
Raport Badawczy

Research Report
RB/36/2009

Bundle methods for convex
minimization with partially

inexact oracles

K.C. Kiwiel

Instytut Badań Systemowych
Polska Akademia Nauk

Systems Research Institute
Polish Academy of Sciences

POLSKA AKADEMIA NAUK

Instytut Badań Systemowych

ul. Newelska 6

01-447 Warszawa

tel.: (+48) (22) 3810100

fax: (+48) (22) 3810105

Kierownik Pracowni zgłaszający pracę:
Prof. dr hab. inż. Krzysztof C. Kiwiel

Warszawa 2009

Computational Optimization and Applications manuscript No.
(will be inserted by the editor)

Bundle Methods for Convex Minimization with Partially
lnexact Oracles

K.C. Kiwiel

Received: March 18, 2009; revised November 11, 2009 / Accepted: date

Abstract Recently the proximal bundle method for minimizing a convex function
has been extended to an inexact aracie thai delivers funclion and subgradienl values
ofunknown accuracy. We adapt !his method to a partially inexact aracie thai becomes
exact only when an objective target level for a descent step is met. In Lagrangian re
laxation, such oracles may save work by evaluating the dual function approximately
on most iterations, without compromising the strong convergence properties of exact
bundle methods. We also show that the recent method of Gaudioso et al. for finite
min-max problems fils our partially inexacl framework, we correct and strengthen its
convergence results and give useful modifications. Numerical illustrations on stan
dard instances of the generalized assignment problem (GAP) are included.

Keywords Nondifferentiable optimization • Convex programming · Proxima! bundle
methods • Approximate subgradients • Finite min-max

Mathematics Subject Classification (2000) 65K05 · 90C25 · 90C27

I lntroduction

We consider the convex constrained minimization problem

f. := inf{/(u) : u EC}, (I.I)

where C is a "simple" closed convex set (typically a polyhedron) in the Euclidean
space IR" with inner product (·, •) and norm I · I, and/: IR" --+ IR is a convex function.

We are interested in bundle methods, which at each trial point in C call an aracie
to produce a linearizatian of/, given by a tupie in IR x IR". At the current iteration
k of such a method, the aracie has been called at trial points u 1, ••• 1 zł in C, and
has retumed the corresponding tuples {U/,,gi)}J- i in IR x IR" . For an exacl oracle,

K.C. Kiwiel
Systems Research lnstilute, Polish Academy of Sciences, Newelska 6, 01-447 Warsaw, Poland, E-mail:
kiwiel@ibspan.waw.pl

K.C. Kiwiel

J/, = f(,il) and gi E iJJ(ui) denote the exact objective value and a subgradient at
ui. An inexact aracie may return J/, = f(ui) - e} and gi E i)<}+~f(ui) with errors

e}+Ei 2: O, where iJ,f(u) := {g: /O 2: f(u) - e +lg,• - u)} is the e-subdifferential
off at u; in other words, it delivers the linearization

fj(-) :=/(,+Igi,· - ,,J) 5. JO +ej with fj(,il) =Jl,= f(,,l) - e}. (1.2)

The errors are unknown, but bounded by same (unknown) constants E jax and e;ax:

o} 5. e'J" and ej 5. e;;'" for all j. (13)

For instance, in many applications fis a max-type function of the form

f(u) := sup{F,(u): z EZ}, (1.4)

where each Fz: IR"-+ IR is convex and Z is an arbitrary set. If, for u= ui, the oracle
finds a possibly inexact maximizer zi EZ of (1.4), sets J/, := F,j (,ii) and takes gi as

any subgradient of F,j at ui, then (1.2) holds with e} = f(ui) -F,;(,ii), e~ = O.
In (13] we extended the proximal bundle methods of (9] and (8, §XV.3] to the

inexact setting of (1.2); see (14-16, 18] for further developments and (17, 18] fornu
merical tests. In generał terms, such methods maintain:

• a closed convex model fa 5. f + e; with e; 5. e;'", for instance (see (1.2)-(13))

i,=maxI with J,C{l, ... ,k} and t'=maxei;
jEJ1; J g jEJt g

• a stability center ,i* = u*' for some k1 :, k that has the value /,(=/::,and
• aproximity stepsize lk > O that controls the distance from tik to the next trial point

,/+I := argmin { j,(u) + t,;fu- ,if2: u EC}. (1.5)

Afterthe aracie called at u'+ 1 produces r.+1, a descent step to ,;'+I := ,/+ 1 is taken if
the objective reduction is at least a given fraction IC E (O, 1) of the predicted decrease

(1.6)

i.e., if
(1.7)

Otherwise, a null step 1i+1 := -ii occurs; then the new linearization fk+l is used to
produce a better model h+i ~ fk+i for the next iteration. This summarizes exact
bundle. The inexact extension of (13] is based on the observation that having the
majorization

(1.8)

suffi.ces for convergence. Hence, if necessary, tk is increased and u*+ 1 is recom
puted to decrease Jk(u'+ 1) until (1.8) holds. As for convergence, [13] showed thai
the asymptotic objective value fi::= limkft estimates the optima! value /, of(l.l):

Bundle Methods with Partially lnexact Oracles

1' E [/,-Ej''./.+€;'"]. Next, for e;;'" = O, [14] observed that in fac! the asymp
totic accuracy depends only on the errors that occur at descent steps. Specifically, let
f(k) - I index the last descent iteration prior tok, and denote by

e- := lim e'(k)
I k• - I

(1.9)

the asymptolic aracie error at descent steps; !hen J; E [/, - ej,/,) (sec [14, §4.2)).
First, in !his paper we extend the analysis of[l4) to the case e;'" >O. We show

that .r: E [/. - ej ,f, + e;J with e; :S !i.nl,EK e; for same subset Kc N. This im

proves the recent result of [4, §5); in our notation, it replaces e; by limkEK e; and
assumes additionally that fis coercive and C = IR ".

Second, this paper shows how to ensure a null asymptotic error for a partially
inexact oracle. We call the oracle partia/ly inexact if, given the point uk+I and a
target objective /evel Ak, it delivers a tupie (J,~+1,gk+ 1) such thai (l.2) holds with
fi ee O for j = k + I, and additionally

(I.IO)

Then, in view of the descent criterion (l.7), setting Ak to the "natura!" target level

(I.I I)

for k ~ l ensures that each descent step is exact. The initial oracle call at u 1, corre
sponding tok= O, can be handled in two ways. First, we may require exact evaluation
by setting A() = ~- Second, to save the oracle work, we may accept any error by setting
A() = -Qo; in this case, if the initial inaccuracy is detected later via the majorization
(1.8) fai ling for some k, we may reset v k to -~, so thai Ak = ~ and an exact descent
step occurs. We will show that the asymptotic error is zero for both initial choices.

As the simplest useful example consider the jin ile min-max framework of (l.4)
with a finite set Z. Suppose at iteration k the oracle examines the elements z of Z (in
any order). lf F, (0 +1) > Ak occurs for same z, the oracle sets zk+ 1 = z, otherwise it
takes zk+ 1 E Argmax,ez F,(,l+ 1) , setting fu"+ 1 and gk+ 1 as before; then (I.I O) holds.

We add thai in Lagrangian relaxation of integer programming problems (sec, e.g.,
[2, 19) and references therein), the finite min-max framework covers typical oracles
which employ branch and bound, possibly preceded by heuristics. Thus, whenever
an exact aracie is available, a partially inexact aracie can be obtained by inserting
the stopping criterion F, (uk+ 1) > Ak for cach incurnbent z, and to save work, cheaper
heuristics can be run first before switching to branch and bound.

lnexact null steps have already been used in [7, §4.2) and [14, §4.2], but these
references need exact initialization (Ao = ~) to get ej = O in the partially inexact
case. Relative to exact bundle, our main message is that inexact null steps do not
impair convergence when the oracle is locally bounded (sec (3 .2) and Remark 4.2(!)).
In effect, the existing bundle implementations can be extended to the partially inexact
case simply by adding a few lines in their codes !hat detem1ine the level Ak sent to the
aracie (sec §4). Similar modifications can be employed whenever "standard" exact
bundle is used as a procedure within a mare complex algorithm. For example, in this

K.C. Kiwicl

way one can extend the method of centers of [21 J and the dynamie bundle of [l] (by
invoking our Lemma 3.3 in their analysis of null steps).

Our third major contribution concems the recent paper of [5], which introduced
a different bundle method (GGM for short) for the finite min-max framework above.
The main difference is that the GGM method replaces the descent criterion (!. 7) by

(l.12)

for a carefully chosen gap r, > O; accordingly, the oracie level Ak in (I.IO) is set to

(!.13)

We extend the GGM method to our partial!y inexact oracle framework, and strengthen
its convergence results; in fact, the analysis of [5] has two major flaws (see Rem. 6.8).
We also give a modification of the GGM method thai does not reset the bundle to a
singleton whenever the gap Yk is decreased (such bundle reductions can hurt practical
performance). Further, relating the GGM method to our "standard" proximal bundle
method (PBM for short), we show thai afler at least one descent step, the GGM level
.1.; of (l.13) equals the PBM level ,1.; of (I.I I) with K replaced by the coefficient
Kk:= l -Y;/vk E [KGGM, !), where KGGM E {O,!) is determined by the initial GGM
parameters. Thus, the GGM method may be viewed as a PBM variant with a vari
able coefficient Kk, where the !ower bound Kk~ KGGM suffices for analyzing descent
steps. This also explains a serious weakness of the GGM method discovered in our
experiments, when for Kk close to 1, each descent step is followed by many null steps
with liny improvements of successive models. Our simple cure is to set Ak to

(l.14)

which gives another PBM variant with the descent coefficient kk := min{ Kk, K},
where KE {O, 1) prevents kk from getting "too close" to l (see Lem. 7.1). With this
modification, the performance of the GGM method in our experiments became com
parable with thai of our "standard" PBM (see §8).

Finally, we illustrate practical differences between the PBM and GGM variants
in Lagrangian relaxation of the generalized assignment problem (GAP); for basie
references on the GAP, see, e.g., [20,22-24]. We add thai all the numerical results of
[6] for the GGM method on the GAP were affected by same code bugs 1•

The paper is organized as fellows. ln §2 we present a streamlined version of our
generał inexact PBM, which simplifies same constructs of [13, 14]. Section 3 gives
a self-contained convergence analysis of our inexact PBM (although we could omit
same results based on (13, 14), most of them are needed anyway for our partial!y
inexact PBM and GGM). In §4 we discuss using a partially inexact oracle within
our PBM. Our extension of the GGM method is presented in §5, its convergence
is analyzed in §6, and a modified version is given in §7. We conclude in §8 with
numerical illustrations on the standard GAP instances used in (6).

1 M. Gaudioso, private communication, Octobcr IS, 2008.

Bundle Methods with Partially lnexact Oracles

2 The inexact proximal bundle method

Before stating our method, we summarize below basie properties of subproblem
(1.5), in a way simpler than in [13, 14].

2.1 Aggregate linearizations and predicted decrease

We regard (1.1) as an unconstrained problem/,= inf fe with the essential objective

fe:=f+ie, (2.1)

where ie is the indicator function of the set C (ic(u) = O if u EC, ~ otherwise).
Following the structure in (2.1), we rewrite the trial point finding subproblem (1.5) as

,/+I :=argmin{ ~,(·) :=/,(·)+ie(·)+~l--11*12}. (2.2)

Recall from § I that /, S f + e; is closed convex, e; S ef!'", t, > O and fik E C above;

further, the stability center ri* = ,/(k) obtained at the last descent iteration f(k) - I

prior to k has the value f,f = /,,(*l, so thai the oracle property (1.2) yields

(2.3)

We now use a standard optimality condition for subproblem (2.2) to derive aggre
gate linearizations (i.e., affine minorants) of the subproblem functions at uk+I, and an
optimality estimate; see (2.11 }-(2.12), where fć is the convex conjugate of fe.

Lemma 2.1 {I) There exist subgradients g' and vk such thai

/Edl,(u'+'), v*Edic(u*+') and g*+v'=(11'-u'+1)/t;. (2.4)

(2) These subgradients determine the following three aggregate linearizations of the
fimctions J, and f, ie, ff: :=/,+ie and fe := f + ie, respectively:

fe(·):=/,(,/+')+(/,. - ,/+') s /,(·) s [() + t;,
0() := ic(1/+I) + (v\ • - ,/+I) $ ie(•),

?co :=fe(·l+0(J slco sfe()+e;.

(2.5)

(2.6)

(2.7)

(3) For the aggregate subgradient and the aggregate linearization error given by

p':=/+v'=(,i'-,/+')/t; and e,:=/4-Jc(,i'), (2.8)

and the optimality measure

V;:= max{IP'l,e, + (p*,,1') },

we have

ft,-e,+(p',--,i*) =lc(·) Sfe(·)+e; with

e; := fc(pk) + lc(o) se;,

Jtsfe(u)+e;+v;(l+lul) fora/lu.

(2.9)

(2.10)

(2.1 la)

(2.1 lb)

(2.12)

K.C. Kiwiel

Proof (1) Use the optimality condition OE ćJ</)k(,l+I) for subproblem (2.2).
(2) The inequalities in (2.5)-(2.6) stem from (2.4) as subgradient inequalities, and

from our assumption that Jk $ f + eJ; note that ic(,/+1) = O in (2.6). Adding (2.5)
and (2.6) gives (2. 7).

(3) The first equalities in (2.5)-(2.8) yield (2.1 O). Since ff: is affine, we have
Jt-ek+ (p',- -,i)= ff:$ le+e; by (2.7) and (2.8), and .it: $le+e iff

e 2: sup [.fcl) - le(·)]= lc(O) + sup [(p',-) - le(·)]= lc(O) + fc(pk);

this gives (2.1 I). Finally, since lal Ibi+ c $ max{lal, c)(I + Ibi) for any scalars a, b, c,
and thus in (2.11), for a= IPkl and b = lul, by the Cauchy-Schwarz inequality,

-(p',u) + <k+ (pk, ,/) $ IPkllul + E; + (p',z/) $ max{IPkl , ą + (pk,,/) }(l + lul),

we obtain (2. 12) from the definition of Vk in (2.9). o

To ensure that the optimality measure Vk vanishes asymptotically, it is crucia1 to
bound Vk by the predicted decrease vk, since bundling and descent steps drive vk to O.

Lemma 2.2 (!) In the notation of (2.8), the predicted decrease v, of (1.6) satisjies

vk = tklP'l2 + ek. (2.13)

(2) The optima/ity meosure v, of (2.9) satisfies V,$ max{IP'l ,e,}(I + IO'I),
(3) We have the equiva/ences

v; 2: -e, # t,lp'l 2/2 2: -e, .,; vk 2: t;lp'l 2/2 .,; v, 2: 1,/+1 - u'l 2/2t,.

Moreover, v, 2: E;. Finally,for eJ'') in (2.3), we have -e, $ eJ(k) + e;'" and

v, 2: max{t,lp'l 2/2,le,I} i/ v, 2: -e,, (2.14)

V,$ max{(2v;/t;J 112,v,}(! +lzi'I) i/ v, 2:-e,, (2.15)

v, < [2(eJ"l + e;'")/t,] 112 (I + lu'I) i/ v, < -e,. (2. 16)

Proof (I) By (2. IO) and (2.8), ff:(u') = .lt(,/+I) +t;IP'l 2. Rewrite (1.6), using (2.8).
(2) Using the Cauchy-Schwarz inequality in (2.9), we have

v, $ max{IP'l,e, + lłllzi'I} $ max{IP' l,e,} + lłllu'I $ max{lp'l,ek} (! + lu'l)

(3) The equivalences fellow from (2.13); in particular, v, 2: e,. Next, by (2.1 I)
with •=a' and e; $ e;'", and by (2.3) with fc(zi') = f(,i') (zi EC), we have

-e, $ le(il)-ft +e; $ eJ") +e; $ eJ"l +e;;'"-

Finally, to obtain the bounds (2.14)-(2.16), use the equivalences together with the

facts that v, 2: e,, -e, $ eJ'') + e;;'" and the bound on v, from assertion (2). For

instance, v, < -e; yields O$ t,IP'l 2/2 < -e, and IP'I < (-2e;/t,) 112 for (2.16). O

Bundlc Methods with Partially lnexact Oraclcs

2.2 The method

We now have the necessary ingredients to state our method in detail.

Algorithm 2.3 (inexact proximal bundle method)

Step O (Jnitialization). Select u 1 EC, a desce/11 parameter ,c E {O, I), astepsize bound
Imin > O and a stepsize 11 :::,: Imin· Call the aracie at u 1 to obtain JJ and g 1 of
(1.2), and set .ii := J,. Set 11 1 := 111 ,JJ := J,), i) := O, l{l) = I and k := I.

Step I (Trial pointfinding). Find the solution ,,*+I of subproblem (2.2). Set vk by
(I .6), pk := (ak - ,/+1)/1,, e, := vk-t,lpkl 2 and v, by (2.9).

Step 2 (Stopping criterion). lf v, = O, stop.
Step 3 (Stepsize correction). lfv, < -e,, set tk := 101, , i~:= kand return to Step I.
Step4 (Oracle call). Call the aracie at ,/+I to obtainFu+' and/+ 1 of(I.2).
Step 5 (Descenllest). If the descent test (1.7) holds, set ,1k+I := ,/+1, ft+ 1 := Fu+ 1,

;~+I:= O and l(k+ 1) := k+ I (descent step); otherwise, set ,,k+I := ,1*,
ft+' := ft, ,f+I := i~ and l(k+ I):= l(k) (n11// step).

Step 6 (Stepsize 11pdating). lfl(k+ I)= k+ I (i.e., after a descent step), select lk+I :::,:
Imin; otherwise, either set lk+I := lk, or choose tk+I E [Imin ,lk] if ;}+I = O.

Step 7 (Model selection). Choose a closed convex model jk+I : IR" --ł IR such that

max{i,Jk+I} s1*+1 Sl+e;;'"',

Step 8 (Loop). lncrease k by I and go to Step I.

A few comments on the method are in order.

(2.17)

Remark 2.4 (I) When J, and C are polyhedral, Step I may use the QP method of
[IO], which can efficiently salve sequences ofrelated subproblems (2.2).

(2) The stopping criterion of Step 2 is justified by the optimality estimate (2.12):
V, = O yields ft - e; S inf fe = J,; thus, by (2.3), the point ,i* is e-optimal for E =

et)+ e;, i.e., J(,i) S J, + E. Step 2 may stop if V, S rv for a tolerance rv > O.

Section 3 below will show thai this stopping crilerion will be mel, unless JJ --ł -~.

More practicable stopping criteria are discussed in [13, §4.2].

(3) When EJF"' = O, then after an exact descent step (eJC*l = O), we have v,:::,: e,:::,:
O by Lemma 2.2(3), and Step 3 is redundant. When inexactness is discovered via the
test v, < -e,, the stepsize 1, is increased to produce a "safe" v, for the descent test
or confirm that the stability center,,, is already e-optimal.

(4) At Step 4, we have ,/+I EC and v, > O (by (2.15), since v, > O after Step 2);
hence Step 5 produces ,;k+I EC and ft+' S ft.

(5) Whenever 1, is increased at Step 3, the stepsize indicator i~# O prevents Step
6 from decreasing 1, after null steps until the next descenl step occurs (cf. Step 5).
Otherwise, decreasing 1, at Step 6 aims al collecting more loca! information about
the objective J at null steps. Step 6 may use the procedure of [9, §2] for updating the
proximity weight Pk := l /1,, with obvious modifications. _

(6) Step 7 may choose the simplest model J,+1 := max{Ji.,Ji.+1 }. Our generał
requirement (2.17) accomodates more efficient choices based on aggregation or se
lection (see, e.g, [9], [14, §4.4]), and the nonpolyhedral SDP models of[7, 14].

K.C. Kiwiel

3 Convergence

Our analysis sp!its inio severa! cases.

3.1 The case of an infinite cycle due to aracie errors

For our purposes, il suffices to give a very simple result on cycles between Steps I
and 3; see [13, Lem. 2.3] for more sophisticated resu!ts. In this case, the algorithm
drives '*----• oo and Vk----• O for a fixed index k. Hence, for somewhat cleaner notation,
in this context Step 3 may be replaced by the fol!owing.

Step 3o (Stepsize correction). If vk < -Ek, set lk+I := 10/k, ;7+ 1 := k, ,/+! := ,'i,
t+' := ft, l(k+ I):= l(k),/k+I := /4, increase k by I and go to Step I.

Lemma 3.1 ff an infinite cycle between Steps I a_nd 3o occurs, starting at iteration

k. the n Vk • O, Jt $ f, + tf and f(ii) $ f. +eJ''l + tf
Proof For kc: k, we have ii'= ci, ft= Jt, t(k) = f(k) and t; = ej. T~en, at Step 3o,

(2. 16) with lk t - gives Vk • O. Hence (2. 12) with e; $ t; yields ft - e; $ inf/c = /,,
and the conclusion follows from (2.3). O

In view of Lemma 3. J, from now on we assume (unless stated otherwise) thai the
algorithm neither terminates nor cycles infinitely between Steps I and 3.

3.2 The case offinitely many descent steps

We now consider the case where only finitely many descent steps occur. After the
last descent step, only null steps occur and the sequence {tk} becomes eventually
monotone, since once Step 3 increases '*• Step 6 cannot decrease tk; thus the limit
t. := limktk exists. We first deal with the case of 1. = -.

- -
Lemma 3.2 S11ppose there exists _k such thai only n11/I steps occ11r for all kc: k, and
t. :=lim;/;=-. Lei K := {k 2'. k: lk+I > I;}. Then Vk? O al Step 3.

Proof At iteration k E K, before Step_ 3 increases I; for the last time, we have the

bound (2.16) with constant eJ<'l = eJ<'l; hence, lk • - gives V; p O. •
For the remaining case of,_ < oo, we now give a fairly abstract result which shows

that the approximalion errors

Yk := _t,+I - !,(uk+I) (3. J)

vanish asymptotically, independently of the particular form (I. 7) of our descent crite
rion. Further, instead ofassuming that e} $ eJ"' in (1.3) as in [13], we suppose that
the aracie is /ocally bounded on C in the sense that

the sequence {g'} is bounded whenever the sequence {11'} c Cis bounded. (3.2)

Note that the fonner condition implies the latter, sin ce for E = E J•x + c;iax, the map
ping iJ,f is locally bounded (see, e.g., [8, §XI.4.1]).

Bundle Methods with Partially Inexact Oracles

Lemma 3.3 S11ppose there exists k such thai for all k ,". k. we have ,:,k = i and
fmin ~ tk+ 1 :S: lk. Furt her, assume thai the aracie is /ocally bounded in the sense of
(3.2). Then the approximation errors ef (3.1) satisfy limkj.. $ O. Moreover, ifthe
descent criterion (l.7)fails for all k 2'. k, then Vk ---t O.

Proof First, using partial linearizations i, of the objectives 1/Jk of consecutive sub
problems (2.2), we show thai their optimal values ,Pk(11k+I) are nondecreasing and
bounded above.

Fix k ,". k. By (2.10), (2.2) and (2.8), we have lć(11k+I) = ./4(,/+I) and

,/+I= argmin {i,(-):= lć(·) + ił;I · -z1'12 } (3.3)

from Vi,(z/+1) = O. Since i, is quadratic and i,(z/+1) = I/Jk(u*+ 1), by Taylor's
expansion

(3.4)

N ext, since lć(zi') $f(zi') +ef!'" by (2.7) with ,i EC, relations (3.4) and (3.3) yield

,P,(z/+ 1) + ił;iz/+ 1 - u'I' = i,(,i) $ f(,i) + e;;"'. (3.5)

Now, the minorizations 1, $!,+ 1 of (2.17) and 0 $ ie of (2.6) give Jc :=i,+? $
ik+I + ie; since we also have ,i+I =,:,*and lk.,-1 $ 1, by assumption, the objectives
of(3.3) and the next subproblem (2.2) satisfy ,p, $ 1/Jk+I · Hence by (3.4),

,p,(,/+I) + iJ;J,/+2 - ,/+I 12 = i,(,/+2) $ 1/Jk+I (,/+2). (3.6)

Thus the nondecreasing sequence { 1/Jk(J<+I) }k>k• being bounded above by (3.5) with

,i= i for k ,". k, musi have ~limit, say ,P" -$ f(,i') +e;;"'. Moreover, since the
stepsizes satisfy 1, $ t,; for k 2'. k, we deduce from the bounds (3.5}-(3.6) thai

(3.7)

and the sequence {,/+I} is bounded. Then the sequence {g'} is bounded as well,
since by our assumption the aracie is locally bounded in the sense of(3.2).

We now show thai the approximation error r, of (3.1) vanishes. Using the form
(1.2) of fi+i. the minorization h+1 $ /,+1 of (2.17), the 9auchy-Schwarz inequality,
and the optimal values of subproblems (2.2) with a'= ,i for k 2'. k, we estimate

Yk := J:+1 _ _/4(z/+I) = fi+I (z/+2)- _/4(z/+1) + (g"+I ,,/+1 _ z/+2)

$ ik+I (z/+2) - ik(z/+I) + i/+111 1/+I - 11k+21

= I/Jk+1(z/+2)-f/lk(z/+l)+Ll,+l/+l11J<+l _uk+l1, (3.8)

where Lik := iz/+I - zi'J 2/2t, - lz/+2 - zi"l2/21k±I · We have Lik ---t O, since Im;, $
tk+I $ tk for k 2'. k by our assumption, 1,,*+I - u'l 2 is bounded, ,/+2 - ,/+1 ---t O by
(3.7), and thus

1,/+2 - zi12- 1,/+I -z/12 = 2(,/+2 - ,/+1,,/+1 -a')+ 1,/+2 -,/+112 ---to.

10 K.C. Kiwiel

Hence, using (3.7) and the boundedness of {g~ 1} in (3.8) yields limd1< $ O.
Next, ifthe descent test (1.7) fails for k 2'. k, then j,~+l > ft- ,cv, gives

t, = [./.+1 - fl) + [fl - /,(u*+ 1)) > -Kv;+ v, = (I - K)v; 2'. O, (3.9)

where I(< I by Step O; we conclude thai r, • o and V; • o. Finally, since V; • O,

I; 2: lmio and u*= ii* for k 2'. k by our assumption, we have v, • O by (2.15). O

We may now finish the case of infinitely many consecutive null steps.

Lemma 3.4 Suppose there exists k such thai only null steps occur for all k 2'. k, and
the aracie is locally bounded in the sense of (3.2). let K := {k: I k+I > t,} if I; •~.
K := N otherwise. Then V; "it O.

Proof Steps 3, 5 and 6 ensure thai the sequence {1,} is monotone for large k. We have
V, "it O from either Lemma 3.2 ift_ =~.or Lemma 3.3 if t- < =. •

3.3 The case ofinfinitely many descent steps

Although our result for infinitely many descent steps does not involve the oracle
errors explicitly, note that we might have J;:; = -oo if the objective errors ej were
unbounded, giving "false" descent to -oo, even when /,. > -oo.

Lemma 3.5 Suppose the set g;} of descent iterations is infinite and/,":(':= limkJt >
-~. Then !.irrl;E9 V, = O. Moreover, if { ,i*} is bounded, !hen V, P' O.

Proof We have O$ Kv; $.ft - _t.+' if k E 9, _t.+' = ft otherwise (see Step 5).
Tuus LkE9 Kv; $ fJ - _r;: < ~ gives v; FO and hencee;,t, lp'l2 P' O by (2.14) and
IP'I ~ O, using I; 2: lmio (cf. Step 6). For k E 9, ,;*+' - ,i= -t,p* by (2.8), so thai

1,/+' 12 - 1a'12 = i,{1, lp'I' -2(p', ,i*)}.

Sum up and use the facts that ,;*+ 1 = ,;' if k ~ 9, Lke§! t, 2: LkE1' lmio =~to get

l~~ { 1,IP'I' -2(p*, ,i')} 2: O

(since otherwise lii'I' • -~, which is impossible). Combining this with 1,lp*I' ~ O

gives !.irrl;E11(p*,1i') $O.Since also E;, IP'I ~ O, we have !.irrl;E1' v, =Oby (2.9).
If {,i*} is bounded, using Ek, IP'I FO in Lemma 2.2(2) gives V;~ O. O

3.4 Synthesis

Our principal result on the asymptotic objective value f,i := lim,Jt fellows.

Theorem 3.6 Suppose Algorithm 2.3 neither terminates nor loops infinitely between
Steps I and3 (so thai k • ~), the aracie is /ocally boundedin the sense of (3.2) with
sup, EJ < ~. and its asymptotic error Ej of (1.9) is finile if infinitely many descent

steps occu, let e; := !.irr!;EK e; (ej (2.1 !)), where K :=Ni/ _r;: := lim;Jt = -~;
otherwise, /et K be such thai V,? O (such K exists by Lemmas 3.4 and 3.5). Then:

Bundle Methods with Partially lnexact Oracles

(I) /, $!im,;/(1i*) $ limtf(ri*) = J;; +Ej, where f. is the optima/ va/11e of (I.I).

(2) We have ft .j, J;; $ f. + E'i, and additionally Vk "i(' O if /, > -~.

11

Proof (I) For all k, we have ,i* EC and/, := infc/ $ f(,i*) = J% + EJ'*) by (2.3).

Pass to the limit, with f,f converging to J;;, and Ej < ~ in (1.9) by our assumption.
(2) By (I), if J; = -~, then /, = -~. Hence, suppose thai/, > -~. Then

J;? /,-Ej>-~ by (I), so Lemmas 3.4 and 3.5 guarantee the existence of K such
that Vk "i(' O. Pass to the limit in (2.12) to obtain /,i $ inf fe+ e; = /, + e;. o

Remark 3. 7 The bound J; $ /, + E'i of Theorem 3.6 employs E'i := ill!lkEK e;,
where by (2.1 lb), e; $ e; for any e; such that /2 $ / + e;. In particular, if /2 :=

maxJEJ,/j and e; := max1E1,ci, lhen t.; := ill!lkEKe; and e; := limkEKt; satisfy
E'i $ g_; $ t;. In this case, our (weaker) bound fi: $ /, + t; corresponds to lhe
result of [4, §5], which assumes additionally that / is coercive and C =IR".

4 Using a partially inexact oracle

We now discuss using a partially inexact oracle (with ef= O) that satisfies the addi
tional requirement of(!. IO); our aim is to get Ej= E'i = O in Theorem 3.6.

Our modification of Algorithm 2.3 employs the counter n o of exact des<:<!nl steps,
which is incremented at Step 5 at each descent step. As for initialization of n o and
the level .1.o before the first oracle call at Step O, we have two options:

• exact initialization: set A():= 00 and no:= I, or
• inexact inilialization: set Ao := - 00 and no:= O.

Note thai e} = O if .1.o =~in (1.10). At Step O choose a model optimality tolerance
•m > O (e.g., r,,, = ~). Steps 2 and 3 are replaced by

Step 2' (Stopping criterion). lf Vk = O and no> O, slop. Olherwise, if Vk $ r,,, and
no = O, set vk := - 00, Ak := 00 and go to Step 4.

Step 3' (Inaccuracy detection). lf vk < -Ek, set vk := -~. Set '-k to At of (I.II).

These steps are motivated as follows. lt will be seen below thai Jl = f(,i*) if
no> O. Hence, ifStep 2' slops, ,i* is optima! by (2.12). However, ifno = O, we may
have/% </,. Thus infinilely many null steps that drive Vk to O (cf. Lemma 3.3) could
occur, but once Vk :5 Tm occurs (here 't'm > O is crucial), this potential loop is broken,
'-k = ~ forces the oracle at Step 4 to deliver the exact value /,~+ 1 = /(1/+l) by (I.IO),
whereas vk = -oo forces Step 5 to make a correcting step to i/k+I := il+ 1, which
increments no as slated above. Similarly for Step 3': lf initial oracle inaccuracy is
detected (e} > O; cf. Remark 2.4(3)), the oracle is called with '-k =~and a correcting

step occurs, which increments n o- Further, having Ak = A} ensures that all descent
steps occuring at Step 5 are ernc/ with ej+ 1 = O (cf. (1.7), (I.IO) and (I.I I)).

Thus, regarding exact initialization as a correcting step for k = O, we have two
cases:

(I) a correcting step occurs for some k, say k,; then e}*) = O for all k > k,;
(2) inexact initialization followed by null steps only; then n o = O forever.

12 K.C. Kiwicl

In both cases, the convergence results of §3 apply with Ej= e; = O. Indeed, case
(1) is obvious, whereas case (2) cannot occur under the assumptions of Lemma 3.3
(otherwise Vk • O eventually gives Vk:, Tm at Step 2' and a correcting step occurs).

In fact, our algorithm inherits the usual strong convergence properties of exact
bundle methods. Instead of requiring that inf,1, ;:=-: Im;, > O as before, we consider
more generał stepsize conditions below.

Theorem 4.1 Suppose thai the aracie is partially inexact, and Algorithm 2.3 employs
Steps 2' and 3'. Lei U,:= Argmincf denote the (possibly empty) sol11tion set of
problem (I.I). !_hen we have thefol/owing statements.

(1) ffthere isk s11ch thai only null steps occ11r for all ł ;:=-: k, the aracie is /ocally
bo11nded in the sense of (3.2), and lk .j, t- > O. then ;;k EU, and v,-; O.

(2) Ass11ming thai infinitely many descent steps occur, suppose that LeKlk =~for
K := {k: f(,ik+l) < f(u')}. Then f(u*) .j,f,. Moreover, we have thefollowing.

(a) Lei Yk := f(i/+I) - 1,(,1'+') for k E K. ff U, 'f' 0 and LEKtkYk < ~ (e.g.,
supkEK t, < ~), the n { ,i*} converges to a solution ;;- E U,. and V, "? O if
infkeK lk > O.

(b) ff U,= 0, then iu*i • ~ -

Proof Statement (!) follows from Lemma 3.3 and Theorem 3.6, with Ej= e; = O
as shown above. For (2), the proofof[I I, Thm. 4.4] yields all claims except the finał
one on v, in (a). For this claim, since ,;k-; ,;- implies boundedness of {uk}, use the
proofofLemma 3.5 with !!J =Kand lmi, replaced by inf,EKlk > O. O

Remark 4.2 (1) The loca! boundedness condition (3.2) holds in the min-max setting
of(l.4) if dFz(·) is locallybounded on C, uniforrnlyw.r.t. z EZ; e.g., when Z is finite.

(2) In !Une with Remark 2.4(3), Step 3' could replace the test v, < -Ek by the
stronger test Ek < O; however, the farmer test is more robust w.r.t. roundoff errors.

(3) By Theorem 4.1, if U, i, 0 and O< Im;, :51, :5 tmu <~for all k, then ,i' •
a- EU,. Hence for exact initialization, the efficiency estimates of (12] hold by their
proofs. For inexact initialization, we may replace the test Vk ::5 rm of Step 2' by wk :=
tk iP'i 2/2 + Ek :5 Tm. This replacement is valid because O :5 wk :5 v; when v, ;:=-: -Ek
by Lemma 2.2(3), whereas vk • O in the proof of Lemma 3.3, so ifnv stayed null,
we would eventually get wk:, Tm, a contradiction. Theo the analysis of (12] provides
an upper bound on kc, the iteration number of a correcting step with w kc ::5 Tm or
vk, < -E;, , after which the "usual" estimates apply with k replaced byk- kc .

5 The GGM method

We now state our extension of the GGM method ofGaudioso et al. (5] to the case of
a partially inexact aracie (its relations with the original version will be discussed in
§6.6). Relative to the PBM variant of §4, it replaces the PBM descent test (I. 7) and
level (1.11) by the GGM descent test (1.12) and level (1.13).

Algorithm 5.1 (GGM method)

Bundle Methods with Partially lnexact Oraclcs Il

Step O (Initialization). Select 11 1 EC, optimality tolerances Tp > O and T, > O, an
initial stepsize t1 > O and an initial gap y1 >Osuch that

(5.1)

and a stepsize decrease parameter a > I. Set Ao := -oo, call the oracle at u1

toobtainf,) andg1 of(l.2),andset/1 :=fi.Set,i1 :=11 1,f,J :=/,),C(l)= I,
nD := O, andk:= I.

Step I (Trial pointjinding). Find the solution 11•+1 of subproblem (2.2). Set v, by
(l.6), p' := (,i* - u'+')/1,, ck := v, - tkiP'I' and;., := ?.$ for .i.; of (1.13).

Step 2 (First optima/i ty test). lf IPkl > Tp , go to Step 4.

Step 3 (Second optima/iły test and stepsize 11pdali11g). lf ck S Te and "D > O, slop.
Otherwise, if n0 = O, set;.,:= - and go to Step 4. Else set,, := 1,/ cr, r, :=
r,/ cr and go back to Step I.

Step 4 (Oracle call). Call the oracle at ,,'+I to get 1,:+ 1 and g*+I of (1.2) and (I.I O).
Step 5 (Descenl test). lf the following des cent test holds

(5.2)

set,i*+' := ,,'+ 1,ft+' :=f.:+',nD :=no+l andC(k+ I) :=k+l (descent
siep); otherwise, set ,/+I := ,i, ft+' := ft and C(k +I):= C(k) (null step).

Step 6 (Stepsize 11pdaling). lf C(k+ I) = k + l (i.e., after a descent step), select/ •+1 E
[1, ,1,)andsetr,+1 :=1,+11'1 / 1,;otherwise,sett,+1 :=t,andJ'k+I :=r,.

Step 7 (Model selection). Choose Jk+, : IR" --t IR closed convex and such that

max{.fkJ,+1} S Jk+I S f and Ji(k+I) ~Jk+I · (5.3)

Step 8 (loop). Increase k by I and go to Step I.

Several comments on the method are in order.

Remark 5.2 (I) Step O employs inexact initialization. Step I chooses ;., for the oracle
condition (I.IO) and the descenttest (5.2) of Step 5 so that each descent step is exact.

(2) The aim of Algorithm 5.1 is to meet the approximate oplimality condition

(5.4)

Note that (2. 11) and the third part of (5.4) yield p* E ćJe.fc(zi*), and then the first two
parts give the optimality estimate /(11)?:. f(zi*)- Te -Tpju- ukl for all II EC.

(3) When the first part of (5.4) fails at Step 2, Step 3 is skipped. If Step 3 does
not stop, "D = O means the third part of(5.4) could fail, so ;., = - forces the oracle
to deliver f.:+1 = /(1/+ 1) and Step 5 makes a correcting step to ,;k+I := 11*+1; since
nD increases, this may happen at most once. lfonly the middle part of(5.4) fails, the
stepsize lk is decreased to reduce ck eventually (as will be seen in §6.1 below). Since
1, and r, are decreased by the same factor, the initial condition (5.1) is maintained:

(5.5)

(4) At Step 6, 1, and r, can increase only after a descent step, and (5.5) is main•
tained.

14 K.C. Kiwiel

(5) At Step 7, the first part of(5.3) repeats the standard model requirement (2.17);
the additional second part is needed to bound ft via 1, (see §6. J below). In fact, the
second part of(5.3) may be omitted ifStep 3 is modified as follows: Before retuming
to Step I, if ft(t) 1, ft. choose another closed convex model ft such that ft(k) S /4 S f.

6 Convergence of the GGM method

Again, we need to consider several cases.

6.1 Bounding the aggregate linearization error

Consider the descent predicted by the augmented model q,t in subproblem (2.2):

(6.1)

where the second equality stems from (1.6), the first relation in (2.8) and (2.13).
Further, !et

Lemma 6.1 At any ileration k of Algorilhm 5.1, we have lhefollowing.

(I) fk S ltlg'(t)l2/2.
(2) lt 2'. min{t1 ,2-r,/(aG,)2} for Gt given by (6.2).
(3) An infinite cycle between Sleps I and 3 cannol occur.

(6.2)

Proof (I) Let k = f(k). By Steps O and 5, r,k = il and ff,= i,. First, suppose k = k.
Then, using the bound /4 2'. J, (due to Step O or the first part of (5.3)) in subproblem
(2.2) and the form (1.2) of/, gives

q,t(i/+l) 2'. min {M·) + t,;I -u'l2} = ,1,-ttl/12/2.

Thus Wj; S lil/12/2 by (6.1). Next, suppose k > k. Then ti+I S ti for j = k, ... ,k - I
by Step 3, and hence q,i(ui+ 1) S 4'J+I (ui+ 2) by (3.6) and Wj+I S w1 _!,y (6.1). Two

cases may arise. First, if lt = lj;, the preceding relations give w, S 1,1112/2. Second.,_
if Step 3 decreases 11 for some j, then]j 2'. /i (cf. Remark 5.2(5)); hence, replacing k
by j in the previou~ argument, and repeating it if mare stepsize decreases occur, we
again get w, S 1,1112/2. Since fk S w, in (6.1), the conclusion follows.

(2) By (I), before Step 3 divides lk by a> I, we have-r, < ft S 1,lf(k)l2/2.
(3) An infinite cycle would drive I; to O, contradicting (2). O

6.2 Relating the gap and predicted descent levels

lt tums out that the GGM descent steps may be regarded as descent steps of the PBM
valiant of §4 for a special choi ce of ,c in the PBM descent test (1. 7).

Bundlc Mcthods with Partially lncxact Oraclcs 15

Lemma 6.2 Consider any iteration k of Algorithm 5.1 afler at least one descent step.
Then at Step 5 we have the following.

(1) ft= f(,1), <k 2: O and Vk > O.
(2) The level A; of (1.13) is equal to the /evel A: of (I 11) with K replaced by the

descent coefficient Kk := I - n/vk < I. Moreover,

Kk 2: I - (I - KGGM)af > max{ KGGM, I - a;} 2: KGGM, (6.3)

where a, := Tp / Jpkl < I and

KGGM := 1--1\- E (0, I).
11-rp

(6.4)

lnpartic11/a1; f (1i'+1) $ f (,i) - Kkvk $ f(,i)- KaaMvk if a descent step occurs.

Proof {I) Denoting the first descent iteration byk, for k > k we have fi= f(1i) (cf.
(I.IO) at Step 4 and (5.2) at Step 5). Plugging fi= fc(,1) inio (2.11) yields Ek 2: O.
Then Jp•j > 'fp (cf. Step 2) gives v; = tk1Pkl 2 + Ek 2: lkiP'l2 > O by (2.13).

(2) The first statement follows from (1.6), (I.I I) and (1.13). Next, using the rela
tions vk 2: tklP*l 2 and n / tk = y1/11 (cf. (5.5)) togetherwith (6.4), we estimate

I Y• Y12 ()' Kk:= I -r, v, 2: I - l-"I' = I - ---i-a•= I - 1- KaaM a;;,
lk p - l1 TP

where a, < I from Jp'J > Tp and O < KaaM < I by (5.1); the conclusion follows. O

Remark 6.3 (I) For practical comparisons of GGM and PBM, note thai the !ower
bound of (6.3) is not tight unless Ek « 1tJp•[2. Moreover, even if KaaM « I, Kk is
relatively large unless the first part of the stopping criterion (5.4) is almost met; e.g.,
Kk 2: 3/4 ifjpkj 2: 2-rp.

(2) Note thai Lemma 6.2 starts working after the first descent step or exact initial
ization. In contrast, for inexact initialization we may have many iterations (possibly
with vk < O) until JpkJ $ 'fp and a correcting step occurs. Here the ideas of§4 suggest
a simple cure: If Step I produces vk < -Ek (or just <k < O, but see Remark 4.2(2)),
set Ak :=~and go to Step 4.

6.3 Analyzing successive null steps

The analysis of null steps is quite simple, thanks to our generał Lemma 3.3.

Lemma 6.4 Suppose the aracie is locally bounded in the sense of (3.2). Then Algo
rilhm 5.1 cannol make infinitely many successive null sleps.

Proof For contradiction, suppose thai starting from iteratj_on k ', null steps occur for
all k 2: k'. By Lc;_mma 6.1 (2) and Steps 3 and 6, there is_!: 2: k' such thai tk = ff and
r, = Y,f for k 2: k. Then, by Steps I through 5, for k 2: k each null step means thai
r, > r, = Y,f > O (cf. (1.13), (3.1), (5.2)). However, Lemma 3.3 gives limk r, $ O, a
contradiction. O

16 K.C. Kiwicl

6.4 Analyzing infinitely many descent steps

Thanks to Lemma 6.2, our proof of Lemma 6.5 below may employ standard descent
results from the exact bundle framework.

Lemma 6.5 Suppose Algorithm 5.1 makes i'1finitely many descent steps. Then:

(I) fa:= limk[(uk) = /,for the optima/ value f, of problem (I.I).
(2) Problem (1.1) has no solution.

(3) fa = f, = -- if sup; G; < - in (6.2).

Proof (I) Denoting the first descent iteration byk, for k >kat Step 5 we have fi=
f(uk) ;;:: /,, pk E a,,Jc(uk) (cf. Remark 5.2(2)) and, by Lemma 6.2, each descent
stepyields/(u*+ 1) -Sf(uk)- ICGGMVk with v; > o, ICQGM > o andg*+I E of(uk+I).
Moreover, since t;::; 11 by Steps 3 and 6, the proximity weight p; := 1/t; satisfies
p; 2:: 1/11, _

Suppose there is ii E C such thai f(uk) 2:: f(ii) for all k > k. Theo, since the
preceding paragraph means thai we are in the exact bundle framework, by standard
arguments (e.g., (9, Lem. 3.1] with obvious translations), we have v; ;t O for K :=
{ k > k: ~+I < .ft} and the sequence { ak} converges to some ii EC.

Now, since t<+ 1 E of(u*+ 1) for k E K, of is locally bounded and i/ • ii, we
have sup; G; < - in (6.2) and m t; > O by Lemma 6.1 (2). Using this and f.; 2:: O
in (2.13) with v; ;t O, we obtain pk -;t O and f.; ;t O. Thus eventually IP;I ::; fp and
E, ::; f, imply termination at Step 3, ~ contradiction. Therefore, for each II E C we
musthave/(uk) < f(u) for some k > k; since/, ::,f(uk), we get.fó = f, from (I.I).

(2) Otherwise, take ii E Argminc f to obtain a contradiction as in the proofof (I).
(3) For contradiction, suppose fi:> -- and sup;G; < -. By Lemma 6.1(2),

sup;G; < -yields mt; >O.Theo the proofofLemma 3.5 gives f.;,t;jp;j 2 ;t O and
jpkJ ";t O from mt; > O. Thus eventually IP;I ::; fp and f.;::; f, imply termination
at Step 3, a contradiction. O

6.5 Synthesis

We may now give our main result on finite termination of Algoritm 5.1.

Theorem 6.6 Suppose the oracle is locally bounded in the sense of (3.2). Then Algo
rithm 5.1 stops afier finitely many iterations under any of the following conditions.

(I) Problem (I.I) has at least one solution.
(2) f, > -- andsup;G; < -for f, given by (I.I) and Gk by (6.2).

Proof For contradiction, suppose the algorithm does not stop. Since neither an in
finite cycle between Steps I and 3 (cf. Lemma 6.1) nor infinitely many successive
null steps (cf. Lemma 6.4) can occur, infinitely many descent steps are made. Theo
Lemma 6.5 yields both assertions. o

Remark 6.7 Conceming the assumption sup;G; <~in Theorem 6.6, consider the
level set CD:= {u EC: f(u)::; /(uk0 +1)}, where kD is the iteration number of the
first descent step if any, kD = O otherwise. Theo sup; G; < ~ if fis Lipschitzian on

Bundlc Mcthods with Partially Inexact Oracles 17

Co, or the subgradients delivered by the aracie are uniformly bounded for trial points
in Co. lndeed, it is easy to see thai ,i* E Co andgl(k) E ćJ/(zi*) for k > ko, because
each descent step is exact.

6.6 Comparison with the original GGM setting

As noted in §I, the original GGM (OGGM for short) method employs a partially
inexact aracie in the finite min-max framework of (1.4) with a finite set Z, whereas
aur GGM method can work with mare generał oracles. Further, OGGM works only
in the unconstrained case of C = IR n.

The OGGM method can be obtained from Algorithm 5.1 via the following mod
ifications (and by using the proximity weight Pk := 1/tk), First, replace Step 3 by

Step 3" (Second optimality test and bundle reset) . lf Et :$ -r, and no > O, stop. Else
if no = O, set no := I, Ak := ~, call the aracie at u*+1 := ,i to obtain 1;+1

and g*+1, and set IŻ:= 1:+1, g1(k) := g*+1, /,(k) := ik+l · Reset !k := f,(k),

set tk := ft/a, Yk := n/a and go back to Step I.

Note that for no = O, Step 3" calls the aracie at ,;k, whereas aur version takes a
correcting step to z/+ 1, which may be better, being based on accumulated lineariza
tions. Ofcourse, aur version could call the aracie at zik as well, without affecting aur
convergence results. Anyway, this difference is minor, since a correcting step occurs
at most once. On the other hand, the reset of /t := f,(k) at Step 3" can hurt practi
cal performance, since almost all accumulated information is lost. Our convergence
results show that such resets are not necessary.

The second modification consists in setting lk+I := l1 and Yk+I := r, after a de
scent step (this choice is allowed in aur Step 6). Note that resetting t k and Yk to their
initial values need not be best in practice, unless t 1 and y1 are chosen carefully.

The third modification consists in choosing /2+ 1 := max{/2,/2+1} at Step 7; then
(5.3) holds.

The OGGM convergence result of [5, Thm. 4. I] is a special case ofour Theorem
6.6(2), assuming that /,>-~and/ is Lipschitzian on C0 := {u EC: f(u) ~ /(11 1)}
(the small difference relative to Co in Remark 6.7 is due to Step 3" calling the aracie
at ,i*). OurThearem 6.6(1) for the OGGM method is new. Finally, we point out below
two major flaws in the convergence analysis of[5].

Remark 6.8 (I) The proof of [5, Lem. 4.2] is flawed; in the setting of Lemma 3.3,
for dk := ,/+I - ,i*, it claims thai [dk+I -dkl--; O (cf. (3.7)) implies convergence of
{ d*}; this argument is obviously wrong.

(2) Reference [5, §5] also considers aggregation with /,.+1 := max{.fk,/2+1.Jd
and i, = max1Ej, fj for any .J, C {I, ... ,k }. Then the first part of (5.3) holds, but the

second part may fai I if C(k+ I) < k + I and f(k + I) ,t jk (e.g., 1, = 0). This possible
failure is ignored in the convergence analysis of [5, §5] (where the proof of [5, Lem.
4.2] needs /2 2: ft(k)), but it is handled easily in aur analysis, since Step 3" employs

/,. = ft(k) at resets; cf. Remark 5.2(5).

18 K.C. Kiwiel

7 A modified GGM method

As announced in §I, our modified GGM (MGGM for short) method is obtained from
Algorithm 5.1 by choosing ,c E (O, I) at Step O, and setting "-• at Step I to the modified

/evel .i., of(l.14). This modification isjustified below.

Lemma 7.1 SupposeStep 1 ofA/gorithm 5.1 sets "-• to themodifiedlevel A; of (1. 14)

for the /evels J..# of(l.13)and A: of(l.1 I). Lei

Kk:=min{Kk,K} and KaaM:=min{KaGM,K}, (7.1)

where "• := I - Yk/vk, ,c E (O, I) and KooM is given by (6.4). Then at Step 5 we have
the following.

(I) ff v, S. O, then .i.;= A#> g
(2) ff <k ?_ O (e.g., f(k) > I) and "-k = .i_;, /hen v, > O and A;= _t,- k,v,. Inpartic

ular, J:+l $ Jt- Kkvk $ Jt - K'ooMVk if a descent siep occurs.

Proof (I) For contradiction, suppose v, S. O and A; S. ~- Then by (1.6), (I.I I) and
(1.13), we have O< r, S. (I - ,c)vk; since ,c < I, this gives v, > O, a contradiction.

(2) Arguing as in the proof of Lemma 6.2, we get v k > O and

.i.,= max(/.- v, + r,,f,:,. - n,}=/.- min{ I - r,/v,, ,c }v,.

Since"•:= I - r,/vk ?_ KaaM by (6.3), the conclusion follows from (7.1). O

Thanks to Lemma 7.1(2), KGGM may replace KaaM in the proofofLemma 6.5(1).
In effect, the convergence results of §6 hold for the MGGM method as well.

8 Numerical illustrations

We conclude this paper with a brief comparison of the PBM and GGM variants in
practice, for the motivating application of[6]: Lagrangian relaxation of the GAP.

8.1 The generalized assignment problem

In the GAP the objective is to find a maximum profit assignment of n jobs tom agents
such that each job is assigned to precisely one agent subject to capacity restrictions
on the agents. The standard fonnulation is the following

m n

max LLP;jX;j (8.la}
i=IJ=I

n
s.t. L, wux;J ::;c;, iEM:={l, ... ,m}, (8.Ib)

j=l
n,

Ix11=I, j EN:= {I, . .. ,n}, (8.lc)
i=I

X;j E {O, I}, iEM,jEN, (8. ld)

Bundle Methods with Partially lnexact Oracles 19

where p;j E Z is the profit associated with assigning job j to agent i, w;1 E Z+ the
claim on the capacity of agent i by job j if it is assigned to agent i, c; E Z+ the
capacity of agent i, and X;j is a 0-1 variable indicating whether job j is assigned to
agent i (x;j = I) ornat (x;j = O).

The Lagrangian relaxation obtained by dualizing the semi-assignment constraints
(8. lc) with unconstrained multipliers II j, j EN, givcs the dual objective

s.t. (8.lb), (8.ld),

to be minimized over C := llł. 11 • This objective / has the additive structure

where

11 m

/(11) = L llj + 2'.z1(11),
j=I i=I

n

z;(u) :=maxL(F;j-llj)X;j, s.t. (8.lb), (8.Id),
j=I

(8.2)

so that J is a max-type function which can be evaluated exactly at any II by solving
them binary knapsack problems in (8.2).

In aur experiments, an exact aracie solved the knapsack problems with the branch
and bound procedure MTIR of [20, §2.5.2]. As in [6, §5], aur partially inexact aracie
called the heuristic greedy procedure of [20, §2.4] first, reverting to MTI R only if
the sum of Lj llj and the heuristic knapsack values did not exceed the target level for
a null step. Next, as in [17, §2.2], our third relatively inexac/ aracie allowed MTIR
to exit earlięr when, fo~a given rS!lative accuracy tolerance Er, its incumbent value
I;; satisfied 1;1 - I;; :S e,1;;, where I;; was MTIR's upper bound Q.n z;(11) in (8.2). Fo1
11= ,,*+ 1, this also gave the upperbound/t;' := Lj11j+:E;t;; on/(11), where I;;
was replaced by I;; when MT IR exited nonnally with an optima I solution. We also
augmented the greedy procedure with MTI R's upper bound, and set ft,;' := /(z/+Z)

for the exact aracie, so that for each aracie at iteration k, /!in := minj= 1 Jdp was aur
best upper bound on the optima! value J., with the relative error

ReLerr := ek := (.Imin - /.) /1/,1- (8.3)

As in [6, §5], for testing we used the 60 "small-size" instances C515-J through
Cl060-5, and the 30 "large-size" instances oftypes A, B, C, D and E from the OR
Library2. Here we note !hat the small-size instances have names of the fonn Cxyy-z
(or Cxxyy-z form~ IO), where x = m (or xx = m), yy = n, and z numbers the 5
instances from the same class. Similarly, the large-size instances have names of the
fonn Txxyyy, where T is the type, xx = m and yyy = n.

2 Maintained by J.E. Beasley at hup://people.brunel.ac.ukrmastjjb/jeb/orlib/gapinfo.html.

20 K.C. Kiwicl

8.2 Implementation

For testing we used a notebook PC (Pentium M 755 2 GHz, 1.5 GB RAM) under MS
Windows XP, and Fortran 77. We developed four codes, called IPBM, PIPBM, GGM
and MGGM, which implemented Algorithm 2.3 (inexact PBM), the partially inexact
version of§4, Algorithm 5.1 and the modified variant of§7, respectively.

As in [20, §7.2.3] and [6, §4], the starting point had components u J := max2{p;1:
i E M, w11 S c;}, j E N, where max2 denotes the second maximum.

Step O of Algorithm 2.3 set IC:= O. I, l1 := 1/lg1 I and lm;n := 10- 2011; Step I used
the QP solver of [JOJ for (2.2); Step 6 updated tk as in [9, §2], with [9, Eq. (2.17)]
replaced by [13, Eq. (4.5)] for R = I; Step 7 usedsubgradientselection (see, e.g., [14,
§4.4]), storing up to 11 + 5 subgradients.

We now explain the (practical) stopping criteria ofIPBM and PIPBM.
For a given gradient to/e,-ance Eg = 1 o-3 and a given relative optima lity tolerance

'l'opt = 10-5, IPBM stops at Step 2 of Algorithm 2.3 when IPkl S Eg,/n and either

Vk $ Topl (] + 1.ltl) (8.4)

and v; 2: - €,, or IP'I + Ek S T0 p1(1 + I.Jtl) (cf. [13 , §4.2]). Similarly, for PIPBM the
conditions V;= O and Vk ST„ of Step 2' in §4 are replaced by IPkl S Eg,/n and (8.4).

For GGM, since the parameters from [6, §5] gave very poor accuracy, we used
the parameters suggested by M. Gaudioso3: T, = 10-•, Tp = 0.012, Y1 = 0.02, P1 :=
J/11 = 0.005 and er= 2.

For MGGM, we set K := O. I, T, := 0.001 for the small-size instances, T, := O.Ol
for the large-size instances, Tp := Eg,/n with Eg = 10-3 as for IPBM and PIPBM,
r1 := IO, Pl := 0.05 and er:= IO; then, if(5.I) were violated, we set Y1 to 0.99l1T,; .

8.3 Results

Tables 8.1 through 8.4 give the statistics for the four solvers on the small-size in
stances. ln these tables, kav and km.x arc respectively the average and maximum iter
ation counts for the 5 instances in the corresponding class, d av is the average number
of descent steps, emx is the maximum finał relative error of (8.3) (with /. computed
to at least 15 digits in other runs), l,v is the average CPU time in seconds, and h,v is
the average number of null steps due to the greedy heuristic; the finał all row gives
their aggregates over all the 60 instances.

Conceming Table 8.1, note that the low knapsack solution accuracy of€, = 10-2

did not suffice for IPBM to obtain relative objective errors (i.e., emx) below 10- 5, but
e,. = I o-3 was enough. We add that IPBM gave identical results for smaller toierances
up to Er = O, i.e., exact knapsack solutions. Thus, in view of our results for the large
size instances (see below), we were quite disappointed to find thai, in contras! with
[17], our relatively inexact oracle did not provide any speedups against the exact
aracie; in other words, our GAP instances seemed to be "easy" for MTlR.

3 M. Gaudioso, private communication, October 15, 2008.

Bundle Methods with Partially lnexact Oracles 21

Table 8.1 fPBM with relatively inexact oracle: small-size instances (S instanccs per row)

rclativc accuracy ~ = I o-J rclativc accuracy &, = 10-2
Class k„ km, d11v '= ,., k„ k= d„ ·= ,.,
C515 49 65 26 l.2E-15 O.OD 49 65 26 l.2E-15 O.DO
C520 50 71 JO 8.IE-16 O.OD 49 71 29 8.IE-16 O.DO
C525 44 56 24 7.JE-06 O.OD 44 56 23 7.JE-06 O.DO
C5JO 76 127 40 J.JE-06 O.DO 76 127 40 J.JE-06 O.DO
C824 71 102 39 4.8E-06 O.OD 71 102 39 J.9E-05 O.DO
C832 87 117 40 8.2E-06 O.Ol 87 117 40 8.2E-06 O.Ol
C840 68 101 Jl 4.0E-06 O.DO 70 101 Jl 4.0E-06 O.Ol
C848 135 165 5 I 5.7E-06 0.04 149 181 53 2.JE-06 0.05
CIOJO 77 98 37 6.4E-06 O.Ol 77 98 37 6.4E-06 O.Ol
Cl040 92 176 37 5.9E-06 O.Ol 93 176 37 5.9E-06 0.02
CIOSO 130 263 47 5.JE-06 O.OJ 128 241 46 6.4E-06 0.04
CI060 114 133 45 8.7E-06 O.OJ 118 133 47 7.2E-06 0.04
all 83 263 37 8.7E-06 O.Ol 84 241 38 J.9E-05 O.Ol

Table 8.2 PIPBM: small-size instances (5 instances per row)

Exact oracle Partially inexact oracle
Class k„ '= dav <,u ,., k„ *= dav hav e,u , ..
C5l5 49 65 26 l.2E-15 O.DO 46 6S 25 J l.2E-15 O.DO
C520 50 71 30 8.IE-16 O.OD 52 88 26 2 J.6E-06 O.DO
C525 44 56 24 7.JE-06 O.OD 42 49 24 2 7.JE-06 O.DO
C530 76 127 40 3.JE-06 O.OD 80 127 40 I 1.2E-07 O.Ol
C824 71 102 39 4.8E-06 O.OD 68 93 37 2 4.8E-06 O.Ol
C832 87 117 40 8.2E-06 O.Ol 87 118 40 I 8.2E-06 O.Ol
C840 68 101 33 4.0E-06 0.00 70 98 34 I 9.8E-06 O.Ol
C848 135 165 51 5.7E-06 O.OJ 130 165 49 I 5.7E-06 0.04
CIOJO 77 98 37 6.4E-06 O.OD 71 87 35 2 8.JE-06 O.Ol
CI040 92 176 37 5.9E-06 O.Ol I IO 177 42 I 5.0E-06 O.OJ
CIOSO 130 263 47 5.JE-06 0.04 121 263 42 2 9.5E-06 0.02
CI060 114 lll 45 8.7E-06 O.OJ 115 142 44 2 7.2E-06 0.02
all 83 263 37 8.7E-06 O.Ol 83 263 37 9.8E-06 0.02

Table 8.3 GGM: small-size instances (5 instances per row)

Exacl oracle Partially inexact oracle
Class k„ Imx dav '= ,., k„ Imx dav hav '= ,.,
CSl5 112 140 I 4.7E-l5 0.00 154 187 100 5.0E-14 0.00
C520 143 182 I 2.0E-14 O.OD 178 235 I 19 7.9E-15 0.00
CS25 210 238 I 8.SE-15 O.Ol 273 328 193 4.4E-15 O.Ol
C530 312 357 2 l.3E-14 O.Ol 403 464 227 2.4E-l4 O.Ol
C824 259 328 I.IE-14 O.Ol 374 438 2 259 4.IE-15 O.OD
C832 440 535 2 2.IE-13 0.02 582 680 354 l.9E-14 0.02
C840 65S 820 2.0E-15 0. 12 900 1135 485 1.4E-15 0.14
C848 967 1228 3 4.7E-13 0.37 1337 1706 S54 7.IE-15 0.52
CIOJO 389 468 l.5E-14 O.Ol SSI S9S 360 6.IE-15 0.02
CI040 618 709 4.4E-15 0.18 909 1029 4 546 4.2E-15 0.18
CIOSO 760 1082 I.IE-14 0.29 1026 1369 60] 6.2E-15 0.40
Ci060 942 1298 7.0E-15 0.51 1440 1772 982 7.5E-15 0.72
all 484 1298 2 4.7E-13 0.13 677 1772 2 398 5.0E-14 0.17

22 K.C. Kiwiel

Table 8.4 MGGM: small-sizc instances (5 instances per row)

Exact oracle Partially inexact oracle
Class k,v k= d„ ·= I„ k,v k= 'J„ h„ ·= , ..
C515 38 42 IO 2.7E-06 0.00 39 44 IO 9 5.2E-16 0.00
C520 43 48 li 3.SE-15 0.00 47 64 li 13 8.IE-16 0.00
C525 61 63 11 6.0E-16 0.00 66 71 li 27 6.0E-16 0.00
C530 71 83 16 l.2E-15 0.00 82 91 17 22 l.3E-06 0.00
C824 70 88 13 l.2E-15 O.Ol 75 88 12 27 l.4E-15 0.00
C832 102 112 15 I.SE-IS O.Ol 107 113 14 Jl l.9E-15 O.Ol
C840 133 176 17 9.6E- 16 O.O l 139 171 15 41 5.6E-07 0.02
C848 164 211 22 J.OE-08 O.OJ 172 217 23 JO 5.2E-07 0.06
CIOJO 99 117 15 l.6E-15 0.00 105 125 Il 34 4.S E-07 0.00
CJ040 140 164 18 4.4E-07 0.02 155 180 18 44 2.IE-07 0.04
CIOSO 143 180 19 2.3E-07 O.OJ 150 180 20 45 l.9E-15 o.os
CI060 197 240 21 3.2E-07 0.08 206 254 17 65 4.0E-07 o.os
all 105 240 16 2.7E-06 0.02 I 12 254 15 32 l.3E-06 0.02

As for Table 8.2, its "Exact oracle" entries agree with the E, = I0- 3 entries in
Tab. 8.1, but for PIPBM, the partially inexact oracle did not offer improvements, with
the heuristic greedy procedure succeeding very rarely (see the h ,v values).

Relative to Tab. 8.2, Table 8.3 exhibits qui te dismal performance ofGGM in terms
ofiteration counts and running times 4• GGM made very few descent steps, and a lot
of null steps. This is not really suprising, since GGM's descent test J;+ 1 :S ,ta - K}vk

is hard to meet when K:k is close to I, whereas the average and minimum values of
I - K; (over all iterations and instances) were 2 x 10-2 and 9 x 10- 6, respectively,
for both oracles. At the same time, this helped the greedy heuristic to succeed quite
frequently (see the hav values).

Table 8.4 shows thai MGGM performed much better than GGM. MGGM was
about five times faster in iteration counts and running times, and about as fast as
PIPBM, whereas MGGM 's values of d,v and h,v were between those of PIPBM and
GGM in Tabs. 8.2 and 8.3.

Tabl es 8.5 through 8.8 give our results on the large-size instances. In these tabl es,
k is the finał iteration number, Nd is the number of descent steps, ReL.err is the finał
relative error of(8.3), CPU is the CPU time in seconds, andNh is the number of null
steps due to the greedy heuristic; the finał a// row gives the averages of k, Nd, CPU
and Nh, and the maximum ofRel..err, over all the 30 instances.

Conceming Table 8.5, note thai the knapsack accuracy ofE, = 10-3 did not suf!ice
for IPBM to obtain ReLerr :S I o-5 for all instances, but E, = 10-4 was enough. We
add thai IPBM gave almosl identical results for smaller tolerances up to E, = O.

As for Table 8.6, its "Exact oracle" entries agree with the E, = 10- 4 entries in
Tab. 8.5 for all but 13 instances. Herewe add thai for faircomparisons with GGM and
MGGM, PIPBM employed inexact initialization, and hence was not equivalent with
IPBM even when their oracles delivered exact answers. For example, on instances
A05100, A05200, AI0200 and A20100, the starting point was optima!, but PIPBM

4 lts parameters give very high accuracy in Tab. 8.3, but "norma]" accuracy in Tab. 8.7.

Bundle Methods with Partially lnexact Oracles

Table 8.5 IPBM witlt rela1ively inexact aracie: large-size instances

Characteris1ics
Type
A 100
A 200
A IO 100
A 10 200
A 20 100
A 20 200
B 5 100
B 200
B 10 100
B 10 200
B 20 100
B 20 200
C 5 100
C 5 200
C 10 100
C 10 200
C 20 100
C 20 200
D 5 100
D 5 200
D 10 100
D 10 200
D 20 100
D 20 200
E 5 100
E 5 200
E IO 100
E 10 200
E 20 100
E 20 200

all

relative accuracy fi- = w-4

k NJ ReLerr ĆPU
3 O O.OE+oo 0.00
4 O O.OE+OO 0.00

21 10 7.0E-06 O.Ol
6 O O.OE+oO 0.00

29 O O.OE+oO 0.00
33 14 7.8E-06 O.Ol

264 89 2.IE-06 0.17
419 I 07 l.8E-06 0.49

74 34 4.4E-06 0.00
29 I 63 2.4E-06 O. I 9

87 39 3.1 E-06 0.00
401 139 4.5E-06 0.36
231 84 9.0E-07 O. I I
338 93 8.8E-06 0.36
265 93 2.5E-06 O. I I
460 99 5.JE-06 O.SO
I 92 58 2.6E-06 0.04
588 112 2.6E-06 0.65
147 43 6.9E-07 0.02
198 46 l.2E-06 0.18
191 53 2.7E-07 O. I I
230 45 l.JE-06 0.32
241 54 l .0E-06 0.20
325 6 I 7.JE-07 0.65
163 45 2.4E-06 0.04
143 39 2.9E-06 0.06
220 57 2.7E-07 O.Ol
9 I 9 208 1.5E-06 1.36
726 183 4.6E-06 0.69
749 129 l.7E-06 1.80
265 67 8.8E-06 0.28

rełative accuracy &- = 10-1
k Nd ReLerr CPU
3 O O.OE+oO 0.00
4 O 5.9E-05 0.00

25 7 7. IE-05 0.00
6 O O.OE+oO 0.00

26 O O.OE+OO 0.00
28 14 3.9E-06 0.00

264 89 2.IE-06 0.17
539 46 8.7E-05 0.54

77 34 6.4E-06 0.00
291 63 2.4E-06 0.22
87 39 3. 1 E-06 0.00

421 121 5.4E-06 0.45
231 84 9.0E-07 0.05
476 98 8.8E-06 0.48
265 93 2.5E-06 0.06
699 149 5.9E-06 0.94
192 58 2.6E-06 0.02
588 112 2.6E-06 0.70
190 35 9.4E-05 0.02
234 24 3.5E-04 O. I 3
191 53 2.7E-07 O. I I
312 27 3.7E-04 0.37
241 54 l.OE-06 0.21
430 47 l.lE-04 1.04
132 37 2.3E-06 0.02
183 26 2.3E-04 0.02
324 85 1.2E-06 0.19

1398 31 5.0E-04 1.90
726 183 4.6E-06 0.71

I 836 59 2.IE-04 3.97
347 56 5.0E-04 0.41

had to make a single correcting step. For the partially inexact aracie, the heuristic
greedy procedure succeeded qui te rarely (see the N1, values).

Tables 8.7 and 8.8 support our earlier discussion ofTabs. 8.3 and 8.4, with minor
exceptions. Again, relative to PIPBM, GGM obtained Rel.err :5:: 10 - 5 for all instances
at much larger iteration counts and running times, and made relatively few descent
steps; yet, except for type A instances, the greedy heuristic <lid not succeed as fre
quently as in Tab. 8.3. In contras!, MGGM was comparable with PIPBM in the finał
accuracy, iteration counts and CPU limes. Note that switching from the exact aracie
to the partially inexact aracie did not reduce the average CPU times, but it <lid reduce
the average counts of exact objective evaluations by the same percentage of 8% for
PIPBM, GGM and MGGM (this count is k-N1, for the partially inexact aracie).

The previous tables are summarized as performance profiles (3] in Figs. 8.1-8.2,
which plot the portion of instances p,(w) on which a particular solver was not slower
than the fastest solver by more than a given ratio w. Here IPBM used E, = 10- 3 in
Fig. 8.1 and E, = 10-4 in Fig. 8.2, whereas PIPBM, GGM and MGGM employed

23

24 K.C. Kiwiel

Table 8.6 PlPBM: largc~size instances

Characteristics Exact oracle Partially incxacl oraclc
Type m N, ReLerr CPU k N, N, ReLerr CPU
A 5 100 I O.OE+oo 0.00 4 I J O.OE+oo 0.00
A 5 200 I O.OE+oo 0.00 5 I 4 2.8E-16 0.00
A IO 100 21 10 6.8E-06 O.Ol 25 9 7 7.IE-06 O.Ol
A IO 200 7 I O.OE-t-00 0.00 7 I 6 O.OE-t-00 0.00
A 20 100 31 1 O.OE+oo 0.00 26 1 25 2.9E-06 0.00
A 20 200 Jl 15 8.4E-06 0.00 36 14 18 7.7E-06 O.Ol
B 5 100 264 89 2.IE-06 0.19 265 76 J 4.0E-06 0.19
B 5 200 419 107 l.8E-06 0.51 475 115 9 l.2E-06 0.67
B 10 100 74 34 4.4E-06 0.00 73 32 I J.6E-06 0.00
B 10 200 291 63 2.4E-06 0.17 323 68 J 2.4E-06 O.Jl
B 20 100 87 39 J. IE-06 0.00 73 26 I l.8E-15 O.Ol
B 20 200 368 123 5.IE-06 0.36 431 132 2 4.9E-06 0.62
C 5 100 231 84 9.0E-07 0.14 190 66 2 O.OE-t-00 O.Il
C 5 200 338 93 8.8E-06 0.27 378 107 8 8.4E-06 0.39
C IO 100 265 93 2.lE-06 O.Ol 265 93 I 2.SE-06 O.o?
C 10 200 460 99 5.JE-06 0.50 564 136 2 5.lE-06 0.90
C 20 100 192 58 2.6E-06 0.00 186 54 I 7.2E-06 O.Ol
C 20 200 588 112 2.6E-06 o.n 588 112 I 2.6E-06 0.96
D 5 100 147 43 6.9E-07 0.02 141 41 22 l.2E-07 o.oi
D 5 200 207 49 4.7E-07 0.18 176 40 JO 4.7E-07 0.13
D 10 100 191 53 2.7E-07 O.I I 205 48 14 l.9E-06 0.12
D 10 200 219 49 l.7E-06 0.37 244 53 JO 3.IE-07 0.40
D 20 100 241 54 l.OE-06 0.19 263 60 22 7.4E-07 O.JO
D 20 200 325 61 7.JE-07 0.66 302 60 28 8.6E-07 0.74
E 5 100 163 45 2.4E-06 O.OJ 140 43 17 2.JE-06 O.Ol
E 5 200 159 45 2.2E-15 0.09 136 35 18 2.7E-06 0.04
E IO 100 218 59 5.4E-07 0.00 206 57 11 5.0E-08 O.Ol
E 10 200 911 228 l.lE-06 1.46 866 218 14 9.7E-07 1.48
E 20 100 726 183 4.6E-06 0.72 761 186 4.JE-06 0.90
E 20 200 737 149 i.7E-06 I.SO 229 56 15 l.lE-06 0.35

all 264 68 8.SE-06 0.29 253 65 Il 8.4E-06 O.JO

the partially inexact oracle; further, zero CPU limes were replaced by O.O I due to the
poor resolution of our timer.

The partially inexact oracle may be more useful when we impose a small limit,
say iiex, on the number of exact objective evaluations, e.g. , at each branch and bound
node as discussed in [6, §5]. Tables 8.9 and 8.10 give results for N,.= IO and 20
respectively, where e„ are the averages of the relative errors of (8.3). Note thai
MGGM was slightly better !han PIPBM except for N,. = 20 and the partially inexact
aracie, where PIPBM reduced both e„ and em, by more !han 50% w.r.t. the exact
oracle. GGM gained less from the partially inexact oracle in reducing em,-

Acknowledgements I would likc to thank Paul Tseng for cxtensivc comments on an earlier version of
this paper, and two anonymous referees for helpful suggestions.

Bundle Methods with Partially Inexact Oracles 25

Table 8.7 GGM: large-size instances

Characteristics Exact aracie Partially inexact aracie
Type n Nd ReLerr CPU Nd N, ReLcrr CPU
A 100 196 2 O.OE+-00 0.02 221 2 216 2.7E-J6 0.02
A s 200 307 O.OE+oO 0.09 254 2 252 9.BE-16 0.07
A JO 100 309 I.OE-IS O.IS 357 2 350 l.3E-15 0.09
A JO 200 537 O.OE+OO 0.31 605 600 O.OE+oO 0.30
A 20 100 487 2 O.OE+oO 0.29 530 520 2.6E-IS 0.17
A 20 200 766 2 1.4E-14 0.72 1016 976 3.JE-15 1.04
B s 100 1705 6 3.7E-16 1.00 1994 479 l.2E-15 1.03
B s 200 3465 s 9.7E-01 6.39 4700 975 9.BE-07 9.76
B IO 100 738 3 3.2E-16 0.18 1183 732 2.7E-15 0.40
B IO 200 4352 6 2.2E-06 5.29 SIIB 1171 2.2E-06 6.78
B 20 100 1394 3 1.4E-IS 0.41 2318 1251 9.8E-16 1.34
B 20 200 3388 s l.9E-06 3.49 4979 2449 l.6E-06 5.77
C s 100 1666 6 I.IE-IS 0.96 2049 4 505 1.2E-16 1.19
C s 200 3625 12 8.4E-06 6.96 4134 IO 878 9.0E-06 7.80
C IO 100 1985 I.IE-15 0.87 2388 5 549 4.9E-16 I.IO
C IO 200 4423 7 2.BE-06 6.27 4851 9 941 3.9E-06 7.80
C 20 100 1825 4 4.4E-15 0.68 2049 4 792 2.4E-15 1.22
C 20 200 5274 1.IE-06 8.09 7383 8 1840 I.IE-06 12.37
o s 100 2619 4.6E-07 1.87 3286 7 897 4.SE-07 2.44
o s 200 4249 I.SE-OB 13.32 5735 8 1733 2.0E-08 15.76
o IO 100 2766 8.9E-07 2.72 3761 6 1092 9.IE-07 3.63
o IO 200 6634 12 2.SE-07 21.55 8143 IO 2035 2.BE-07 22.92
o 20 100 281 7 IO 1.IE-07 3.01 3734 9 1252 I.IE-07 3.83
o 20 200 7118 s 9.2E-08 21.82 9252 7 2288 I.OE-07 27.83
E 5 100 3005 13 3.5E-11 2.21 3192 12 382 2.9E-09 2.44
E 5 200 8229 17 1.2E-15 18.71 8523 18 775 4.5E-15 19.27
E IO 100 4507 li I.OE-06 2.54 5137 12 435 9.7E-07 3.51
E IO 200 13717 16 9.BE-07 56.99 12642 19 822 9.4E-01 48.45
E 20 100 6051 13 3.5E-06 4.59 6367 14 487 3.6E-06 5.77
E 20 200 18862 17 1.6E-06 61.36 20363 18 855 l.6E-06 73.54

all 3901 8.4E-06 8.43 4542 8 951 9.0E-06 9.59

References

I. Belloni, A., SagastizAbal, C.: Dynamie bundle methods. Math. Program. 120, 289-311 (2009)
2. Briant, O., Lemarćchal, C., Meurdesoif, Ph., Michel, S., Perrot, N., Vanderbeck, F.: Comparison of

bundle and classical column generation. Math. Program. 113, 299-344 (2007)
3. Dolan, E.D., Marć, J.J.: Benchmarking oplimization software with perfonnance profiles. Math. Pro-

gram. 91, 201-213 (2002)
4. Emiel, G., Sagastizńbal, C.: lncremental-like bundle methods with application to energy planning.

Comput. Optim. Appl.? (2009). DOI J0. I007/sl0589-009-9288-8
5. Gaudioso, M., Giallombardo, G., Miglionico, G.: An incremen1al method for solving finite min-max

problems. Math. Oper. Res. 31 , 173- 187 (2006)
6. Gaudioso, M., Giallombardo, G., Miglionico, G.: On solving the Lagrangian dual ofinteger programs

via an incrementa! approach. Comput. Optim. Appl. 44, 117-138 (2009)
7. Helmberg, C., Kiwiel, K.C.: A spectral bundle method with bounds. Math. Program. 93, 173-194

(2002)
8. Hiriart-Urruty, J.B., Lemarćchal, C.: Convex Analysis and Minimization Algorithms. Springer, Berlin

(1993)
9. Ki wiei, K.C.: Proximity control in bundle methods for convex nondifferentiable minimization. Math.

Program. 46, 105- 122 (1990)

26 K.C. Kiwiel

Table 8.8 MGGM: large-sizc instances

Characteristics Exact oracle Partially inexact oracle
Type N, Relerr CPU N, N, ReLerr CPU
A s 100 40 I O.OE+oO 0.00 40 I 36 2.7E-16 0.00
A s 200 SB 2 O.OE+oO O.OJ 54 3 SI 4.2E-16 O.Ol
A IO 100 84 7 3.0E-15 o.os 84 8 59 6.8E-06 0.00
A IO 200 97 s O.OE+oO 0,01 135 3 129 O.OE+oo 0.09
A 20 100 98 s O.OE+oO 0.00 123 s 118 4.7E-15 0.00
A 20 200 157 9 2.2E-06 0.09 171 IO 152 l.6E-06 0.14
B s 100 127 28 l.4E-01 0.02 125 27 15 8.7E-16 0.00
B s 200 194 29 2.3E-06 0.12 204 31 26 1.7E-07 0,07
B 10 100 129 16 8.IE-16 0.00 149 17 43 3.JE-06 0.06
B IO 200 314 34 J.4E-06 O.JO 319 34 27 2.7E-06 0.32
B 20 100 230 20 l.4E-15 0.08 250 18 46 4.0E-06 O.IO
B 20 200 529 29 J.IE-06 0.45 SOI 27 62 5.4E-06 0.56
C s 100 141 23 I.JE-Il 0.00 144 25 25 O.OE+oO 0.00
C s 200 170 29 4.0E--07 0.04 176 25 29 8.lE--07 0.09
C 10 100 179 27 6.4E-06 O.Ol 192 27 20 4.7E-15 0.03
C 10 200 299 Jl l.8E-06 0.14 315 32 Jl J.6E-06 0.23
C 20 100 254 26 6.IE-06 0.02 280 Jl 29 4.2E-06 0.12
C 20 200 485 37 4.JE-06 0.59 469 37 39 J.9E-06 0.67
o l 100 209 44 8.7E-07 O.Ol 205 38 13 l.JE-07 0.02
o s 200 280 42 l.4E-07 O.Jl 313 41 25 6.6E-07 0.34
o IO 100 296 49 I.JE-06 0.25 304 51 12 l.6E-06 O.JO
o 10 200 442 52 7.2E-07 0.74 425 54 21 6.8E-07 0.78
o 20 100 400 53 l.6E-06 0.45 410 57 IO I.JE-06 0.57
o 20 200 613 SS 8.9E-07 1.48 6SS SB 19 7.9E-07 2.02
E s 100 200 60 l.2E-06 0,09 181 61 I 6.IE-07 o.os
E l 200 591 103 2.JE-07 0.59 611 103 2 J.4E-07 0.70
E 10 100 357 75 6.IE-07 0.18 357 75 I 6.IE-07 0.18
E 10 200 466 76 4.lE-07 0.69 491 70 I J.4E-07 0.90
E 20 100 434 72 3.JE-06 0.34 434 72 I J.JE-06 0.43
E 20 200 780 81 1.2E-06 1.76 867 85 I I.IE-06 2.47

all 288 37 6.4E-06 O.JO 299 38 Jl 6.8E-06 0.38

Table 8.9 At most Rex = I O exact evaluations, large-size instances (30 instances per row)

Exact oracle Partially inexact oracle
Code e„ ·- ,., kav e„ '= ,.,
PIPBM 8.JE-02 l.2E-01 0.00 12 5.3E-02 2.7E-01 0.00
GGM l.9E-02 J.4E-OI 0.00 489 4.IE-02 2.JE-01 0.24
MGGM S.SE-01 2.4E-01 0.00 38 4.IE-02 2.JE-01 O.Ol

Table 8.10 At most Na. = 20 cxact evaluations, large-size instances (30 inslances per row)

Exact oracle Partially inexact oracle
Code e„ <m, , .. k„ , .. '= , ..
PIPBM 2.2E-02 l.2E-01 0.00 27 9.6E-OJ 5.JE-02 O.Ol
GGM 8.3E-02 3.0E-01 0.00 552 4.IE-02 2.JE-01 0.28
MGGM l.9E-02 8.3E-02 0.00 SO l.2E-02 7.lE-02 0.02

Bundle Methods with Partially lnexact Oracles

Fig. 8.1 Peńonnance profile for small-size instances

0.8

0.7

0.6

0.5 IPBM -
PIPBM

GGM •• .••• ••

27

MGGM -·•-•"••-·
0.4 '---'---''---''---'---'---'---'

1 16 32 64 128

ratio of CPU time to best CPU time ci:i

Fig. 8.2 Perfonnance profile for large-size instances

0.9

o.a

.. r :.Ci'-~
r.J

__) Jj
r

::I/ J •···
,

..

,/"' p:~:~ --0.5 ' (
t Mgg~ :

0.4 '--~---'---'--~---'---''--~-~--'
1 16 32 64 128 256 512

ratio of CPU time to best CPU time ci:i

IO. Kiwiel, K.C. : A Cholesky dual method for proximal piecewise linear programming. Numer. Math.
68. 325-340 (/994)

11 . Kiwiel, K.C.: A projection-proximal bundle method for convex nondifferentiable minimizalion. In:
M. Thćra, R. Tichatschke (eds.) 111-posed Variational Problems and Regularization Techniques, Lec
ture Notes in Economics and Mathematical Systems 477, pp. 137- 150. Springcr-Vcrlag, Berlin (1999)

12. Kiwiel, K.C. : Efficiency ofproximal bundle mcthods. J. Optim. Theory Appl. 104, 589- 603 (2000)
13. Kiwiel, K.C.: A proximal bundle method with approximate subgradient linearizations. SIAM J. Op

tim. 16, 1007- 1023 (2006)
14. Kiwicl, K.C.: A proximal-projection bundle method for Lagrangian relaxation, including semidefinite

programming. SIAM J. Optim. 17, 1015-1034 (2006)

28 K.C. Kiwicl

IS. Ki wici, K.C.: A method of centcrs with approximate subgradicnt lincarizations for nonsmooth convex
optimization. SIAM J. Optim. 18, 1467- 1489 (2007)

16. Kiwiel, K.C.: An altemating linearization bundlc method for convcx optimization and nonlinear mul
ticommodity flow problems. Math. Program.? (2009). DOI I0.1007/s10107-009-0327-0

17. Kiwiel, K.C.: An ine;r;act bundle approach to cutting-stock problems. rNFORMS J. Comput. ? (2009).
DOI I0.1287/ójoo.1090.0326

18. Kiwiel, K.C., Lemarćchal, C.: An ine:xact bundle variant suitcd to column generation. Math. Program.
118, 177-206 (2009)

19. Lemarćchal, C.: Lagrangian relaxation. In: M. Jilnger, O. Naddef (eds.) Computational Combinatorial
Optimization, Lecturc Notes in Computer Science 2241, pp. 112- 156. Springer-Yerlag, Berlin (200 l)

20. Martello, S., Tolh, P.: Knapsack Problems: Algorilhms and Compuler lmplementations. John Wilcy
& Sans, New York (1990)

21. Sagastizibal, C., Solodov, M.V.: An infeasible bundle method for nonsmooth convex constrained
optimization withoul a penalty function or a filter. SIAM J. Optim. 16, 146-169 (2005)

22. Savelsbergh, M.W.P. : A branch-and-price algorithm for the generalized assignmenl problem. Oper.
Res. 45, 831 -841 (1997)

23. Yagiura, M., !baraki, T., Glover, F.: An ejection chain approach for the generalized assignment prob
lem. INFORMS / . Comput. 16, 133-151 (2006)

24. Yagiura, M., Ibaraki, T., Glover, F.: A path relinking approach with ejection chains for the generalized
assignment problem. European J, Oper. Res. 169, 548-569 (2006)

