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Chapter 1 

Introduction 

In the paper we compare two methods based on genetic algorithm and neural net
work for finding the location of small holes in the domain, in which the coupled 
boundary value problem is defined. The initial domain consists of two compo
nents, linear and nonlinear, connected by the transmission conditions defined at 
the interface boundary. Both methods: genetic algorithm and neural network cal
culate the location of one, two or three holes located somewhere in the linear part 
of the domain based on input data coming from the exterior part of the domain. 

We consider a coupled model described by the domain bounded in IR2 and 
decomposed into two subdomains D and w in such way, that the interior part w 
is surrounded by the exterior sub-domain D. In the interior subdomain the phys
ical phenomena are described by the linear partial differential equation and in 
the exterior subdomain the processes are governed by nonlinear partial differen
tial equation subject to some external function. Here, the nonlinear boundary 
value problem is coupled through transmission conditions with the linear bound
ary value problem. As an example of such system one can consider a gravity flow 
around an elastic obstacle. Such situation have numerous physical interpretations, 
for example the water flow around submarine or gas flow inside the jet engine. 
For real life models the coupling conditions are still a subject of research [?]. 

Our goal in this paper is to compare two methods. First method is a combina
tion of genetic algorithm and information given by the topological derivative. In 
this method the location of small hales in the interior domain is approximated by 
the genetic algorithm which uses the probability density in random selection for 
the initial population of single holes, pairs of triples, and also to supplement the 
population in consecutive generations. The probability density is evaluated based 
on the values of the topological derivative calculated in the interior subdomain w 
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6 CHAPTER 1. INTRODUCTION 

for a given shape functional defined in the exterior subdomain D. Second method 
applies an artificial neural network which calculates the locations of one, two or 
three holes in w the linear component of the domain. The information comes from 
D the exterior part of the domain and is represented as a Fourier series expansion 
of a solution of the nonlinear partial differential equation and calculated at the 
interface between two subdomains. 

1.1 Problem Formulation 

Let D , w E IR2 with the smooth boundaries aw, r = oD, D = DU w, where 
D = D \ w, such that oD = r U aw. 

{ -6.U(x ) = F(x, U(x )) , x E D, 
U(x ) = 0, x Er, 

F (x, U(x )) = { - U3 (x ) + f( x ), x ED, 
0, XE W. 

Now we introduce a small perturbation in the domain w by creating a small 
hole B,: at the point 0 . We denote W ,: = w \ B ,: , OW,:= aw u aB,: 

{ 
-6.Ue: (x ) = F(x, Ue:(x )) , x ED \ B e:, 

U,: (x ) = 0, x Er, 
OnU,: (:r ) = 0, x E aB,: 

F(x, Ue: (:r )) = { 0- U1(x ) + f (x ), ~ ED, 
, XE W,:, 
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Let A s : cp E H 112 (ow) ------+ onUs E H- 1! 2 (ow) : We can rewrite the condi
tion on the boundary ow using the Steklov-Poincare operator A s: 

F(x, Us (x)), x ED\ Bs, 
XE r , 
XE ow, 
X E fJ Bs 

Let us then consider both linear and nonlinear problems separately. 
In the domain D we have the following non-linear problem: 

{ 
- ~ vs (x) + v: (x) = f (x) x E D, 

Vs(x) = 0, XE r , 
OnVs(x) = A s(vs(x)), X E ow. 

In the domain Ws, for cp E H 1l2 (ow) such that A s('P) = 8nus: 

1.1.1 Topological Derivative 

Let us consider the following shape functional 

J(vs) = ~ J (vs - zd )2dx, 
n 



8 CHAPTER 1. INTRODUCTION 

with v0 the solution to the semi-linear problem and zd a fixed target funtion defined 
in the domain D. Let us introduce the adjoint state in order to symplify the form 
of topological derivative 

{ 
-b..p + 3v2p = (v - zd), in D, 

- b..p = 0, in w 

p = 0, on r , 

where v is solution to the semi-linear problem for E = 0. 

Theorem 1.1.1 The form of topological derivative is the following 

Tn(O) = -(B(v),p) = 21r'vv(O) · 'vp(O) . 

1.2 Numerical Approach 

y 

1 

r 

l X 

-1 

In w· { - b..u(x) = 0, x E w 
. u(x) = v(x) , XE aw 

XE D, 
In D: { 

-b..v(x) + v3 (x) = f(x) 
v(x) = 0, XE I' , 

anv(x) = A(v(x)), X E aw. 

In order to solve numerically the coupled problem, we introduce a character
istic function x and we consider the following problem: 

{ - b..w(:r) + x(D)w3(:r) x(D).f(x) :r ED, . h (n) { 1 x ED, 
( Wit X H = 

W x) = 0 XE f, 0 XE W . 
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1.3 Inverse Problem 
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The inverse problem that we consider here is to find the location of some in
clusions of hollow voids inside the interior domain w based on the information 
coming from exterior subdomain and such location that minimizes the value of 
the objective functional 

To this end we apply two methods: 

1. Method based on Genetic Algorithm 

2. Method based on Neural Network 

1.3.1 Method based on Genetic Algorithm 

1. Density of probability Pk = 
NJ 3 

k 1, . . . ,N 

½ I: area(ti.) I: St;J 
i= l j=l 

where sk contains the information given by topological derivative, St;J are 
the vertices of the triangles, Af is the number of triangles and N is the num
ber of nodes. 

2. Genetic algorithm 

• initial population - vector of inclusions 

- not necessarily at nodes of triangles 

- in the area where density probability is the highest 

• evaluation - fitness value evaluated based on cost function J 

• crossover 

- selecting dominating elements 

- crossover with every subordinate element 

• mutation - perturbation of each element 

• new generation - iS of the best elements after mutation, ½S individu
als are again drawn randomly using appropriate probabilities, 
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1.3.2 Method based on Neural Network 

1. Inverse mapping g(ao, a1, b1, a2, b2, a3, b3) = (x, y) 

• [ao, a1, b1, a2, b2 , a3 , b3] are coefficients in the Fourier series expantion 
of the solution v of the problem ( 1) taken at the boundary ow 

• [x, y] are the coordinates of a center of a hollow void, its location in w 

2. Topology of neural network 

• input vector - 7 coefficints 

• one hidden layer 

• output - 2 neurons for one hollow void, 4 neurons for 2 hollow voids 

• sigmoidal activation function for each of the layer 

3. Learning set L = { P, T} 

• Paterns P = {P1, ... , Pn}, Pi = [ao, a1, b1, a2, b2, a3, b3] 

• Target T ={ti, ... , tn}, ti= [x, y] 

1.3.3 Numerical results 

Case of one hollow void 

Figure 1.1: Method based on Genetic Algorithm 
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Figure 1.2: Method based on Neural Network 

Figure 1.3: Method based on Genetic Algorithm 
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Figure 1.5: Method based on Genetic Algorithm 
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Figure 1.6: Method based on Neural Network 

Case of two hollow voids 

Figure 1.7: Method based on Genetic Algorithm 
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Figure 1.8: Method based on Neural Network 
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Figure 1. 11: Method based on Genetic Algorithm 
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Figure 1.12: Method based on Neural Network 
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1.4 Conclusions 

1. Methods based on Genetic Algorithm gives slightly better results if the den
sity of probability concern the values of the topological derivative. 

2. In both methods the error is comparable, no matter the number of inclusions 

3. Method based on Neural Network gives the results that can be compared 
with GA with uniform density of probability 

4. For both methods, result depends on the location of inclusion - better results 
for inclusion near the boundary, worts results for inclusions located far from 
the boundary 
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