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Abstract We give a bundle method for minimizing the sum of two convex functions, 
one of them being known only via an aracie of arbitrary accuracy. Each iteration in
volves solving two subproblems in which the functions are altemately represented by 
their linearizations. Our approach is motivated by applications to nonlinear multicom
modity flow problems. Encouraging numerical experience on large scale problems is 
reported. 
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1 Introduction 

We give a bundie method for the structured convex minimization problem 

fi, :=inf{fi(·) :=er(•)+ir(•)}, (I.i) 

where er : IR"' • ( -oo, oo) and ir : C • IR are closed proper convex functions, and 
C := dom er:= {u: er (u) < oo} is the effective domain of er. Such problems may 
appear via duality when the primal has a certain structure. For instance, consider the 
two equivalent minimization problems 

f, :=inf{f(Ax) :xEX} =inf{f(y) :y=Ax,xEX}, (1.2) 

where X CIR" and A is an m x II matrix. For the Lagrangian l(x,y;u) := J(y) + 
(u,Ax -y), minimization over (x,y) EX x IR"' yields (I.i) as a dual problem with 

er(u):=J'(u):=sup,{(u,y)-J(y)} and ir(u):=sup{{-Aru,x):xEX}. (1.3) 

K.C. Kiwiel 
Systems Research lnslitute, Polish Acndemy of Sciences, Newelska 6, 01-447 Warsaw, Poland. E•mail: 
kiwiel@ibspan.waw.pl 
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We assume that a is "simple" in the sense that minimizing a plus a separable 
convex quadratic function is "easy". On the other hand, 11: is known only via an aracie, 
which at any query point u E C delivers an affine minorant of 11: (e.g., (-Ax, ·) for a 
possibly inexact maximizer x in ( 1.3)). 

Our method is an approximate version of the proximal point a!gorithm [ 18, 21] 
which generates a sequence 

ak+t =argmina(-)+n:(•)+ł,;1•-ukl2 fork= 1,2,. (1.4) 

starting from a point u1 E C, where I · I is the Euclidean norm and fk > O are step
sizes. lt combines two basie ideas: bundling from the proximal bundle methods [9], 
(7, Sec!. XV.3] and their extensions (12, 13] to inexact oracles, and altemating lin
earizarion (AL for short) from (11, 13, 16]. Here bundling means replacing 11: in (1.4) 
by its polyhedral model *• $ 11: derived from the past aracie answers. Since the re
sulting subproblem may stili be tao difficult, we follow the AL approach in which 
a subproblem involving the sum of two functions (here a and itk) is replaced by 
two subproblems in which the functions are altemately represented by linear models. 
Thus, (1.4) is replaced by the two easier subproblems 

lik+!:= argmin Ó'k-t (-) + it,(-) + t,;:I · -,iJ2, 

uk+I := argmin a(•)+ ftk(·) + t,;:I · -,i[ 2. 

(1.5) 

(1.6) 

The first subproblem ( 1 .5) employs a linearization Ó'k- t $ a obtained at the previous 
iteration. lts solution yields by the usual optimality condition a linearization ft, $ itk 
which may a posteriori rep lace n:, in ( 1.5) without changing its optima! value and 
solution. Similarly, the solution of (1.6) provides a linearization a-,$ a which maya 
posteriori replace a in (1.6). 

Our method coincides with that of [13] in the special case of a being the indicator 
function ie of C (ie( u) = O if u E C, oo otherwise). Then u'+ 1 in ( 1.6) is the projection 
anto Cofak - fk 'vftk; this projection is straightforward if the set Cis "simple". For 
mare difficult cases, it is crucial to allow for approximate solutions in (1.6). We show 
(cf. Sect. 4.2) that such solutions can be obtained by solving the Fenchel dual of ( 1.6) 
approximately; this is conceptually related to the use ofFenchel's duality in (7, Prop. 
XV.2.4.3 and p. 306]. 

For dual applications, we restrict aur attention to the setup of (1.2)-{l.3} with 
f closed proper convex and X compact and convex (since other examples of [ 16] 
could be treated in similar ways). As in (13], even when the dual has no solutions, 
aur method can stili asymptotically find e,-optimal prima! solutions, where e, is an 
upper bound on the oracle's errors; in fact only the asymptotic aracie errors matter, 
as discussed in [13, Sect. 4.2] . 

Actually, our theoretical contributions outlined above were motivated by appli
cations to nonlinear multicommodity flow problems (NMFP for short); mare con
cretely, by the good experimental results of[!], where the analytic center cutting 
piane method (ACCPM for short) exploited "nice" second-order properties of a. 
This gave tremendous improvements over an earlier version of ACCPM [6] which 
used a first-order aracie for a. We show that aur method can exploit such properties 
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as well, obtaining significant speedups with respect to standard bundle on most in
stances used in [I]. The alternative approach of (17] for adapting standard bundle to 
NMFP is promising, but has not been tested on large instances (see Sect. 8.3 for rough 
comparisons with our AL). Finally, we note that the ballstep subgradient method of 
(14] is quite efficient only for fairly low accuracy requirements. 

As for the state-of-the-art in NMFP, we refer the reader to [I] for the develop
ments subsequent to the review of ( I 9]. 

The paper is organized as follows. In Sect. 2 we present our method. lts conver
gence is analyzed in Sect. 3. Useful modifications, including approximate solutions of 
(1.6), are given in Sect. 4. Application to the Lagrangian relaxation of ( 1.2) is studied 
in Sect. 5. Specializations to NMFP are given in Sect. 6. lmplementation issues are 
discussed in Sect. 7. Numerical benchmarks on the instances of (I] and comparisons 
with standard bundle and the method of ( 17] are given in Sect. 8. 

2 The alternating linearization bundle method 

We first explain our use of approximate objective values in (1.5), (1.6). Our method 
generates a sequence of trial points {u'H"- 1 CC at which the aracie is called. We 
assume that for a fixed accuracy tolerance E, ;::: O, at each u* EC the oracle delivers 
an approximate value 7r1~ and an approximate subgradiem g~ of 7r that produce the 
approximate linearization of n: 

,rk(·) := 1r,;+(g~.--,/):,; Ir{·) with ,r,(,/)=1r,; 2'. ,r(u')-E,. (2.1) 

Thus 1r,; E [,r(u') - E,, 1r(u')), whereas g~ lies in the E,-subdifferential of ,rat u' 

d,,1r(u') := { g,: Ir(·) ;:c: ,r(u*) - E, + (g,, · - u')}. 

Then 0: := cr! + 1r! is the approximate value of 0 at 111, where a! := cr(u'). 
At iteration k;::: I, the current prox (or stability) center a':= u•Ul EC for some 

k(l) ::; k has the value 0,f := 0,;(t) (usually 0,t = min)-t 0,{); note that, by (2.1 ), 

0l, E [0(,;k) - E,, 0(ti)). (2.2) 

If ,r,f < ft,(a') in (1.6) due to evaluation errors, the predicred descelll 

(2.3) 

may be nonpositive; hence, if necessary, r, is increased and (1.5)-(1.6) are solved 
again until vk;::: i1l+1 - u'i2/21, as in (12, 13, 15]. A descetll step to ,Jk+l := ,/+I is 
taken if 

(2.4) 

for a fixed ,c E (O, I). Otherwise, a null step ak+t := ,i occurs; then ft, and the new 
linearization ,rk+ 1 are u sed to produce a better model it,+ 1 ;::: max {ft,, irk+ 1}. 

Specific rules of our method will be discussed after its forma! statement below. 

Algorithm 2, 1 
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Step O (lniriarion). Select u1 EC, a descenr parameter 1C E (O, I), a srepsize bound 
tmin > O and a stepsize r, ~ tmin· Call the aracie at u1 to obtain n1! and g~ 
of(2.I). Set fto := ir1 by (2.1), and iroO := o- (u 1)+(p~,•-u1) with p~ E 
iJo-(u 1 ). Set u1 := u1, 0/, := BJ :=o-,)+ n,: with o-J := o-(u1 ), i,1 := 0, k .
k(O) := I, I:= O (k{l)-1 will denote the iteration of the 1th descent step). 

Step 1 (Model selection). Choose ft; : IRm ---+ IR convex and such that 

(2.5) 

Step 2 (Solving the ir-subproblem). Find ,,k+l of (1.5) and the aggregare lineariza
tion of it, 

ft;('):= it,(11'+ 1) + (p~,. - ak+I) with p~ := (a' - ,J'+l )/r, - p~-I. 
(2.6) 

Step 3 (Solving the o--subproblem). Find uk+I of (1.6) and the aggregare lineariza
tion of a 

Compute v, of (2.3), and the aggregate subgradienr and linearization error 
of e 

p':= (a'-u'+ 1)h and e, := v,-r,lll 2. (2.8) 

Step 4 (Sropping crirerion). If max{IP'I, ek} = O, stop ce.($ e.). 
Step 5 (Noise arrenuation). If v, < -E„ setr, := I Or„ i) :=kand go back Io Step 2. 
Step 6 (Oracle call). Call the oracle at uk+l to obtain n,\+ 1 and g~+I of (2.1). 
Step 7 (Descent test). If the descent test (2.4) holds with e:+1 := o-(u'+1) + ,r~+ 1, 

set a'+ 1 := uk+ 1, eJ+ 1 := e,1+1, ;/+ 1 := O, k(/+ I):= k+ I and increase I by 

I (descent step); otherwise, set a'+ 1 := a', e;,+1 := et, and ;7+ 1 := i} (null 
step). 

Step 8 (Srepsize updating). If k(l) = k + I (i.e., after a descent step), select tk+I c". 
tmin; otherwise, either set fk+I := fki or choose tk+l E [rmin,rk] if ;f+I = O. 

Step 9 (Loop). Increase k by 1 and go to Step I. 

Several comments on the method are in order. Step I may choose the simplest 
model it, = max{ft,_1, nk}. More efficient choices are discussed in [13, Sect. 4.4] 
and [15, Sect. 2.3]. For polyhedral models, Step 2 may use the QP methods of [3,8, 
IO], which can handle efficiently sequences of subproblems (l.5). 

We now use the relations of Steps 2 and 3 to derive an optimality estimate, which 
involves the aggregate linearization ii, := cr, + ft, and the optirnaliry measure 

(2.9) 

Lemma 2.2 (I) The vectors p~ and p~ of (2.6) and (2.7) are infacr subgradients: 

p~ E dit;(1/+l) and p~ E ilo-(uk+l ), (2.10) 

and the linearizations ft, and cr, of (2.6) and (2. 7) provide the minorizations 

ft,Sit,, cr,So- and ii,:=ft,+ir,$0. (2.11) 
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(2) The aggregate subgradie11t pk of (2.8) and the /inearizatio11 0k above satisfy 

p' = p~ + p~ = (ak - uk+1)/tk, 

ii,(·)= 0,(,/+ 1) + (/,· - u'+'). 

(2.12) 

(2.13) 

(3) The predicted descent v, of (2.3) and the aggregate error Ek of (2.8) satisfy 

Vk = e,;-ek(u"+') = tdPkl2 +Ek and Ek = 0t,-0k(,1'). (2.14) 

(4) The aggregate linearization 0k is expressed i11 remis of pk and Ek asfo/lows: 

(2.15) 

(5) The optimality measure Vk of (2.9) sarisjies Vk $ max{lp'I, ek}(l + lu'I) and 

et,$ 0(u)+Vi(ł+lul) Jora/lu. (2.16) 

(6) We have v, 2'. -ek # t,IPkl'/2 2'. -Ek # v, 2'. r,IP'l2/2. Moreover. v, 2'. e,, -e, $ 
E.,r and 

Proof (ł) Let 1/J!, 1/J! denote the objectives of (1.5), (1.6). By (2.6), the optimality 
condition OE Jl/)!(,,'+ 1) for (1.5) with v'cr,_ 1 = p~-I by Step O and (2.7), i.e., 

0 E Jl/)!(11'+ 1) = aitk(,;'+I) + p~-I + (,;'+I - ,i )/t, = aitk(,;'+I) - p;,, 

and ftk(,J'+ 1) = if,(1,'+1) yield p;, E 11nk(,J'+ 1) and ftk $ n,. Similarly, by (2.7), 

0 E Jl/)~(uk+I) = p;, +aa(,l+') + (,/+I -ak)/1, = Ja(uk+I)- p~ 

(using Vftk = p~) and crk(,,'+IJ = a(uk+ 1) give p~ E Ja(uk+ 1) and cr, $a.Com
bining both minorizations, we ob tai n that ft, + cr, $ ,tk + a $ 0 by (2.5) and (I.I). 

(2) Use the linearity of ii,:= ftk + a., (2.6), (2.7) and (2.8). 
(3) Rewrite (2.3), using the fact that 0k(uk) = ek(uk+I) +tklP'l 2 by (2). 
(4) We have 0,/- ek = ih(u') by (3), 0, is affine by (2) and minorizes 0 by (I). 
(5) Using the Cauchy-Schwarz inequality in lhe definition (2.9) gives 

V,$ max{IP'l,e, + IP'll•il} $ max{l/1,ed + i/iiu'I $ max{IP'l,ed(I + t,1'1) . 

Since iallbl + c $ max{ lal, c }( I + Ibi) for any scalars a, b, c, in (2.15) we have 

-(/,u) +e, +(/,a')$ 1/llul + Ek +(/,a')$ max{l/1 ,e,+ (/,a')}(I + lul)-

(6) The equivalences follow from the expression of v, = tklP"I' + e, in (3); in 
particular, v, 2'. e,. Next, by (2.14), (2.11) and (2.2), we have 

-ek = e,(,i) - e,;::; e(,i) - e,;::; e,. 

Finally, to obtain the bounds (2.17)-(2.19), use the equivalences together with the 
facts that vk 2'. e,. -e, $ e, and the bound on Vi from assertion (5). D 
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The optimality estimate (2. I 6) justifies the stopping criterion of Step 4: Vk = O 
yields a,} S inf8 = 8,; thus, the point ak is e,-optimal, i.e., 8(u') s 8, + e, by (2.2). 
If the aracie is exact (e, = O), we have v, 2 E:k 2 O by Lemma 2.2(6), and Step 5 is 
redundant. W hen inexactness is discovered at Step 5 via vk < - Ek and the stepsize t1.: 

is increased, the stepsize ilłdicator i} cja O prevents Step 7 from decreasing r, after null 
steps until the next descent step occurs (cf. Step 6). At Step 6, we have uk+ 1 EC and 
vk > O (by (2.17), since max { Jp' I, e,} > O at Step 4 ), so that ak+1 E C and a;+ 1 S BJ. 

3 Convergence 

With Lemma 2.2 replacing [13, Lem. 2.2], it is easy to check that the convergence 
results of [13, Sect. 3] will hold once we prove [13, Lem. 3.2] for aur method. To this 
end, as usual, we assume that the oracle's subgradients are local/y boimded: 

{g~} is bounded if { u'} is bounded. (3.1) 

Further, as in [I 3], we assume that the model subgradients p~ in (2. IO) satisfy 

{p~} is bounded if {11'} is bounded. (3.2) 

Remark 3.1 Note that (3.1) holds if C = !Rm or if ,r can be extended to become finite
valued on a neighborhood of C, since g~ E a,, ir(u') by (2.1 ), whereas the mapping 
a,,ir is locally bounded on C in both cases [7, Sect. Xl.4.1]. As discussed in [13, 
Rem . 4.4], typical models it, satisfy condition (3.2) automatically when (3.1) holds. 

A suitable modification of the proof of [13, Lem. 3.2] follows . 

Lemma 3.2 Suppose the re exists k such that for all k 2 k, only n11/l steps occur al!d 
Step 5 doesn 't increase 1,. Then V, • O. 

Proof Let ,p! and ą,~ denote the objectives of subproblems (1.5) and (1.6). First, 
using partia! linearizations of these subproblems, we show that their optima! values 
ą,!(ii+ 1 ) $ ą,~(uk+I) are nondecreasing and bounded above for k 2 k. 

Fix k 2 k. By the definitions in (1.5) and (2.6), we have ft,(,J'+I) = it,(,,'+t) and 

,;'+ 1 = argmin{ ł!(·) := ft,{-)+ crk- I(·)+ il, I· -a'[2} (3.3) 

from Vł!(i/+ 1 ) =O.Since ł! is quadratic and ł!(,1'+ 1 ) = ą,!(u'+ 1 ), by Taylor's 
expansion 

ł!() =l/l!(u'+1J+il;l•-•°l+t12. (3.4) 

Similarly, by the definitions in (1.6) and (2.7), we have cr,(,,'+ 1) = a(,,'+1 ), 

u'+ 1 = argmin{ i!(-):= ftk(,) + cr,(,) + il,1 · -a'J2 }, (3.5) 

ł!(-) = ą,~(uk+I)+ t;I · -uk+112. (3.6) 

N ext, to bound the objective values of the linearized subproblems (3.3) and (3.5) from 
above, we use the minorizations ft, $ ,rand cr,_1, ak $ a of (2. I I) for 8 := ,r + a: 

(3.7a) 
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,pt(,/+!)+ Ęiuk+I - ak12 = ~t(ak) $ 0(ak), (3.7b) 

where the equalities stem from (3.4) and (3.6). Due to the minorization ak-l $ a, 
the objectives of (3.3) and ( 1.6) satisfy ~! $ ,P~. On the other hand, since ,;k+l = ,;k, 
lk+ 1 $ tk (cf. Step 7), and ftk $ ifk+ 1 by (2.5), the objectives of (3.5) and the next 
subproblem (1.5) satisfy ~~ $ ,p;+ 1. Altogether, by (3.4) and (3.6), we see that 

,p!(,,k+l)+Ęiuk+l _,,'+112 = ~!(uk+I) $ ,p!(uk+t), (3.8a) 

,p!(,/+')+Ę[,l'+2-uk+1[2 = ~!(ii+2) $ ,p;+'(i/+2). (3.8b) 

In particular, the inequalities ,p!(,f+l) $ ,p~(,/+ 1) $ ,p;+1 (ii+2) imply thai the non
decreasing sequences {,P!(if+1)h>k and {,P~(,/+1)}k>>• which are bounded above 

by (3.7) with uk = a1 for all k? k, must have a co~mon limit, say ,p_ $ 0(a*). 
Moreover, since rk $ 1, for all k? k, we deduce from the bounds (3.7H3.8) thai 

,p!(,;'+1),,/J~(i/+l)t,/J-, ,,'+2_,/+1--tO, (3.9) 

and the sequences { ,;k+ 1} and { uk+ 1} are bounded. The n the sequences {g~} and 
{p~} are bounded by (3.1) and (3.2). 

We naw show that the approximation error i!k := ir,;+ 1 -ftk(uk+ 1) vanishes. Using 
the form (2.1) of lrk+J, the minorization irk+I $ ifk+I of (2.5), the Cauchy-Schwarz 
inequality, and the optima! values of subproblems (1.5) and (1.6) with ,i= a' for 
k ? k, we estimate 

Ek := ir!+I _ ftk(i/+I) = lrk+I (,/+2) _ ftk{i/+1) + (g~+I, uk+I _ ,1k+2) 

$ ifk+1(,l'+2)-ftk{,/+l)+lg~+l11,/+I -,1'+21 

= ,p;+i (,/+2) - ,p!(,/+1) +LI,;+ LI~+ lct+i 11,/+1 - ,-;t+z1, (3.10) 

where '1,; := [uk+I -if2/2tk- f,f+l -a'f2/2r,+1 and LI~:= a,;+ 1 - ak(,1'+2); in fact, 
LI~= -(p~,uk+2 - ,,'+1) by (2.7). To see that LI,'. --t O, note that 

[,;'+2 _ a'[2 = [u'+I -fi'l2 + 2(,/+2 _ ,/+I , ,/+1 _a')+ [,,'+2 _ ,,'+I 12, 

[uk+I - a<[2 is bounded, ,;'+2 - uk+I --+Oby (3.9), and Imin $ lk+J $ lk for k? k by 
Step 7. These properties also give LI~--+ O, since by (2.7) and the Cauchy-Schwarz 
inequality, 

[LI~[$ IP~llil'+2 - u'+ 11 with IP~I $ 1,/+I - u'J/rk + fp~[. 

where {p~} is bounded. Hence, using (3.9) and the boundedness of {g~+ 1} in (3.1 O) 
yields lim, i!,$ O. On the other hand, i!,= 0,;+ 1 - ii,(u'+ 1) from a-,(,/+ 1) = a,;+1 in 
(2.7), white for k? k the null step condition 0,;+1 > 0%- ICvk gives 

Ek = [0,;+I - 0,:) + (0%- 0,(,/+l)] > -/Cv,+v, = {I - IC)vk? 0 

by (2.14), where ,c < I by Step O; we conclude that i!,--+ O and v,--+ O. Finally, since 
v,--+ O, 1,? Imin (cf. Step 7) and a'= a' for k? k, we have Vk--+ O by (2. 18). O 

Our principal result on the asymptotic objective value B,';" := limk e,t follows. 

Theorem 3.3 (I) We have 0,/ .j. 0,';' $ 0„ and additional/y !i.m, v, = O if 0, > -=. 
(2) 0, $ li.m, 0(a') $ lim, 0(a') $ 0,i + E,. 

Proof Use the proof of (13, Thm. 3.5], with obvious modifications. o 
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4 Modlfications 

4.1 Looping between subproblems 

To obtain a mare accurate so!ution to subprob!em (1.4) with 1t replaced by itb we 
may cycle between subproblems (1.5) and (1.6), updating their data as if null steps 
occured without changing the model itk, Specifically, for a given subproblem accu
racy threshold ie E (O, I), suppose that the following step is inserted after Step 5. 

Step 5' (Subprob/em accuracy test). lf 

a(uk+I) + itk(,/+I) > 0,; - icvk, (4.1) 

set Ó'k-l (,) := ak(•), p~- 1 := p~ and go back to Step 2. 

The main aim of this modification is to avoid "unnecessary" null steps. Namely, 
if the test (4.1) holds with ie::; Kand the orac!e is exact enough to de!iver rr:;;+ 1 2'. 
itk(uk+ 1), then the descent test (2.4) can't hold and a null step must occur, which is 
bypassed by Step 5'. 

When the oracle is expensive, the optional use of Step 5' with ie E [ K, I) gives 
room for deciding whether to continue working with the current model itk before 
calling the oracle. 

Convergence for this modification can be analyzed as in [I 3, Rem. 4.1]. Omitting 
details for brevity, here we just observe that for the test (4.1) written as (cf. (2. I 4)) 

the Ek above may play the role of ek in (3. IO). 

4.2 So!ving the O'-subproblem approximately 

For a given tolerance KN E (O, I - K), suppose Step 3 is replaced by the following. 

Step 3' (Solving the O'-subprob/em approximately). Find a linearization Ó'k ::; O' s.t. 

(4.2) 

(4.3) 

for ,/+I given by (3.5) and vk by (2.14). Set pk and ek by (2.8), and p~ := 
v'ak, 

Before discussing implementations, we show that Step 3' does not spoił conver
gence. In Sect. 2, Ó'k(uk+I) rep!aces a(,/+1) in (2.3), (2.7) and (2.10). In Sect. 3, it 
suffices to validate Lemma 3.2. 

Lemma 4.1 Lemma 3.2 stili ho/ds for Step 3 rep/aced by Step 3' above. 
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Proof We only sketch how to modify the proof of Lemma 3.2. First, referring to 
(3.5) instead of (1.6), replace ,P~ by~~ throughout, and (3.8a) by (4.2). Second, !et 
,1~ := ak(u*+1)-ak(,Jk+2) in (3.10). Third, by (4.3), the null step condition yields 

crk(,/+I) + ir,~+I > ei- KVk + ak(,/+I) - a(u*+') 2: et- ii:vk 

for ii::= K+ KN< I, and hence 

i!k = ak(uk+I) + ir,~+I -Bk(uk+I) > (I - ii:Jvt 2: o, 

so thai the proof may finish as before. o 

Step 3' can be implemented by solving the Fenchel dual of ( I .6) approximately. 
lndeed, using the representation cr(-) = sup, {(z,·) - a'(z)} in ( 1.6), consider the 
Lagrangian 

L(u,z) := (z,u) - cr"(z) + ft1(11) + t,;lu- u112, (4.4) 

and associate with each dual point z E dom a' the following quantities: 

a(z) := argminu L(11,z) = ak -tk(P~ +z), (4.5) 

a(-;z) := (z,·)- a'(z) , (4.6) 

e(z) := a(a(z))- a(a(z);z) = a(a(z)) + a'(z)- (z,a(z)), (4.7) 

v(z) := e,f-[ftk(«(z))+a(a(z);z)], (4.8) 

where ,,(z) is the Lagrangian solution (with Pt= 'ilft;), a(-;z) is the linearization of 
cr, e(z) is its linearization error at 11(2), and v(z) is the predicted descent. Maximizing 
L(a(z),z) or minimizing w(z) = -L(a(z),z) Ieads to the following dual problem: 

w, := min, { w(z) := a' (z)+ ł IP~+ zl2 - (z, a') - ft,(a')}, (4.9) 

with a unique solution z• giving 11' := a(z') such that u' E acr'(z'), z' E aa(u') and 

cr(u')+a'(z')-(z',11') =0; (4.10) 

not suprisingly, 11' is the exact solution of ( 1.6) and z' is the corresponding p~ in 
(2.7). Note thai (4.9) can be restricted to the set D := dom aa•:= {z: aa'(z) ,6 0}, 
which contains z•. 

Now, suppose we have a method for solving (4.9) with the following properties: 

( l) It starts from the point z1 := p~-I E D such thai ak-1 (·) = (z 1, ·) - a'(z1 ); thus, 
by (3.3), (3.4) and (4.4)-(4.6), w(z1) = -,p!(1Jk+l) from w(z1) = -L(u(z 1 ),z1 ). 

(2) lt generates points i E D with w(i) S w(z1) such thai i • z', cr• (z;) • a• (z") 
and cr(u(/)) • a(11'), where u(i) • u' by (4.5). 
Then €(/) • O by (4.7) and (4.10), whereas v(z;) • v(z') by (4.8). Thus, if 

v(z") > O, we will eventually have €(/) S KNv(/). Then the method may stop with 
,/+ 1 := a(i), vk := v(/), ak(•) := a(-j) and p~ :=/to meet the requirements of 
Step 3', with (4.2) following from -~~(1/+I) = w(i) S w(z1) = -,p!(uk+I ); see (I) 
above and (3.5). 

As for the assumptions in (2) above, note thai a'(z;) • a'(z") if a' is continu
ous on D := dom aa• (e.g., in Sect. 6.3). Similarly, a(«(i)) • a(11') holds if a is 
continuous on dom aa and ii(/) E dom aa for large i. 
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5 Lagrangian relaxation 

We now consider the application of our method to ( 1.2) treated as the prima/ problem 

<p. :=sup {<p(y) := -J(y)} s.t. '-/l(x,y) :=y-Ax=O, xEX, (5.1) 

assuming that f is closed proper convex and the set X f, 0 is compact and convex. In 
view of ( 1.3) and (2.1 ), suppose that, at each uk E C, the oracle delivers 

gt:=-M and ir,(·):=(-M,•) forsomexłEX. (5.2) 

For simplicity, let Step I retain only selected past linearizations for its kth model 

it,(-):=rc~;iri(·) with kEl,c{I, .. ,k} . (5.3) 

Then (see (2.10) and [13, Sect. 4.4]) there are convex weights vJ 2: Osuch that 

(ft,,p;, !) = L, vj(1tj,8t I) with /2 := {j E Jk: V]> O}, (5.4) 
jElt 

and for convergence it suffices to choose Jk+I :i /2 U { k+ I}. Using these weights and 
(2.7), we may estimate a solution to (5.1) via the aggregare prima/ solution (x',.9'): 

x" := I, vJxi and / := p~. (5.5) 
jEJł 

We first derive useful expressions of <p(/) and '-/l(i',/J. 

Lemma 5.1 We have i' EX, q,(.9') = 0,i- e, - (pk, ak) and '-/l(i' ,.9') = p'. 

Proof First, i' E co{xi};e/, C X, ft,(-)= (-Ax",-) and p~ = -Ax" by convexity of 

X, (5.2), (5.4) and (5.5). Theo p* = .9' -Ax" = \/f(x' ./) by (2.12), (5. !) and (5.5). 
Next, by [20, Thm. 23.5], the inclusion .9' := Pt E aa(,,'+I) of (2.10) with er:= f' 
in (1.3) yields a(u'+1) = (,/+ 1,.9') - J(/); thus <p(.9') := - J(ł) = cr,(O) by (5.1) 
and (2.7). Since ft,(O) = O in (2.11 ), (2. 15) gives cr, (O) = ih(O) = 0,i - ek + (p', ak), 
as required. O 

In terms of the optimality measure v, of (2.9), Lemma 5.1 says that 

i' EX with <p(y") 2: 0J- V,, l'l'(i',/)1 '.Ó V,. (5.6) 

We naw show thai {(i',/)} has cluster points in the set of e,-optimal solutions of 
(5.1) 

z,, := { (x,y) EX x !Rm: <p(y) 2: <p. - e, , \/f(x,y) =O}, (5.7) 

unless <p. = -=, i.e., the prima! problem is infeasible. Note that (5.2) with X compact 
and (5.4) yield (3.1)-(3.2), as required for Theorem 3.3. 

Theorem 5.2 Either 0. =-=and 0,} .j. -=, in which case the prima/ problem (5.1) 
is infeasible, or e. > -=. 0: .j. 00 E [0. -e,, 0. ]. Iimk 0(a*) '.Ó 00 +e, and !.i.rn; Vk = 
O. In the Latter case, /et K C N be a subsequence such that Vk "i(' O. Then: 
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(I) {(x',/)hEK is bo1111ded and all its cluster poillls /ie in the set X x IR"'. 
(2) let (x"",7°) be a c/11ster point of the sequence {(x',f)hEK· Then (x"",7°) Ez,,. 
(3) dz,,((.i",y')) := inf(,.J")EZ,, l(.i",/)- (x,y)I KO. 
(4) lf E, = O, then 0,f .I. 0„ cp(/) K <p, = 0„ and l/f(.i",y') KO. 

Proof The first assertion follows from Theorem 3.3 (since 0, = -= implies prima! 
infeasibility by weak duality). In the second case, using 0ft, .I. 0!, 2: 0, - E, and Vi KO 
in the bounds of (5.6) yields ill!l;EK rp(y') 2: 0, - E, and limkEK l/ł(x' ,t) = o. 

(!) By (5.6), {.<'} lies in the compact X, and (fhEK is bounded by (5. !), (5.6). 
(2) We have .i"" EX, <p(y°°) 2: 0, - E, and l/f(x"",7°) =Oby closedness of cp 

and continuity of V'· Since 0, 2: cp, by weak duality (cf. (I.I), (1.3), (5.1)), we get 
<p(y°°) 2: cp, - E,. Thus (x"",7°) Ez,, by the definition (5.7). 

(3) This follows from (I), (2) and the continuity of the distance function dz,,. 
(4) In the proof of (2), 0, 2: cp, 2: cp(T) 2: 0, yields <p, = cp(T) = 0„ and for 

K' c K such thaty' -jt 7° we have <p(T) 2: lim,EK' cp(/) 2: ill!l;EK' cp(/) 2: 0„ i.e., 
cp(y') -jt <p,. So considering convergent subsequences in (I) gives cp(y') "i? cp,. • 

6 Applicatlon to multicommodity network flows 

6. I The nonlinear multicommodity flow problem 

Lei (JV,.ef) be a directed graph with N:= IJVI nodes and m := I.ef! arcs. Lei EE 
IR.Nxm be its node-arc incidence matrix. There are II commodities to be routed through 
the network. For each commodity i there is a req11ired flow r; > O from its source 

node o; to its sink node d;. Let s; be the supply N-vector of commodity i, having 
components Sio; = r;, s;di = -r;, su = O if l =/:- 01 1 d;. Our nonlinear multicommodiry 
flow problem (NMFP for short) is: 

"' 
min J(y) := [fi(Yj) (6. la) 

j=I 

" 
s.t. y= [x;, (6.lb) 

i=I 

x;EX;:=(x;:Ex;=s;,0:S:x;:S:i;}, i=l:11, (6.!c) 

where each arc cost function fi is closed proper convex, y is the tora/flow vector, x; 
is the flow vector of commodity i, and i; is a fixed positive vector of flow bo1111ds. 

Our assumptions seem to be weaker than those used in the literature. We add that 
if domf' c IR~. then the bounds i; are not needed in (6.1 c): Even if they are absent, 
our algorithm will proceed as if we had XiJ = r; for all i and j; cf. [ 14, Sect. 7.2]. 

6.2 Prima! recovery 

We may treat problem (6.1) as (5.1) with Ax = D'.: 1 x;, X = TT,'.: 1 X;, and the aracie 
solving shortest path problems to evaluate ir(uk) = -[1'.: 1 min{(,l,x;): x; EX;} at 
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each uk. Thus the results of Sect. 5 hold. Yet, as in (14, Sect. 7.3], for stopping criteria 
it is useful to employ another aggregate solulion (i',/) with i' given by (5.5) and 

l :=A.i' = t~. (6.2) 
i=l 

which satisfies the constraints of (6.1 ). Thus f(.l) 2: J., where the optima! value f. 
of (6.1) satis fi es - f. = cp. $ e. by weak duality. Hence, if the aracie is exact, e;, 2: IJ, 
implies that the method may stop when J(l) + 01} $ E for a given tolerance E > O, 
in which case (i',jl) is an E-solution of (6.1). This stopping criterion will be met for 
same k under conditions similar to those in (14, Prop. 7.1]. 

Propositlon 6.1 Suppose problem (6.1) is feasible and has a unique optima/ rota/ 
flow y' (e.g., fis srrictly convex on IR: ndomf) that satisjies y' E [O,c) C domf 
Jor some c E IR:. Further, /et E, = O (i.e., the oracle is exacr), and /er K C N be a 
subsequence such thar Vi I' O. Then jl I' y', J(ł) I' J, = -0, and J(1) +Of.? O. 

Proof By Theorem 5.2(3) and the uniqueness of y•, //• y'. Hence y* I' y' from 
/ - jl = 1/'(i',/)? O (cf. Theorem 5.2(4)), where " 2: O by (6.2) with i' EX 
(Lem. 5.1). Consequently, y' E [O,c) gives jl E [O,c) for all large k E K. Since each 
function li in (6.la) is continuous on dom!J::, [O,cj), we havef(t) I' J(y') = J,. 
The conclusion follows from Theorem 5.2(4) with IJ, = cp, = - f,. • 

An extension to the case where same arc costs are linear follows. 

Proposition 6.2 Let problem (6.1) be Jeasible. Suppose that the first 1'ń componellfs 
of any optima/ tora/ flow y• are unique (e.g., fJ are stricrly convex on IR: n dom li 
Jor j $ m) and satisfy Yj E [O,cj) C domJj Jor some Cj > O, whereas rhe costs li 
are linear for j > m. Further, /et E, = O (i.e., the oracle is exact), and /et KC N be 
a subsequence such rhat Vk I' O. Then /; I' Yj for j $ ,n, J(1) I' f. = -0, and 

J(t)+e;, I' o. 

Proof The proof of Proposition 6.1 gives ~./; I' Yj and !J(~).Jj(7;) I' Jj(yj) for 

j $ m, since I E domf by (5.6). For j > m, fJ(Yj) = am for same aj E IR; thus 
<Jj(uj) := Jj(uj) = i(a;) (uj). Then uj+ 1 = uJ = aj in (1.6) yields pJ = O in (2.8), so 

1/'j(i' ,/) = O by Lemma 5.1; since / - jl = 1/'(i',/), we have ~ = /; for j > 1'ń. 
Therefore, by (6.la), J(1) = J(/) + Lj$m[Jj(/;)- li~)], where the sum vanishes 
as k? oo; Theorem 5.2(4) with cp := - f gives the conclusion. • 

6.3 Specific arc costs 

For specific arc costs, as in [I, 14], we shall consider Kleinrock's average delays 

{
oo ifyj:2'.Cj , 

li(Yj) := Yj/(cj - Yj) if Yj E [O,cj), 
Yj/cj 1fyj < O, 

(6.3a) 

• 
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(6.3b) 

with arc capacities c1 > O, the BPR (Bureau of Public Roads) nonlinear delays 

fJ(YJ) := { am+tJiy? ify1 ;:,: o, 
am ,fy1 < o, 

(6.4a) 

Jj(uj) := { Iff (111- a1)Y1/(r;-l)j({3JYJ)lf(r;-I) if IIJ 2': aj, 
oo 1fuj<aj, 

(6.4b) 

with parameters aj 2': O, f31 > O, Y} 2': 2, as well as BPR linear delays with aj 2': O: 

fj(YJ) := am for all YJ, 

J'(u) := {o if111=a1, 
1 1 001f111 /a1. 

(6.5a) 

(6.5b) 

Our costs are linear/y extrapolated versions of the "standard" costs used in [ I 4], 
where fj(YJ) is set to oo for YJ < O, so that fj(111) becomes O instead of oo for 
"J < J1(0). Note that the value of f1 at YJ < O does not matter for (6.1), where the 
constraints yield y j 2': O. Further, if (6.1) is feasible, the assumptions of Propositions 
6.1 and 6.2 hold for our Kleinrock and nonlinear BPR costs, and for a mixture of our 
nonlinear and linear BPR costs, respectively. Finally, since dom O'= domf' CIR';' for 
our costs, the oracle has to solve shortest path problems with nonnegative arc lengths 
uk only; hence, we may assume that e, = O. 

6.4 Solving the O'-subproblem for specific arc costs 

We now specialize the results of Sect. 4.2 with er' := f for the costs of Sect. 6.3. Since 
er• is separable, we may handle (4.9) by solving 171 one-dimensional subproblems to 
determine components of an approximate solution, say z_ Thus we need a stopping 
criterion for each subproblem. To this end, we replace the criterion e{i) $ ICNv(i) 
by e{z) :,; ,cNv(z) for 

v(z) := er,/ - a(,i;z) +tklP~ +zl2 = v(z)- [ zj- ftk(ak)], (6.6) 

where the second equality follows from (4.5), (4.6) and (4.8) with /Jf = cri+ n,r 
Moreover, crf, - a(uk;z) 2': O yields v(z) 2': O, whereas by the results of Sect. 4.2, 
v(z) = O only if z= z'=-~; since checking if v(-p~) = O is easy, we may assume 
that v(z') > O. Finally, v(z) $ v(z) from e, =O.The resulting "natura!" subproblem 
criteria are discussed below. 

To simplify notation, we assume 171 = l, drop the subscript jin (6.3)-(6.5) and let 
t := tk in (4.5). We first consider the Kleinrock and nonlinear BPR costs in (6.3)-(6.4). 
For finding an approximate solution z, we exploit the following properties: 

• f(z) = f'(O)z for z$ O with f'(O) 2': O; 
• J"(z) > O for z> O in F := domf = (-oo,c), with c := oo in the BPR case; 
• er' =fis continuous on F with dom Jer' = F; 
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• a:= f' is continuous on dom a= [J'{O),=) with dom aa= dom a; 
• w'(z) = J'(z) - u(z) and w''(z) = J"(z) +r for z EF in (4.9) by (4.5). 

If w'(O);::: O, then i:= -w'(O)/t is optimal (w'(i.) = O), E(i) = O and u(i) = J'(O). 
If w'(O) < O, then z' E (O, -w'(O)/t), since for z;::: -w'(O)/t.J'(z) > J'(O) yields 

w'(z) = J'(z)- u(z) > J'(O)- u(z) = w'(O) +tz 2'. O. 

Further, z' E {O,z"P) for z"P := min{-w'(O)/ t,c} from z' EF, and u(z) Edom a 
for z E {O,z"P), since u(z) > J'(O) iff z< -w'(O)/t. These properties and the results 
of Sect. 4.2 yield the following. Suppose we minimize w over (O,z"P) via a descent 
method, starting from z1 := p~- 1 if p~-l E {O,z"P) or any z1 E (O,z"P) otherwise, 
which generates points i E (O,z"P) such thai i--+ z'. Then i::(i)--+ O and v(t)--+ 
v(z') > O in (6.6) imply thai we will eventually have i::(i) $ ICNv(t) , in which case 
the method may stop with i:= i. 

Next, for the linear BPR costs in (6.5) with w'(z) = J'(O) - t1(z), i:= -w'(O)/t 
is optimal (w'(i.) = O), E(i.) = O and ,,(i)= J'(O) (as in the case of w'(O);::: O above). 

Form > I, expressing E(z) in (4.7), w(z) in (4.9) and v(z) in (6.6) as sums of 
Ej(Zj), Wj(Zj) and vj(zj) respectively over j = l, ... ,m, for each j we may find Zj as 
above so thai Ej(Zj) $ KNVj(Zj), and w(z) $ w(p~- 1); since v(z) $ v(z) in (6.6), we 
also have E(i) $ ICNv(z). Thus, as in Sect. 4.2, we may set u•+l := u(i), v. := v(z), 
ćt,(,) := ćt(·;i.) and p~ := i. 

7 lmplementation issues 

We now describe the main issues in aur implementation of each step of Algorithm 
2.1 for the network applications of Sect. 6. We also highlight aspects where our im
plementation could be improved; this is left for future work. 

7.1 Initial settings 

In the Kleinrock case of (6.3), the initial u}:= (I -p,)-2/ci for all j, with p, := ¾ 
estimating the maximum traffic intensity maXjYj/ci as in [5, 14]; then p~ := Va(u 1 ). 
In the BPR case of (6.4)-(6.5), u}:= aj for all j, and we let p~ := O. 

As usual in bun die methods, we use the descent param eter IC = O. I in (2.4 ). We 
set the initial stepsize to t1 := I, corresponding to the inverse of the initial proximal 
coefficient of [l], and lei Imin := 10-2011. 

7.2 Subproblem solution 

For the models if;k of (5.3), subproblem (1.5) is solved by the QP routine of [IO]. 
This routine has at least two drawbacks. First, being designed for bound-constrained 
problems, il employs data structures thai are not efficient in the unconstrained case. 
Second, its linear algebra is behind the current state of the art; il could benefit from 
tuned versions of LAPACK like the MATLAB implementation of [I]. 
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The one-dimensional subproblems of Sect. 6.4 are solved for the tolerance KN = 
10-3 by Newton's method with Armijo's backtracks for a descent tolerance of 10-6, 

where at each iteration the initial unit stepsize is reduced if necessary to 0.9 times the 
maximum feasible stepsize, and the stepsize is divided by 2 for each Armijo's fai Iure. 
This works quite well, but implementations based on self-concordant ideas (as in [Il) 
could be more efficient. 

The looping Step 51 of Sec!. 4.1 employs the tolerance ie= 0.2, but the number 
of Ioops at any iteration is limited to 30. 

7.3 Shortest-path oracle 

Let S $ 11 be the number of common sources (different source nodes) in (6.1). To 
evaluate 1t(1/+l ), we call S times subroutine L2QUE of [4], which finds shortest 
paths from a given source to all other nodes. We chose L2QUE simply because it 
performed well in our earlier work [14]; most probably, faster routines exist. 

7.4 Tennination criterion 

In view of Sect. 6.2, we stop when the relative optimality gap is small enough: 

f,1 := (J~p -t.,w)/max{.fi~w, I}$ Eop1, (7.1) 

where Eop1 = 10-5 as in [ I], whereas Itp and .fi~w are the best upper and lower bounds 

on I, obtained so far. Specifically, li~w := -min19+10.!, whereas Itp is the mini
mum of l(yi) over ilerations j $ k, j = l O, 20, ... , at which l(yl) is computed. A 
more frequent computation of l(yi) could save work on small instances. 

7.5 Stepsize updating 

Our implementation of Step 8 uses the following procedure, in which 1,',1 is the gap of 
(7.1), J'k := Itp - .ti~w is the absolute gap, his the number of loops made on iteration 
k, and nk counts descent or null steps since the latest change of fk, with 111 := l. 

Procedure 7.1 (Stepsize updating) 

(I) Set fk+l := fk. 

(2) If ,1*+ 1 = a* or h > O go to (5). 
(3) If llk 2: IO, or Vk < n/2 and t.1 $ O.Ol, set IHl := 2tk, 

(4) Set11k+1 :=max{11k+l,I}.Iftk+l 'f'lk,setnk+I := l.Exit. 
(5) If ;~+l = O, llk $ - IO, and either Vk > n/2 or t,1 > O.Ol, set fk+I := maxfo/5, 

Imin}- Set llk+I := min{nk - I, -I}. lf fk+l cJ fk, set llk+l := -1. Exit. 

The counter llk introduces some inertia, which smooths out the stepsize updating. 
In generał, tk should be increased (respectively decreased) if "too many" descent 
(respectively null) steps are occuring, but vk should be of order J'k, since descent 
steps with vk « l'k bring little. Of course, our procedure is just an example and there 
is stili room for improvement. 
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8 Numerical Ulustratious 

To get a feeling for the practical merits and drawbacks of our approach, we first 
benchmark our AL implementation on the test problems of[!]. 

8.1 Test problems of Babonneau and Via! 

We used the four sets of test problems of [I]. Their features are given in Table 8.1, 
where N is the number of nodes, m is the number of arcs, " is the number of com
modities, S is the number of common sources, and J,Kleinrock and ff PR are the optima( 
values of (6.1) for the Kleinrock and BPR costs respectively, with relative optimality 
gaps ofat most 10-5• Table 8.1 corrects some values of[l, Tab. 2]; see [2] and below. 

For the first two sets of planar and grid problems 1, the cost functions are generated 
as in [1, Sect. 8.1]; we add that problem planar150 is missing in [l]. 

The third set of telecommunication problems includes a corrected version of prob
lem ndo22 [2]; the BPR costs are generated as in [I]. 

The fourth set of transportation problems2 uses original BPR costs, and Kleinrock 
costs generated as in (l]. To clarify the description of [1], we add thai in the Kleinrock 
case the demands are divided by 2 for Sioux-Falls, 2000 for Winnipeg, 5100 for 
Barcelona, 2.5 for Chicago-sketch, 6 for Chicago-region, and 7 for Philadelphia. We 
also observe that although [ 1, Tab. 2] gives wrong Kleinrock values for Chicago
sketch, Chicago-region and Philadelphia, their entries in (1, Tab. 5] are apparently 
correct. In contras!, for the BPR versions of Barcelona and Philadelphia, [1, Tab. 6] 
musi be corrected as in [2]. 

8.2 Numerical results for the test problems ofBabonneau and Vial 

Tables 8.2 and 8.3 give our results for the problems of Sect. 8.1. In these tables, 

• kand I are the numbers of iterations and descent steps respectively; 
• Sigma is the average number of subproblems solved at Step 3 per iteration; 
• Newton is the average number of Newton 's iterations for the one-dimensional 

subproblems solved approximately at Step 3 (cf. Sect. 7.2); 
• CPU is the total CPU time in seconds; 
• %Si is the percentage of CPU time spent on the subproblems of Step 3; 
• %Or is the percentage of CPU time spent in the shortest-path oracle. 

We used a Dell M60 notebook (Pentium M 755 2 GHz, 1.5 GB RAM) under MS 
Windows XP and Fortran 77, with SPECint2000 of 1541 and SPECfp2000 of 1088. 
Our machine was comparable with !hat of [I] (Pentium 4 2.8 GHz, 2 GB RAM, with 
SPECint2000 of 1254 and SPECfp2000 of 1327). Yet we refrain from comparing the 
CPU limes, as they could depend on many other factors. Here our main message is 
that AL can solve all the instances of [I] in reasonable time. 

Table 8.4 gives our results for standard bundle (cf. Sect. 8.3). In this table, 

1 Available at http://www.di.unipi.it/di/groups/optimize/Dat.l!MMCF.html. 
2 Available at http://www.bgu.ac.il/bargera/tntpl. 
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Table 8.1 Test problems of Babonneau and Via! 

Problem N s Jf-kinrod. /~PR 

Planar problems 
planar30 30 ISO 92 29 40.5668 4.44549 X 107 

planar50 SO 250 267 SO !09.478 1.21236 X !08 

plan.o.r80 80 440 543 80 232.321 1.81906 X 108 

planarI00 100 532 1085 100 226.299 2.29114 X J08 
planarl50 150 850 2239 ISO 715.309 5.27985 X 108 

planar300 300 1680 3584 300 329.120 6. 90748 x !08 

plan.o.r500 500 2842 3525 500 196.394 4.83309 X !09 

planar800 800 4388 12756 800 354.008 1.16952 X 109 

planarlOOO !OOO 5200 20026 1000 1250.92 3.41859x l09 

planar2500 2500 12990 81430 2500 3289.05 J.23827 X !0IO 

Grid problems 
gridl 25 80 50 23 66.4002 8.33599 x IO' 
grid2 25 80 100 25 194.512 1.72689 X 106 

grid3 100 360 50 40 84.5618 1.53241 X !06 

grid4 100 360 100 63 171.331 3.05543 X !06 

grid5 225 840 IDO 83 236.699 5.07921 X 106 

grid6 225 840 200 135 652.877 1.05075 x !07 

grid7 400 1520 400 247 776.566 2.60669 x !07 

grid8 625 2400 500 343 1542.15 4.21240 X 101 

grid9 625 2400 1000 495 2199.83 8.36394 x !07 

gridlO 625 2400 2000 593 2212.89 1.66084 X !OK 
gridl I 625 2400 4000 625 1502.75 3.32475 x IO' 
gridl2 900 3480 6000 899 1478.93 5.81488 X 1011 

gridl3 900 3480 12000 900 1760.53 1.16933 X 109 

gridl4 1225 4760 16000 1225 1414.39 l.81297x !09 

grid!S 1225 4760 32000 1225 1544.15 3.61568 X !09 

Telecommunication problems 
ndo22 14 22 23 !03.412 1.86767 X !03 

ndol48 61 148 122 61 151.926 1.40233 X 105 

904 106 904 11130 106 33.4931 1.29197 X 107 

Transportalion problems 
Sioux-Falls 24 76 528 24 600.679 4.23133 x !06 

Winnipeg 1067 2836 4344 135 1527.41 8.25673 x !05 

Barcelon.o. 1020 2522 7922 97 845.872 J.22856 X !06 

Chicago-sketch 933 2950 93135 386 614.726 1.67484 X !01 

Chicago-region 12982 39018 2296227 1771 3290.49 2.58457 x !07 

Philadelphia 13389 40003 1149795 1489 2557.42 2.24926 X )08 

• Tss/AL is the ratio of the CPU times of standard bundle (SB for short) and AL, 
with the times increased to O. I if necessary. 

Moreover, to avoid too long run times, we imposed an iteration limit of 9999 (thus 
Tse/AL does not mean much for runs with k = 9999), and sk.ipped some largest in
stances. AL is significantly faster than SB on all but the smallest instances. 

17 
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Table 8.2 Peformance of AL for Kleinrock cost.s 

Problem Sigma Newton CPU %Si %Or 
planar30 125 62 4.7 1.9 O.I 60 o 
planar50 214 73 3.2 2.2 0.2 31 10 
planar80 308 80 3.0 2.2 0.6 28 28 
planarlOO 312 75 3.9 2.4 0.8 24 28 
planar150 979 95 1.7 2.1 12.2 3 17 
planar300 303 84 6.4 2.7 4.7 27 46 
planar500 253 77 8.3 2.6 9.7 23 55 
planar800 341 82 7.7 2.7 28.1 16 69 
planarlOOO 648 104 4.1 3.0 74.8 8 73 
planar2500 1530 103 2.5 2.6 1092.1 2 86 
grid! 92 65 8.2 2.3 O.I 40 o 
grid2 185 62 2.9 2.4 o.o 50 50 
grid3 222 74 6.7 2.2 0.4 37 13 
grid4 247 79 5.3 2.7 0.4 45 30 
grid5 290 82 5.5 2.3 1.3 35 19 
grid6 453 89 2.9 2.5 2.4 15 28 
grid7 646 98 3.0 2.4 8.4 12 33 
grid8 940 102 2.1 2.3 21.0 7 41 
grid9 900 99 2.2 2.4 24.4 7 48 
gridlO 730 100 2.8 2.7 22.1 9 54 
gridll 424 85 5.6 3.3 14.I 18 52 
gridl2 458 96 5.8 3.4 27.0 17 59 
grid13 423 94 6.4 3.7 26.1 18 58 
grid14 470 106 7.1 3.9 49.5 17 63 
grid!5 451 102 7.7 4.1 49.7 19 62 
ndo22 374 290 9.5 1.9 O. I 38 o 
ndol48 91 56 2.7 2.0 o.o 33 o 
904 216 57 8.3 3.0 1.5 45 16 
Sioux.falls 300 61 2.8 2.5 O.I Il Il 
Winnipeg 1149 303 4.6 1.8 104.4 Il 
Barcelona 3044 314 5.4 1.7 397.6 3 6 
Chicago-sketch 280 80 8.8 2.4 13.3 19 62 
Chicago.region 303 73 7.7 2.1 901.0 88 
Philadelphia 433 89 8.4 3.2 1431.3 85 

8.3 Numerical comparisons with disaggregate bundle 

For comparing AL with SB and the method of [17] we also used the small and 
medium sized test problems of [ I 7] with Klein rock costs. Their features are given 
in Table 8.5; problems pl and p4 are called ndo22 and ndol48 in Tab. 8.1. 

Standard bundle replaces (1.5)-(1.6) by the single subproblem 

u'+t :=argmin{ a,(u)+ir,(u)+i/,lu-fi'l2 :u EC}, (8.1) 

where Ó", $ a is a polyhedral approximation built from linearizations obtained from 
a first-order aracie for a similarly to irk $ 1<. Since a(u) = E% 1 fj(u1) for Jj given 
by (6.3), constructing an exact first-order aracie for a is simple. Funher, given an 
integer na :$ m, we may treat (J as the sum of na functions, say <J = I:;~1 CJ;, where 

<J1 (u)= E;:{"aJ Jj(u1), etc., using a richer model Ó"k := E'.:1 Ó";k in (8.1), where each 
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Table 8.3 Peformance of AL for SPR costs 

Problem k I Sigma Newton CPU %Si %Or 

planar30 75 69 1.3 I.I o.o 66 33 
planar50 105 64 1.4 1.3 o.o 66 33 
planar80 150 59 I.I 1.3 0.2 8 73 
planarl00 108 44 1.4 1.3 0.2 20 54 
planarl50 194 52 I.I 1.5 0.9 12 67 
planar300 97 31 1.3 1.2 1.4 8 86 
planru-500 50 23 1.7 I.O 3.3 4 92 
planar800 108 33 1.9 1.2 25.4 2 94 
planarlO00 209 41 1.4 1.3 32.6 2 88 
planar2500 264 52 1.3 1.6 411.8 o 97 
gridl 48 29 3.6 2.2 o.o IDO o 
grid2 61 27 1.7 2.2 o.o 100 o 
grid3 43 23 2.5 1.3 o.o 25 50 
grid4 59 26 1.8 2.2 O.I 77 11 
grid5 86 28 2.1 1.7 0.3 38 38 
grid6 150 33 2.0 2.0 0.6 44 33 
grid7 108 31 2.1 2.3 I.O 34 50 
grid8 143 36 1.6 2.3 2.3 25 56 
grid9 183 37 1.7 2.4 4.0 16 62 
grid!O 200 34 2.3 2.5 5.5 19 59 
gridl I 120 32 4.2 3.2 4.1 36 49 
grid!2 122 31 5.8 3.4 8.8 38 48 
grid13 140 30 5.5 3.6 IO.I 39 50 
gridl4 111 28 8.0 4.0 15.9 43 46 
gridl5 115 26 8.0 4.3 16.9 44 47 
ndo22 11 8 2.2 2.2 o.o o o 
ndol48 14 li 2.4 2.1 o.o o 100 

904 I 16 32 1.2 2.8 0.5 32 57 
Sioux-Falls 105 37 6.3 2.6 O.I 85 o 
Winnipeg 127 31 8.4 1.8 4.5 51 39 
Barcelona 92 24 14.3 3.0 5.6 74 18 
Chicago-skc1ch 129 32 7.0 2.2 7.2 34 57 
Chicago-region 300 51 3.6 2.6 891.0 5 89 

Philadelphia 671 62 2.7 1.9 3239.7 94 

Ó';; ~ CJ; stems from past linearizations delivered by an o racie for CJ;. Of course, richer 
models may speed up convergence, but the QP work in solving (8.1) may grow. 

Since our AL is implemented on top of SB, they share the same QP routine, 
prima I recovery, etc. In particular, SB uses the descent test (2.4) with IC = O. I and 
vk := 0,} - [ó-k(1/+ 1) + kk(u*+ 1 )], and the stopping criterion (7.1) with Eopt = 10- 5. 

The Newton-cutting-plane (NCP for short) method of (17) replaces (8.1) by 

a *+1 := argmin { ak(u) + kk(u) + ½111- ,l1i,: 11 EC}, (8.2) 

where ak( -) := u(uk) + (u'(,l), • - a') is the linearization of CJ at a* and I· IH, := 

(Hk·, -) 112 is the norm generated by a symmetric positive definite matrix Hk which ap-
proximates the Hessian u"(u*). Exploiting the structure of 7C = E,'.. 1 7C; with 7C;{-) = 
- min,,ex, (• ,x;), NCP employs the disaggregated model kk:= E,'.. 1 it;; with lr;k{-) = 

maxj= 1 (g~;,,) and g~; E a1r:;(11j). For the search direction d' := ,:;k+t - a', a back-
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Table 8.4 Pefonnance of slandard bundle 

Kleinrock costs BPR costs 
Problem CPU %Or TsB[AL CPU %Or Tse[AL 

planar30 333 0.6 o 5.6 291 0.2 4 2.2 
planar50 553 2.0 7 9.9 103 0.3 Il 2.7 
planar80 1498 5.9 17 9.8 218 1.8 12 9.2 
planarlOO 2210 10.6 19 13.3 113 0.9 14 4.5 
planar150 3435 54.3 15 4.5 890 38.1 8 42.3 
plnnar300 3870 153.1 18 32.6 234 37.6 7 26.9 
planar500 4613 1183.2 8 122.0 151 80.3 Il 24.3 
planar800 5630 2132.3 14 75.9 307 569.1 li 22.4 
planar!OOO 9999' 2709.8 31 36.2 578 1365.4 5 41.9 
planar2500 9999' 13399.5 46 12.3 
gridl 184 O.I o I.O 50 o.o o I.O 
grid2 134 O.I o I.O 56 o.o o I.O 
grid3 1150 5.7 4 14.3 59 0.2 1.6 
grid4 1189 3.8 IO 9.6 60 0.2 2.4 
grid5 1729 32.1 6 24.7 72 I.O 3.2 
grid6 2127 30.8 Il 12.8 105 1.7 6 2.9 
grid7 4712 226.7 9 27.0 85 4.9 7 4.9 
grid8 9691 1502.6 6 71.6 119 25.0 4 10.9 
grid9 6705 965.6 9 39.6 139 34.2 5 8.6 
gridlO 9999' 1383.1 12 62.6 135 39.3 5 7.1 
gridll 5008 700.4 12 49.7 94 32.3 5 7.9 
grid12 9999' 2782.7 13 103.1 81 74.5 3 8.5 
gridl3 6983 2061.8 12 79.0 91 85.9 8.5 
gridl4 8582 5157.5 11 104.2 75 169.7 2 10.7 
gridl5 9999' 6049.1 Il 121.7 73 162.0 3 9.6 
ndo22 727 0.2 o 1.6 22 o.o 100 I.O 
ndol48 218 0.2 17 2.3 36 o.o o I.O 
904 2030 87.5 3 58.3 1504 285.9 I 571.8 
Sioux-Falls 860 0.3 li 3.5 117 O.I 9 I.O 
Winnipeg 9999' 1247.9 8 12.0 443 140.9 4 31.3 
Barcelona 9999' 1031.7 8 2.6 2743 2541.3 I 453.8 
Chicago-.sketch 9999' 4971.6 6 373.8 490 217.9 7 30.3 

11 Failure to obtain required accuracy 

tracking search finds a stepsize tk E (O, I] and a point uk+I := ak +tkdk such that either 
ak+ 1 := uk+ 1 if 0 is reduced significantly or ,;k+l := ak; see [17] for details. 

Table 8.6 gives the AL and NCP results for the problems of Tab. 8.5. In this table, . #Or is the numberoforacle calls made by NCP from [17, Tab. I]; 

• TNC/AL is the ratio of the CPU limes of NCP from [I 7, Tab. I] and our AL, with 
our times increased to O.Ol if necessary. 

As for CPU comparisons, [ I 7] used a desktop PC (Xeon 2.4 GHz 2 cores, 1.5 GB 
RAM) under Linux, CPLEX I O.O for solving QPs and C for the shortest path compu-
talion via Dijkstra's method, with SPECint2000 of 2564 and SPECfp2000 of 2522. 
Thus our machine was about lwice slower, but the QP and shortest-path solvers were 
different. In CPU limes, AL is substantially faster than NCP on most instances. Here 
two points should be noted. First, NCP's CPU limes would probably change substan-
tially with the use of a specialized QP solver such as [3,8, IO]. Second, without imple-
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Table 8.5 Test problems of Lemar~chal et al. 

Problem N s /.KJcinrock 

pl 14 22 23 5 103.4120 
p2 19 68 30 15 8.994992 
p3 60 280 100 48 53.08077 
p4 61 148 122 61 151.9269 
p5 20 64 133 20 39.63546 
p6 122 332 162 45 276.3214 
p7 100 600 200 88 84.96748 
p8 30 72 335 20 36.45172 
p9 21 68 420 21 68.83896 
pl O 100 800 500 99 139.0965 
pl I 67 170 761 20 109.8956 
pl2 34 160 946 34 19.56668 
pl3 300 2000 1000 293 304.3895 
pl4 48 198 1583 47 135.4632 
pl5 81 188 2310 66 41.79184 
pl6 122 342 2881 102 242.7148 

Table 8.6 Peformance of AL and NCP for small and medium Kleinrock problems 

AL NCP 

Pb Sigma Newlon CPU %Si %Or #Or CPU TNC[AL 

pl 374 290 9.5 1.9 0.06 33 o 12 100 0.03 0.5 
p2 40 34 2.5 1.7 O.DO o o 5 li 0.02 2.0 
p3 92 57 2.3 1.2 O.I I o 54 7 102 0.20 J.8 
p4 91 56 2.7 2.0 O. JO 49 JO 7 15 1.07 10.7 
p5 88 54 5.1 2.1 0.07 28 14 7 15 0.35 5.0 
p6 139 99 1.7 1.4 O.I I 36 18 9 99 0.61 5.5 
p7 92 56 4.0 I.I 0.16 6 43 7 103 0.78 4.9 
p8 104 41 20.6 J.8 O.JO 29 o 7 Ili 0.13 1.3 
p9 112 59 13.9 2.7 0.06 66 o 7 15 5.62 93.7 
pl O 174 65 4.1 0.9 0.44 20 38 JO 314 9.60 21.8 
pl I 86 57 3.J 2.0 0.05 79 o 8 141 4.84 96.8 
pl2 83 47 JO.I 1.6 0.06 66 33 5 li 1.03 17.2 
pl3 208 65 4.6 I.I 2.61 13 59 li 330 73.37 28.J 
pl4 167 67 3.1 1.9 0.14 64 14 9 89 13.09 93.5 
pl5 119 37 22.8 1.3 0.24 33 16 7 2.44 10.2 
pl6 310 21 I 4.8 1.3 0.55 20 41 82 31 J.85 567.0 

menting prima! recovery, NCP had to rely on an "artificial" stopping criterion instead 
of(7.l), possibly spending more work than necessary to meet (7.1) with Eopt = w-5. 

Table 8.7 reports the SB results for severa! values of the disaggregation parameter 
Ila (the oracle percentages %Or were marginal: at most 16 for Ila = 1, and 3 for 
"a= 20). Clearly, AL is much faster than SB in CPU times. This is mostly due to SB 
spending more time on its QP subproblems, since the iteration counts do not increase 
so much except for problems p 15 and p 16. Note that increasing na may help for some 
problems (e.g., p 15 and p 16), but not for others (e.g., p I 3). 
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Table 8.7 Peformance of disaggregate bundle for small and medium Kleinrock problems 

Ila= I nu =3 na =5 na= 10 Ila =20 
Pb CPU k CPU k CPU k CPU k CPU 

pl 727 O.I 71 o.o 47 o.o 33 o.o 21 o.o 
p2 118 O.I 96 O.I I 12 0.2 87 0.2 70 0.2 
p3 180 0.5 235 1.4 224 2.3 233 2.9 181 3.2 
p4 218 0.2 169 0.4 150 0.5 166 I.O 136 1.4 
p5 149 O.I 197 0.3 166 0.3 132 0.4 105 0.3 
p6 334 0.9 302 1.5 320 2.0 330 2.8 261 3.6 
p7 294 2.4 305 5.0 298 11.4 315 13.1 275 12.7 
p8 546 0.4 244 0.3 149 0.3 80 0.3 84 0.3 
p9 276 O.I 265 0.3 238 0.4 185 0.6 161 0.6 
p!0 390 6.4 378 15.0 471 22.5 386 27.4 399 38.3 
pl I 147 0.2 180 0.7 172 I.O 163 1.5 129 2.0 
pl2 386 0.6 436 1.7 320 1.9 216 1.9 159 1.7 
p13 479 36.3 567 73.2 588 101.7 507 264.3 673 380.8 
pl4 262 0.6 272 I.I 269 1.3 307 1.9 277 2.8 
pl5 5610 31.4 4962 57.8 3153 41.2 1320 22.0 501 10.4 
p16 3282 21.0 2559 31.5 1010 21.3 1424 31.3 520 18.4 

The interested readers might compare our resu!ts with those given in [ 17] for two 
other standard bundle variants using "" = m or I, as well as full disaggregation for TC 

just like NCP; neither variant was competitive with NCP. 
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