimality region - we cannot 
simply express R(P0 , C) as an intersection of the sets R(P0 ) and C. 

The above definition of the robustness region leads to significant diffi
culties with calculating this set for particular combinatorial optimization 
problems. It appears that there is no direct relation between R(F0 ) and 
a polyhedral description of the convex hull of the characteristic vectors of 
feasible solutions as in case of the set S(P0 ). Therefore, it is reasonable to 
consider various subsets of the robustness region, which may appear easier to 
analyze and - simultaneously - give some insight into the robustness prop
erties of the solutions considered. The main role in such analysis is played 
by appropriate choice of a particular set of scenarios. 

3 Scenarios 

The set of scenarios C plays a crucial role in describing the uncertainty con
cerning the data of the optimization problem. In this paper we will use 
the same sets of scenarios in the sensitivity analysis and in the robustness 
analysis contexts although their interpretations in both cases will be actu
ally different. Namely, in the sensitivity analysis - regarded as a part of 
the postoptimality analysis - the set C represents all possible data changes 
which would influence the quality of the solution, which has been already 
implemented. In the robustness analysis this set describes all possible per
turbations of the data, which we want to be hedged against. Frequently, a 
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choice of the set C will be determined by various simplifying assumptions we 
have to make in case of approximate analysis. 

An appropriate choice of the set of scenarios will lead to definitions of 
such objects as the tolerances of weights, the optimality radius, the accuracy 
radius, the robustness radius etc. In the following we are discussing severa! 
particula.r choices of the set of scenarios and corresponding objects studied 
in the sensitivity ana.lysis and in the robustness a.na.lysis. 

3.1 Basic scenarios 

In sensitivity analysis the set C = R_n ma.y be rega.rded as an initial set of 
scena.rios and it is a.ctua.lly a starting point for a.ny further analysis. The main 
object studied for this particular set of scena.rios is the optimality region S(F) 
of a feasible solution F E F. Nevertheless, sometimes it is necessa.ry to a.void 
negative weights of elements, which may have no reasonable interpretation. 
In such a case we will consider a restricted set C+ = { c E R_n : c ~ O} of the 
scenarios. 

In the sensitivity ana.lysis context a choice of the set of scenarios corre
sponds ma.inly to various simplifications, which make the a.nalysis possible, 
or it reflects particula.r restrictions on data perturba.tions implied by real-live 
problems. A standard approa.ch here consists in an assumption that only the 
weights of elements belonging to some given subset Q c;; E may be perturbed 
while a.li the rema.ining weights are equal to their initial values given by the 
vector c0 E R." . This leads to the following set of scenarios, which we will 
consider a basie set of scenarios: 

C(Q ,c0 ) = {c E Rn: c(e) = c0 (e ) for e rf. Q}. 

The most frequently studied special case of this fa.miły of scenarios cor
responds to a.n assumption that only the weight of a particular element 
e E E may be perturbed, i.e. , Q = {e}. This leads to so-called (optimal
ity) tolerances of weights, which are considered in numerous papers (see e.g. 
Chakravarti and Wa.gelmans [4], Libura [8], Libura et al. [14), van Hoesel 
and Wagelma.ns [21], Sotskov et a.I. [18], Tarja.n [19], Turkensteen et al. [20], 
Wendell [22]). 

Let F 0 E rl(c0 ). From the convexity of the set S(F0 ) it follows directly 
that 

S (F0 , C( { e}, c0 )) = {c ER." c(e') = c0 (e') for e' # e, 

c0 - r(e) :S c(e) :S c0 + t+(e)}, 
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where t+(e), t-(e) E RU { oo} denote so-called upper and lower tolemnces 
of the weight c(e). Thus, t+(e), t-(e) provide, respectively, the maximum 
increase and the maximum decrease of the initial weight c0 ( e) which will pre
serve the optimality of the solution F 0 in problem (1) under the assumption 
that all the remaining weights are unchanged. 

Lets P = { F E :F : e E F} and F. = { F E :F : e ~ F}. It is well known 
(see e.g. Libura [8, 9], Sotskov et al. [18]), that the following facts hold: 

Proposition 1 ff e E X 0 , then t-(e) = oo, t+(e) = v(:F., c0 ) - v(:F, c0 ). 

ff e ~ X 0 , then t+(e) = oo, r(e) = v(P, c°) - v(:F, c0 ). 

According to standard conventions, we take v(:F„ c0 ) = oo or v(:F•, c0 ) = oc 
if :F. = 0 or :F• = 0, respectively. Observe that given an algorithm for solv
ing problem (1) for arbitrary c E Rn and :F ~ 2E, we may use it also to 
calculate values v(:F., c0 ) and v(:F•, c0 ). From Proposition 1 it follows there
fore that if the optimization problem (1) is polynomially solvable, then also 
the tolerances t+(e), r(e) for e EE, can be computed in polynomial time. 
Moreover, the opposite implication also holds under some mild assumptions 
(see Chakravarti, Wagelmans [4], van Hoesel , Wagelmans [21]). 

In Libura [13] similar results are obtained in the robustness analysis con
text. We will present them after describing an important family of scenarios, 
which form a subset of the basie set of scenarios C(Q, c0 ). 

3.2 Family of scenarios TJ(Q, c0 ) 

In the basie set of scenarios C(Q, c0 ) we allow arbitrary perturbations of the 
weights for all elements belonging to the subset Q ~ E. It appears interesting 
to consider some restrictions of these changes and - simultaneously - to allow 
adclitionally a simple parametrization of the perturbations. This leads to 
various families of scenarios, which were considered in Libura [10, 11, 12] . 
In this approach the parametrization corresponds to appropriately chosen 
norm of perturbations considered. In this paper we will concentrate on a 
particular family of these scenarios, which we will denote T6 ( Q, c0 ) and define 
for a scalar parameter ó E [O, 1) in the following way: 

T0(Q, c0 ) = {c E C(Q, c0 ): /c(e) - c0 (e)/ ~ Ó · c0 (e) for e E Q}. (6) 

This means that we are interested in percentage perturbations of the weights 
of elements, and for a given value of the parameter ó we allow simultaneous 
and independent increases or decreases of the weight of any element belonging 
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to the subset Q, which do not exceed IS • 100% of their initial values given 
by the vector c0 • This family of scenarios may be alternatively introduced in 
the framework of so-called tolerance approach (see Wendell [22]). 

The family of scenarios YJ(Q, c0 ) leads directly to the concept of the 
accuracy Junction introduced in Libura [10, 11], which will be exploited in 
the following. N amely, the accuracy function is defined for a given feasible 
solution FE .F, and for a given subset of elements Q ~ E . Its value a(F, Q, IS) 
for an argument IS E [O, 1) is equal to the worst-case relative regret of the 
solution F over the set YJ(Q, c0 ), i.e., 

a(F, Q, IS)= max €(F, c). 
cET,(Q,c0 ) 

(7) 

Thus, for FE .F, Q ~ E , and IS E [O, 1), 

a(F, Q, IS)= Z(F, YJ(Q, c0 )). 

Denote for S', S" ~ E, S' ® S" = (S' \ S") u (S" \ S'). In Libura [11) the 
following generał formula for computing the accuracy function is given: 

Theorem 1 For FE .F, Q ~ E, and IS E [O, 1), 

(F Q ') w(F, c0 ) - w(F', c0 ) +IS· w((F ® F') n Q), c0 ) a u =max~-~-~--,--~--,-~-,-----~-~~. 
' ' F'EF w(F', c") - ó • w(F' n Q, c") 

(8) 

The above formula can hardly be regarded as an efficient tool for calculate 
values of the accuracy function, because computing the value a(F, Q, IS) for a 
given argument ó requires finding an optima! value of an auxiliary combina
torial optimization problem on the same set of feasible solutions as problem 
(1), but with fractional objective function. Nevertheless, Theorem 1 appears 
usefull in studying properties ofthese functions (see Libura [11]) and provides 
an initial step for further analysis in this paper. 

Example 2 Consider again the minimum spanning tree problem described 
in Example 1, but now with the following initial wector of weights c0 = 
(12, 13, 11, 15, 14, 12, 13)'. In this case there are exactly two optima! spanning 
trees T1 and T10 . Assume that Q = {e1,e2,e5}, i.e., we allow changes of 
weights for only tree edges of the graph G: e1 , e2 and e5 . Fig. 3 presents the 
accuracy functions on the interval IS = [O , O. 7) for all of the spanning trees 
shown in Fig. 2. To allow a detailed analysis, in Fig. 4 the accuracy functions 
for three selected spanning trees are presented: two minimum spanning trees 
T1 , T10, and one feasible spanning tree T5 , which appears crucial for the 
robustness of the optima! spanning trees. 
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Figure 3: Accuracy functions for all solutions from Example 2. 

a(T1 Q,6) 
a(r,; Q,6) t--+----+---+----+---, 
a(T5,'Q, 6) 

6, 6, 

Figure 4: Accuracy functions for spanning trees T1, T10 and Ts. 
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Figure 4 illustrates qui te complicated aspects of the robustness of optima! 
solutions T1 and T10 . It appears, that for 8 E [O, 81) both of them remain 
robust solutions. But for 8 E [81 , 82) only T10 is a robust solution. The 
situation changes in 82 : for larger 8 the solution T10 is no longer robust and 
T1 aga.in becomes a single robust solution on the interval [82 , 83). For 8 larger 
than 83 we have a new robust solution: this time T5 , which initially, i.e., for 
8 = O, was not optima! one. 

• 
Consider now an initially optima! solution F0 E !1(c0 ). Obviously, we 

have a(F0 , Q, O)= O. lt is of special interest to know the maximum value of 
8 for which a(F0 , Q, 8) = O. This value is called the accuracy radius of the 
solution F 0 with respect to the set Q and is denoted by r0 (F 0 , Q). Formally, 

r"(F0 , Q) = sup{8 E [O, 1): a(F0 , Q, 8) = O}. (9) 

A practical importance of the accuracy radius consists in the fact, that 
given the value r ~ r0 (F0 , Q) we know, that the weight of any element e 
belonging to the set Q may be perturbed (increased or decreased) arbitrarily 
by r · 100% of its initial value c0 (e) without destroying the optimality of F 0 • 

This implies for example that if the weights of elements in Q are estimated 
with the accuracy r • 100%, then we can guarantee that the solution F 0 , 

calculated for the estimated vector of weights c0 , remains optima! for the 
actual vector of weights. 

The following theorem (see Libura [11]) gives a generał formula which 
allows for calculating for an initially optima! solution F 0 its accuracy radius 
with respect to the subset Q ~ E. 

Theorem 2 For F 0 E !1(c0 ) and Q ~ E, 

a(F• Q) . { . w(F, c0
) - w(F0

, c0
) } 

r ' = mm 1, ~:Rci w((Po®F) n Q),C°) , (10) 

where 
J"Q ={FE J": w((F0 0 F) n Q, c0 ) i O}. 

Analogous concept can be introduced in the framework of the robustness 
analysis. Namely, instead of studying the maximum - in a sense of some 
norm - perturbations for which a given initial solution rema.ins optima!, we 
may seek for the maximum perturbations preserving the robustness of this 
solution. In particular, in Libura [12] an analogue of the accuracy radius -
called the robustness radius is considered. 
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Let F 0 E !l(c0 ). The robustness radius of F 0 is denoted r'(F0 , Q), and it 
is defined as the maximum value of the parameter J for which the solution 
F 0 is a robust solution under the set of scenarios T6, ( Q, c0 ) for any J' $ J . 
Formally, 

r'(F0 , Q) = sup{J E [O, 1): Z(F0 , T6,(Q, c0 ))::::; Z(F, n,(Q, c0 )) 

for any FE F, ó' $ ó }. 

Immediately from the definitions of the accuracy radius and the robust
ness radius we have the following inequality: 

r"(F0 , Q) $ r'(F0 , Q). 

It frequently happens that the accuracy radius of the considered optima! 
solution is equal to zero. This fact is well known in the sensitivity analysis 
(see e.g. Libura et al. [14], Sotskov et al. [18] ). In particular, this always 
happens for Q = E when there are multiple solutions of the optimization 
problem (1) for c = c°. In the generał case, i.e. for .arbitrary Q ~ E, a char
acterization of optima! solutions, for which the accuracy radius is positive, 
can be obtained directly from Theorem 2. Namely, the following fact holds: 

Corollary 1 For F0 EF, Q ~ E, o E [O, 1), 

r"(F0 , Q) > O <=? w((F0 0 F) n Q, c0 ) = O for any FE !l(c0 ). 

Proof Assume first that w((F0 0 F) n Q, c0 ) = O for any F E ll(c0 ). 

If now Fo f 0 then this means that there exists F' E Fo \ ll(c0 ) such 
that w((F0 0 F') n Q, c0 ) f O and w(F', c0 ) - w(F0 , c0 ) > O, which implies 
r"(F°, Q) > O. Otherwise, for Fo= 0, from (10) we have r"(F0 , Q) = l. 

To prove the oposite implication, assume that there exists F" E !l(c0 ) 

such that w((F0 0 F") n Q, c0 ) f O. Then F" E F0 , w(F", c0 ) = w(F0 , c0 ), 

and from (10) we have immediately r"(F0 , Q) = O. • 
It is important to have analogous characterization of initially optima! 

solutions, for which the robustness radius is positive, which means that they 
remain robust in some nonempty neigborhood of the initial vector of weights 
c0 • We will call these solutions robust optima/ solutions in c = c0 , and we 
will denote their subset by !l,(Q, c0 ). In Libura [12] a characterization of 
solutions belonging to !l,(E, c0 ) is given. The following theorem generalizes 
this characterization for arbitrary subset of elements Q ~ E. The main 
drawback of all these characterizations is that they require a knowledge of 
the whole set of optima! solutions of the considered optimization problem. 
It is an open question, whether this can be avoided. 
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For a given F and c0 we will use the folowing notation: 

a= min 
Fe,r\n(c0 ) 

w(F, c0 ) - v(F, c0 ) 

v(F, C°) 
(11) 

Observe that a is the smallest positive value of the relative regret among all 
the feasible solutions of the optimization problem for c = c0 • 

Theorem 3 Let for Q ~ E, 

b(Q) = min max w ((F ® F') n Q, c0 ). 

Fen(c0 ) F'en(c0 ) 

(12) 

Then 

l1r(Q, c0 ) = {FE l1(c0 ) : max w ((F ® F') n Q, c0 ) = b(Q)} . (13) 
F'en(c0 ) 

Proof According to (8), for F 0 E l1(c0 ), Q ~ E , and ó E [O, 1), 

a(Fo Q ó) = max w(F0
, c0

) - w(F, c0
) + ó, w((F0 ® F) n Q), c0

) 

' ' FeF w(F, C°) - ó • w(F n Q, C°) · 

It is easy to see, that there is a nonempty neighborhood of c0 in which 
the worst-case relative regret of the solution F 0 is determined only by the 
elements of the set !1( Q, c0 ), i.e., all nonoptimal solutions in the above formula 
can be neglected. Indeed, for any ó E [O, a) the following inequality holds 

(Fo Q ') _ w(F0 , c0 ) - w(F, c0 ) + ó · w((F0 ® F) n Q), c0 ) 

a , , u - max (F ) , ( Q ) < O, 
FeF\n(c0 ) W , C° - u · w F n , C° 

which means that then for arbitrary F 0 E l1(c0 ) and Q ~Ewe have 

a(F0 , Q, ó) 
max w(F0 , c0 ) - w(F, c0 ) + ó · w((F0 ® F) n Q), c0 ) 

Fen(c0 ) w(F, C°) - ó. w(F n Q, C°) 
ó · w((F0 ® F) n Q), c0 ) (l4) 

F~Jfc'0 ) v(F, C°) - ó · w(F n Q, C°). 

Denote for a given F 0 and Q, 

Thus, for ó E [O, a), 

pp(ó) = ó · w((F0 ® F) n Q), c0
) • 

v(F, C°) - ó • w(F n Q, C°) 

a(F0 , Q, ó) = max pp(ó). 
Fen(c0 ) 
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For any FE f1(c0 ), pp(ó) is a continuous function of ó in the interval [O, 1) 
and pp(O) = O. This implies that for small enough ó > O, a(F0 , Q, ó) = 
Pp(ó), where Fis such an optima! solution, for which the value f, pp(ó)ló=D 
is the maximum among all optima! solutions. It is easy to show that 

w((F0 181 F) n Q), c0 ) 

v(F, ca) 

Consequently, the value off, a(F0 , Q, ó)ló=D is equal to 

w((F0 181 F) n Q), c0
) 1 ((Fo F) Q) o) max ~~--~~-~ = --- max w 0 n c . 

Fen(c•) v(F, c0 ) v(F, ca) Fen(c•) ' 

For any optima! solution F 0 we have a(F0 , Q, O) = O. The set of robust 
optima! solutions f1r(Q, c0 ) contains therefore all these optima! solutions 
FE f1(c0 ), for which the minimum value off, a(F, Q, ó)ló=D is achieved, i.e., 
for which 

max w ((F 181 F') n Q, c0 ) = min max w ((F 181 F') n Q, c0 ) = b(Q). 
F'Erl(c•) FErl(c•) F'Erl(c0 ) 

• 
As a sim ple corollary of Theorem 3 we obtain a characterization of robust 

optima! solutions formulated in Libura [12] for the case Q = E. Observe that 
then 

and 

b(E) min max w ((F 181 F') n E, c0 ) 

FErl(c0 ) F'Erl(c0 ) 

min max (2 · v(F, c0 ) - w(F n F', c0 )) 

FErl(c•) F'Erl{c") 

2 · v(F, c0 ) - max min w(F n F', c0 ) 

FErl(c•) F'Erl(c•) 

max w((F0F')nE,c0 )=2-v(F,c0 )- min w(FnF',c0 ). 

F'Erl(c•) F'Erl(c•) 

Thus, from Theorem 3 we have: 

Corollary 2 F 0 E f1(c0 ) is a robust optima/ solution for Q = E if and only 
if 

min w(F0 nF,c0 ) = max min w(FnF',c0 ) . 

FErl(c•) FErl(c•) F'Erl(c•) 
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Example 3 
Consider again the minimum spanning tree problem from Example 1. For 
c0 = (2, 2, 2, 2, 1, 2, 2)T the set of optima! solutions !1(c0 ) contains the follow
ing ten spanning trees: T5 , n, Ta, Tg, T11 , T12, Trn, T11, T19, T20. But according 
to Corollary 2 only two of them, namely Tu and T12 , are robust optima! 
solutions for Q = E. Indeed, it is easy to see, that 

min w(T11 n T, c0 ) = min w(T12 n T, c0 ) = 3, 
Tell(c") Tell(c•) 

whereas for any T,, i/ 11, 12, 

min w(T; n T, c0 ) = l. 
Tell(c•) 

Figure 5 shows the accuracy functions for all optima! solutions in problem 
(1) for c0 = (2, 2, 2, 2, 1, 2, 2JT . It can be observed that the robust optima! 
solutions T11 and T12 guarantee smaller values of the worst-case relative regret 
than all remaining optima! solutions for any ó > O. 

a(T,,E,5) 

-- T11,T12 

----··· T5,T6,T8, 1iJ, TJ6,Tl7•1I9,T20 

,, 
'" 

Figure 5: Accuracy functions for all optima! solutions from Example 3. 

• 
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No formula like (10) is known for calculating the robustness radius rr(P0 , Q). 
In Li bura [12] some evaluations of the robustness radius are given for the spe
ciał case Q = E. Let 

b . w(PnP',c0 ) 

= /Jln8t-) p•Trirc") v(F, C°) . 

The following facts hold: 

Theorem 4 ff P 0 is a single optima/ solution of problem (l) for c = c0 , then 

rr(P0
, E) 2': { \~" 

if a< 1, 

otherwise. 

Theorem 5 ff P 0 E Dr(E, c0 ) and a 2': l~b• then 

rr(po 1 E) 2': { 2(1~~)-a 

ff P 0 E Dr(E, c0 ) and a< l~b' then 

if a< l -b, 

otherwise. 

{
min { a a } rr(P•, E) 2': 2(1:b)-a' 2b+2ab-a 

2b+2ab-a 

if a< l - b, 

otherwise. 

(15) 

(16) 

(17) 

The situation simplifies significantly in case Q = {e} for some e E E. 
Then the robustness radius becomes an analogue of the tolerances of the 
weight of element e considered in the sensitivity analysis. Namely, for e E E 
and P 0 E l1( c0 ) we introduce so-called robustness tolerance of the weight 
c( e), which we denote tr ( e) and define it formally in the following way: 

tr(e) sup{,5 E [0,1): Z(P0 ,T6,({e},c0 )) :5 Z(P,T,,({e},c0 )) 

for any P E F, c5' :5 ó } . 

Thus, tr(e) is the maximum value of the parameter ó, such that P 0 re
mains robust for any set of scenarios T,, ( { e} , c0 ) where ,5' < ó. This case we 
are able to show a result , which is a close analogue of Proposition 1. Namely, 
in Libura [13] it is proved that the following fact holds: 
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Theorem 6 For F 0 E f2(c0 ), 

{ 
1 

~~= 1 
min { 1, [ v(P, c0 ) 2 - v(F, c0 ) 2 ]' • c0 (e)-1} 

if e E F 0 , 

if er/: F 0 • 

(18) 

Observe that this - as in case of the standard sensitivity analysis - leads to 
the polynomial solvability of the robustness tolerance problem provided that 
the original optimization problem is polynomially solvable itself. 

Example 4 
Consider again the graph G from Example 1. For the initial vector of 

weights c0 = (14, 11, 14, 15, 13, 18, l 7JT the minimum spanning tree problem 
has the unique optima! solution TB= {e1,e2,es,e1}. 

Fl'om Theorem 6 it follows that the robustness tolerances of all the edges 
belonging to T6 are equal to 1 which means that we can perturb individually 
the weights of these edges up to 100% of their initial values without destroying 
the robustness of the solution T6 • Consider therefore some edge from the set 
E \ T6 , e.g. the edge e = e3 = {l, 4}, and the corresponding set of scenarios 
Tó({e},c0 ). We have c0 (e) = 14, v(F,c0 ) = w(n,c0 ) = 55, v(P,c0 ) = 56. 
Calculating r( e) from (18) we obtain: 

2 2 l 
'( ) = ( 56 - 55 ) ' "" 10.54 "" O 7 t e 14 14 · 5· 

Thus, the spanning tree n achieves the minimum value of the worst-case 
relative regret among all the spanning trees in G if the weight of the edge 
e = {l, 4} is perturbed by no more than approximately 75%, and all the 
remaining weights are unchanged. 

In Fig. 6 the worst case regret functions Z (T, Tó ( { e}, c0 )) for all the 
feasible solutions T E {T1 , ... , T21 } in problem (1) are shown; bold line 
indicates the worst-case regret function for the spanning tree T6 . Observe 
that the solution T6 guarantees, indeed, the minimum value of the worst-case 
regret among all the feasible solutions, i.e. it remains a robust spanning tree, 
provided ó :5 t'(e) "" 0.75. It is interesting to note that in order to destroy 
the optimality of T6 in problem (1) it is enough to increase the weight of 
edge e by approximately 7.14%, which corresponds to the first breakpoint 
ó' = 1/14 of the worst case regret function Z (n, Tó( {e}, c0 )) in Fig. 6. 

o 
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0.5 

0.4 

0.4 
6' 

.... •········ 

0.6 0.8 

t'(e) 

.. ·· 

8 

Figure 6: Worst-case regret functions of all spanning trees from Example 4. 

4 Conclusions 

This paper deals with the robustness analysis, regarded as a natura! ex
tension of the standard sensitivity analysis for combinatorial optimization 
problems. It is shown, that it is reasonably to define analogues of such ob
jects as the stability region, the stability radius, the accuracy radius, the 
tolerances of weights. This leads to studying in the framework of the robust
ness analysis such objects as the robustness region, the robustness radius and 
the robustness tolerances. All of them have natura! interpretations and give 
some insight in the quality of a given optima! solution from the robustness 
point of view. 
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