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Abstract. The paper is devoted to the solution of the energy m1111-
mization problem for a moving train. The train movement is governed 
by the system of the first order ordinary differential equations where the 
train speed and the distance along the track are the state variables. The 
provided locomotive power depends on the control function. The gen
erated traction force is assumed to depend on the velocity of the train 
and on the control function. Each non-negative value of the control func
tion determines a traction force control while negative values determine 
a braking force control. The cost functional is defined as the train en
ergy. It is dependent on traction force, speed and control functions. The 
speed, distance and control functions are assumed bounded. Using the 
maximum principle and Lagrangian multipliers the system of equations 
constituting the necessary optimality conditions is formulated. Based on 
the analysis of the train movement the optimal trajectories in terms of 
train speed and associated optimal control functions are calculated. A 
new simplified method is used to calculate the set of the switching times 
implementing the optimal control function. Numerical examples are pro
vided and discussed. 

Keywords: ODEs train model, semi analytical solutions, energy mini
mization, maximum principle, optimal switching, numerical algorithm 

1 Introduction 

The minimization of the energy consumption by a train moving from one station 
to the other is a central issue of the railway transport both from the environ
mental and economic perspective. The train movement between two stations 
has to be completed in a given time and to satisfy the infrastructure and traffic 
conditions. The train speed profile has to satisfy these imposed constraints. 

A comprehensive review of the modern theory of optimal train control can 
be found in [1- 4, 10, 11, 13, 18] and references contained therein. In general for 
zero slope tracks, the optimal strategy consists in power, speed-hold, coast, brake 
phases [3, 4, 13, 20, 22]. For non-zero slope tracks this strategy has to be updated, 
i.e. , the speed-hold mode must be interrupted by phases of power for steep uphill 
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track sections and coast for steep downhill track sections. Moreover, the optimal 
strategy is reduced to the defining the optimal switching strategy [4]. 

In this paper we consider the energy minimization problem for train moving 
on the different tracks. The movement of the train is governed by an ordinary 
differential equations where the velocity and the distance traveled along the 
track are the state functions. The traction force generated by the locomotive 
engine is assumed to depend on the train speed and the control function. The 
cost functional is defined as the integral from the train power function on the 
train movement time interval. Using maximum principle the set of the necessary 
optimality conditions is formulated and optimal strategies are proposed. The 
optimal control function is calculated using the analytical solutions to state and 
adjoint equations. Moreover the simplified algorithm is used to calculate the 
optimal switching times and optimal velocities profiles. These features make the 
proposed approach to solve this train optimal control problem different from the 
approaches already developed in literature [4, 5, 10, 19, 20]. Numerical results are 
provided and discussed. 

2 Problem formulation 

Consider the movement of the train having the mass M along the track between 
two stations during the t ime interval [0, Tl, T > 0 is a given real. Let us denote 
the velocity of train by v(t) : [0, T] --+ [0, Vmax] C R+ and by s(t) : [0, T] --+ 
[0, Smax] C R+ the distance traveled by the train along the track, where Vmax 
and Smax are given real positive constants. The movement of the train modeled 
as a point mass is governed by the system of the state equations [10, 11, 14]: 

ds(t) _ (· ) 
dt - V t , 

Mdv(t) = F-F 
dt R, 

(1) 

(2) 

where F and FR denote, respectively, traction and resistance forces. Moreover 
the following initial conditions are imposed: 

v(0) = 0, v(T) = 0, s(0) = 0, s(T) = ST, (3) 

where ST > 0 is a given real. Practically ST = Smax· The traction force F is 
generated by the electric or diesel engine of the locomotive. It depends on the 
control function u(t) : [0, T] --+ [-Umin, Umax] CR, Umin and Umax are positive 
real constants and is strictly increasing function on interval [-umin,Umax]- For 
u E [-Umin, 0) the train breaks and the breaking force F = p- :::; 0 is applied. 
The generated energy due to it may be positive, i.e., it may reduce the total 
train energy requirement to move it along the track. For u E [0, Umax] the train 
accelerates and the constant traction force F = p+ > 0 is applied [12], i.e. , 

F = { p + > 0 for u 2". 0, 
p- :::; 0 for u < 0. 

(4) 
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The graphs of the traction and braking forces with respect to the train speed 
are calculated experimentally for each type of locomotive (see references in [10]). 
Usually the traction force is constant for the velocities in the range of the con
stant torque and is decreasing for the higher velocities in the constant power 
range where the observed acceleration is inversely proportional to the speed. 
The graph of the braking force is usually strongly nonlinear [10]. Recall [7] the 
control function may be interpreted either as the traction force or as the applied 
fraction of the traction force or the locomotive power to generate the desired 
train velocity. 
The power P(t) of the locomotive engine depends on the traction force F and 
the train velocity v, i.e., 

P(u(t)) = F(u(t))v(t). (5) 

The resistance force FR is the sum of line, curve and vehicle resistance forces [3, 
5- 7, 10- 14, 17, 19, 22]. The line resistance force FL depends on the train mass M 
and the slope angle a of the train track, i.e., 

FL= Mg(sina - µr cos a), (6) 

where g = 9.81m/s2 and µr denote the gravity constant and the friction coeffi
cient, respectively. The curve resistance force Fe depends also on the train mass 
M, the curve radius R, the slope angle a, the vertical slope angle /3, the velocity 
v and the friction coefficient µR, i.e., 

v2 v2 
Fe = M g[sin a - µr(- sin j3 + cos /3) cos a - µR(- cos j3 - sin /3)] . (7) 

gR gR 

In literature [7] the curve resistance force is usually approximated by a simpler 
model known as the Roeckl formula which does not depend on velocity v. Finally 
the vehicle resistance force Fv usually combines the rolling resistance force as 
well as the air resistance force [6 , 7, 17]. It strongly depends on the current train 
speed, the speed and the direction of wind, the area adjacent to the track for 
example tunnels. Usually this force is approximated by quadratic Davis formula 
[7] F{J =A+ Ev+ Cv2 where A, B, Care positive constants calculated exper
imentally. The values of these constants significantly depend on the track and 
environment conditions. We assume that the vehicle resistance force Fv is equal 
to 

Fv=p(v-w)2, (8) 

where p and w denote the air resistance coefficient and the wind velocity, re
spectively. Therefore using (6), (7), (8) we obtain that the resistance force FR is 
equal to 

FR= FL+ Fe+ Fv = -p(v - w) 2 + Mg sin a -

v2 v2 d f 
µrMg(-sin/3 + cosj3) cos a - µRMg( -R cos/3- sin/3) ~ (9) 

gR g 

M[-Av2 (t) + Bv(t) + C] where 
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A_.!!._ µrsin(3cosa + µRcos(3 B = 2pw. 
- M+ MR ' M ' 

FW . . p~ 
C = M + gsma - µrgcos(3cosa + µRgsm(3- M . 

The equation (2) with the resistance force (9) is Riccati equation type. For step
wise tracking force its analytical solution can be obtained using formulas from 
[16]. For detailed analytical solution formula see reference [14]. 

2.1 Optimal control problem for a train 

Let us formulate the optimal control problem for the moving train governed by 
system (1)-(3). Define the sets of admissible velocities and distances: 

Vad = {v ER: g1v(v) ~ 0, 92v(v) ~ 0, fort E [0,T]}, (10) 

Sad= {s ER: 91 8 (s) ~ 0, 92s(s) ~ 0, for t E [0, Tl} , (11) 

91v(v(t)) d!fl v(t), 92v(v(t)) d!fl 'Umax - v(t), (12) 
def def 

91s(s(t) = s(t) , 92s(s(t)) = sr - s(t). (13) 

The state functions v(t) E Vad and s(t) E Sad fort E [0, T] are nonnegative and 
bounded. Moreover for a given final velocity VT for t = T we have VT E Vad· 
Similarly sr = s(T) E Sad· Since v(t) is nonnegative due to state equation (1) 
it follows that s(t) is the increasing function. It implies that conditions (11) are 
always satisfied. 
The energy E(v, u): Vad x Uad--+ R+ needed to move the train along the track 
is equal to [4] 

E(v, ·u) = (T P(t)dt = (T F('u(t))v(t)dt. lo lo (14) 

Consider the following optimal control problem: 

Find the control function u* E Uad and the velocity function v* E Vad 
satisfying the state equations (1)-(3) and minimizing the cost functional 
(14) describing the energy necessary to move a train along the track, i.e., 

E(v*,·u*) = min (T F('u(t))v(t)dt, 
uEUad lo (15) 

where v* denotes the velocity corresponding to u*. 

3 Necessary optimality conditions 

We shall use the maximum principle [4, 8, 9, 14] to formulate the first order nec
essary optimality condition for the optimal control problem (15). Let us denote 
by ri(t) and >-(t) the adjoint functions associated with the state equations (1)-(2), 
respectively, and byµ;, and v; , i = 1, 2 Lagrange multipliers associated with the 
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control and velocity constraints (9) and (10), respectively. It implies that the 
distance constraints (11) are also satisfied. Define the Hamiltonian H and the 
generalized Hamiltonian L functions for the optimal control problem (15) where 
for the sake of simplicity A= 0 in (9): 

H(s, v, ·u, 7/, >., t) = -F('U(t))v(t) + 77s(t) + >.[F('jt)) - Bv(t) - CJ, (16) 

L(s, v , 'U , 7), >., µ1, µ2, t) = H(s , v , 'U, 77, >., t) + 
µ191u('U) + µ2g2u('U) + V191v(v) + V292v(v). (17) 

Therefore the first order necessary optimality conditions for the optimal control 
problem (11) have the form: 

Moreover 

and 

dF >.(t) dF 
- d'U v(t) + M dt + µ1 - µ2 = 0, t E (0, T), 

d77d(tt) = -77 (t), ( ) t E O,T, 

d>.( t) 
~ = F(u(t)) - >.(t)B - v1 + v2, t E (0, T) 

TJ(T) = T/T , and >.(T) = AT-

µ1 2': 0 µ2 2': 0 and µ191u(u) = 0, µ2g2u(u) = 0, 

V1 2': 0, V2 2': 0, and V191v(v) = 0, v2g2v(v) = 0, 

dH(t) 
dt 

dL(t) 
~, 

(18) 

(19) 

(20) 

(21) 

(22) 

(23) 

(24) 

for optimal trajectories 'U* E Uad· The following transversality conditions are 
imposed [9]: 

b;g;v(T) = 0, b;, 2: 0, i = l , 2. (26) 

Recall [9] ·1/; = T/T and 1 , b;, i = l, 2 are real numbers. 

4 Optimal train strategies 

The numerical solution of the system (18)-(26) to find the optimal control u* is 
time consuming and rather complex. Taking into account the linear dependence 
of the optimal control problem (15) on the control function 'U and recalling 
the results from the literature [4, 8- 10] it is sufficient to confine to piece-wise 
constant optimal control functions. Consider additionally special features of the 
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train movement, based on conditions (18)- (26), the optimal control strategies 
ensuring minimal energy consumption of the train may be formulated (for details 
see discussion in references [4, 10]). These strategies consist of few phases among 
the following: 

l. power phase 
when the train accelerates from the current velocity to a given higher one 
and the optimal control is u* = Umax, 

2. speed holding phase 
when the train moves with the constant cruising speed between the given 
points on the track and the optimal control equals to u* E (0, Umaxl, 

3. coasting phase 
when the train is moving with non zero velocity and the traction force is 
equal to zero, i.e., u* = 0, 

4. braking phase 
when the velocity is reduced from a given nonzero value to zero and optimal 
control is equal to ·u* = -'Umin· 

Applying these strategies and using the maximum principle as well as taking 
into account the linear dependence on control, the optimal control to problem 
(15) takes the following piece-wise constant form: 

{ 

Umax 

'UdI E [0, 'Umax] 

u*(t) = 0 
Ud2 E [ - Umin, O] 
-Umin 

4.1 Optimal switching times 

for>-> Mv, 
for A= Jvfv , 
for O <A< Mv, 
for>-= 0, 
for>-< 0. 

(27) 

The implementation of the optimal control (27) requires the calculation of the 
adjoint variable >-(t) and the velocity v(t) satisfying the optimality conditions 
(18)-(26) and depending on the fulfillment by the adjoint variable suitable con
dition in (27) the value of optimal control ·u* is calculated. It leads to the estab
lishing of the switching times [4, 8- 10] of the optimal control u* to implement 
optimal control strategy. Therefore to implement optimal control (27) the set of 
the switching times { Ti} among the different values of the optimal control u* 
should be determined: 

u*(t) = { 

Umax 

~dl E [0 , Umax ] 

Ud2 E [-Umin, O] 
-U1nin 

for OS t S T1, 

for TI < t S T2 , 

for T2 < t S T3 , 

for T3 < t S T4, 

for T4 < t ST. 

(28) 

The switching times { T1 , T2, T3 , T4} usually (see [10, 11]) are calculated numeri
cally using state and adjoint equations as well as the set of the necessary opti
mality conditions. In the paper, taking into account the special features of this 

,. 
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optimal control problem as well as the requirement to calculate them in real 
time the other method is used based on studying the four basic optimal velocity 
trajectories of the train for the piecewise constant control function. Considering 
different cases of the constant control functions as well as associated admissible 
velocity, the acceleration or braking phases suitable optimal trajectories con
sisting from the provided phases are provided and suitable switching times are 
calculated analytically. When for a given velocity function and the calculated 
switching times the distance traveled by the train is equal to a given distance 
between the two stations or characteristic points the calculated switching times 
are correct. Otherwise the new switching times are calculated, new type of ve
locity function is selected and the calculated switching times are verified. For 
details concerning this algorithm for determining the train optimal velocity see 
reference [14]. 

5 Numerical Examples 

The computations have been carried out for the following data: M = 202000 kg , 
traction force F = 310000 N, friction coefficient µr = 0.0015, air resistance 
coefficient p = 0.1 kg/ s. Moreover µR = 0 and /3 = 0. The state equations 
(1)-(3) as well as the adjoint equations (19)-(21) have been solved using ana
lytical formulas [16] where the exact analytical solutions to different types of 
the standard ordinary differential equations are described. Based on this general 
formulas from [16] the analytical solutions to the ordinary differential equations 
(1)-(3) and (19)-(21) where the right hand side depends linearly and nonlinearly 
on velocity v(t) have been provided in [14]. The numerical solution of the op
timal control problem (15) includes the calculation of the track slopes from a 
given data, train optimal velocity along this track satisfying given constraints 
as well as optimal control ensuring this optimal velocity. Below are presented 
some results of the computations of track slopes and train velocity. Other com
putations are carried out and the results will be delivered soon. For the given 
distance 1833 m between two stations characteristic points have been selected 
in the vector XI = [35511 37344] m. The angle a = -0.0085 rad for this part 
of the track. 
Fig. 1 displays estimation of one part of the real railway track. The slope of 
this part is constant. The train velocity on this track is displayed in Fig. 2. The 
train accelerates to the first switching point t f = 20 s, next it moves with the 
maximal velocity 120 km/h which is admissible on this type of track and start 
to brake at the second switching point tH = 135 s to reach velocity v = 0 at the 
end of the track. 

6 Conclusions 

The proposed method of the optimal control of the train in the movement seems 
to be well suited for the real time applications. It allows to calculate the switching 
times of the optimal control much quicker than standard methods. The further 
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Fig. 1. Estimation of the train track. 

re> Velocity as a function of time 
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Fig. 2. a) (upper) Train velocity along the track as the function of time b) (lower) The 
distance traveled by train along the track as the function of time. 

numerical tests are under investigation. Let us remark that similar approach 
may be used to other moving objects like unmanned cars or flying vehicles. 

References 

1. Albrecht, A., Howlett, P., Pudney, P ., Vu, X., Zhou, P.: The key principles of 
optimal train control - Part 1: Formulation of the model, strategies of optimal type, 
evolutionary lines, location of optimal switching points. Transportation Research 
Part B, 94, 482-508 (2016). 

2. Albrecht, A., Howlett, P., Pudney, P. , Vu, X., Zhou, P.: The key principles of 
optimal train control - Part 2: Existence of an optimal strategy, the local en
ergy minimization principle, uniqueness, computational techniques .. Transporta
tion Research Part B, 94, 509-538(2016). 



Energy optimal control 9 

3. Albrecht, A.R., Howlett, P.G., Pudney, P.J., Vu, X.: Energy-efficient train control: 
From local convexity to global optimization and uniqueness. Automatica 49, 3072 
- 3078, (2013). 

4. Asnis, I.A., Dmitruk, A.V. , Osmolovskii, N.P.: Solution of the problem of the 
energetically optimal control of the motion of a train by the maximum princi
ple. USSR Computational Mathematics and Mathematical Physics, 25(6), 37-44, 
(1985). 

5. Bigharaz, M.H., Afshar , A ., Suratgar, A., Safaei, F.: Simultaneous Optimization 
of Energy Consumption and 'Irain Performances in Electric Railway Systems. In: 
Preprints of the 19th World Congress, The International Federation of Automatic 
Control, pp. 6270- 6275, (2014). 

6. Burak- Romanowski, R., Wozniak, K.: Energetic aspect of the railway tracks 
modernization, Technical 'Transactions on Electrical Engineering 108(13) , 13- 29, 
(2011). (in Polish) 

7. Gkortzas, P.: Study on optimal train movement for minimum en
ergy consumption, MSc Thesis, Miilardalen University, Sweden, (2013). 
(http://urn.kb.se/resolve?urn=urn:nbn:se:mdh:diva-21234) 

8. Gorecki, H. , Fuksa, S., Korytowski, A., Mitkowski, W.: Optimal control in lin
ear systems with the quadratic performance index, Polish Scientific Publisher, 
Warsaw, (1983). (in Polish) 

9. Hartl, R.F. , Sethi, S.P., Vickson, R.G.: A Survey of the Maximum Principles for 
Optimal Control Problems with State Constraints, SIAM Review, 37(2), 181- 218, 
(1995). 

10. Howlett, Ph.: The Optimal Control of a 'Irain, Annals of Operations Research, 
98, 65- 87, (2000). 

11. Howlett, P.G. , Pudney, P.J., Vu, X.: Local energy minimization in optimal train 
control, Automatica 45, 2692-2698, (2009). 

12. Miyatake, M., Ko, H.: Optimization of Train Speed Profile for Minimum Energy 
Consumption, IEEJ 'Transactions on Electrical and Electronic Engineering 5, 263-
269, (2010). 

13. Montroe, T., Pellegrinii , P., Nobili, P.: Energy consumption minimization prob
lemin a railway network. 'Transportation Research Procedia 22, 85- 94, (2017) . 

14. Myslinski, A., Nahorski, Z., Szulc, K., Radziszcwska, W.: Simulation and opti
mization of the train movement, Research Report, Systems Research Institute, 
Warsaw, Poland, (2017). (in Polish) 

15. Novak, H. , Vasak, M., Lesici, V.: Hierarchical Energy Management of Multi-Train 
Railway Transport System with Energy Storages, IEEE International Conference 
on Intelligent Rail 'Transportation (ICIRT), pp. 130- 138, (2016). 

16. Polyanin, A.D ., Zaitsev, V.F.: Handbook of Exact Solutions for Ordinary Differ
ential Equations. CRC Press, Boca Raton, (1995). 

17. Rochard, B.P., Schmid, F.: A review of Methods to Measure and Calculate 'Irain 
Resistances, Proceedings of the Institute of Mechanical Engineers, Part F, Journal 
of Rail Rapid Transit 214(4), 185- 199, (2000). 

18. Scheepmaker, G. M. , Goverde R .M .P ., Kroon, L. G . : Review of energy- efficient 
train control and time tabling. European Journal of Operation Research, 257, 
355-376 (2017). 

19. Vittek, J. , Butko, P., Ftorek, B., Makys, P., Gore!, L.: Energy near optimal con
trol strategies for industrial and traction drives with a.c. motors, Mathematical 
Problems with Engineering, 2017, article id 1857186, (2017). 



10 A. Myslinski et al. 

20. Wang, Y., Ning, B. , Cao, F., De Schutter, B., van den Boom, T.J.J.: A survey on 
optimal trajectory planning for train operations, Proceedings of the 2011 IEEE 
International Conference on Intelligent Rail Transportation (ICIRT 2011), Beijing, 
China, pp. 589594, (2011). 

21. Wnuk, M.: The calculation of the optimal velocity of the train under velocity 
constraints, Technika Transportu Szynowego 4, 54 - 59, (2012). (in Polish) 

22. Ye, H., Liu, R.: A multiphase optimal control method for multi-train control and 
scheduling on railway lines, Transportation Research Part B, 93, 377-393, (2016). 










