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A NONDERIVATIVE VERSION OF THE GRADIENT SAMPLING 
ALGORITHM FOR NONSMOOTH NONCONVEX OPTIMIZATION" 

KRZYSZTOF C. KIWIELt 

Abstract. We give a nonderivative version of the gradient sampling algorithm of Burke, Lewis 
and Overton for minimizing a locally Lipschitz function / on R" that is continuously differentiable 
on an open dense subset. lnstead of gradients of /, we use estimates of gradients of the Steklov 
averages off (obtained by convolution with mollifiers) which require /~values only. We show that 
the nonderivative version retains the convergence properties of the gradient sampling algorithm. In 
particular, with probability 1 it either drives the /-values to -oo, or each of its cluster points is 
Clarke stationary for /. 

Key words. generalized gradient, nonsmooth optimization, subgradient, averaged functions, 
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1. Introduction. The gradient sampling (GS) algorithm of Burke, Lewis and 
Overton [BLO02b, BLO05] is designed for minimizing a locally Lipschitz function 
/ : ]Rn ----, IR which is continuously differentiable on an open dense subset D of IRn. 

At each iteration, the GS algorithm computes the gradient of f at the current 
iterate and atm ;:: n+ 1 randomly generated nearby points. This bundle of gradients is 
used to !ind an approximate ,-steepest descent direction as the solution of a quadratic 
program, where, is the sampling radius which may be fixed for all iterations or may be 
reduced dynamically. An Armijo line search along this direction produces a candidate 
for the next iterate, which is obtained by perturbing the candidate if necessary to stay 
in the set D where f is differentiable; here an additional condition of [Kiw07] on this 
perturbation may ensure stronger convergence results. 

The GS algorithm is widely applicable and robust in practice [BHLO06, BLO02a, 
BLO04, BLO05, Lew05]. 

This paper presents a nonderivative version of the GS algorithm, called the non
derivative sampling (NS) algorithm for short. Instead of gradients of/, it employs 
Gupal's [Gup77] estimates of gradients of the Steklov averages of f, which require 
/-values only (see [ENW95] and (2.3)-(2.6)). We show that the NS algorithm retains 
the convergence properties of the GS algorithm; e.g., with probability 1 it either drives 
the /-values to -oo, or each of its cluster points is Clarke [Cla83] stationary for f. 

At each iteration, the NS algorithm requires 2mn /-evaluations to sample the 
current bundle of size m, and several mare in the line search. To save work, we give 
an incrementa/ version with just 2n+ 1 /-evaluations per iteration for augmenting the 
bundle with the next gradient estimate and testing a single step size; this may give 
descent before the bundle reaches its full size. In addition, the bundle may include 
same past gradient estimates within the current sampling region to speed convergence. 

The NS algorithm is suited to applications where one has a blackbox oracle for 
computing f(x) at any given x E IRn , but where finding "v f(x) (for x E D) is impos
sible or too expensive. Thus its applicability area is similar to that of derivative-free 
direct search methods, especially mesh adaptive direct search (MADS) algorithms 
whose cluster points are Clarke stationary for f when f is locally Lipschitz and its 
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initial level set is bounded; see, e.g., [ABLD08, AuD06, CDV08, CuV07]. Each MADS 
iteration typically requires n+ 1 or 2n 1-evaluations (when no search step is consid
ered), whereas the incrementa! NS iteration needs 2n + l; these costs are similar, 
but the iteration numbers until approximate convergence may di.ffer. Numerical com
parisons of MADS and incrementa! NS are deferred to a future paper. For now, NS 
may be of independent theoretical interest, since it uses novel properties of Gupal's 
estimators, which are unavailable for standard finite differences or simplex gradients 
[ CDV08, Cu V07] in the nonsmooth case. 

Up till now, Gupal's estimator has only been used in stochastic approximation 
algorithms (see [ENW95, MaP84] and the references therein). It is an open question 
whether similar estimators could provide nonderivative versions of bundle methods 
(see the references in [BLO05, Kiw96]). 

The paper is organized as follows. The NS algorithm is presented in section 2, and 
its convergence analysis in section 3. Various modifications are discussed in section 4. 

2. The NS algorithm. We assume that the objective function I : IR" _, IR is 
locally Lipschitzian and continuously differentiable on an open dense subset D of IR". 
The Clarke subdifferential [Cla83] of I at any point x is given by 

fJl(x) = co{lim;gl(yi): yi _, x,yi E D}, 

where co denotes the convex hull, and the Clarke <-subdifferential [Gol77] by 

(2.1) fJ.J(x) := cofJl(B(x,<)), 

where B(x, <) := {y: IY - xl $<}is the bali centered at x with radius <;:>:O and I· 
is the 2-norm. The <-subdifferential fJ.J(x) is approximated by the set of [BLO05] 

(2.2) G,(x) := cl co g l(B(x, <) n DJ, 

since G,(x) C fJ.J(x), and fJ,J(x) C G.,(x) for O$ , 1 < <2. We say that a point x 
is stationary for I if OE fJl(x); x is called <-stationary for I if OE fJ,l(x). 

For<>> O, the Steklov averaged function la (cf. [ENW95, Def. 3.1]) is defined by 

(2.3) la(x) := J. l(x - y)1/Ja(Y) dy, 
R• 

where ,t,0 : IR" _, IR+ is the Steklov mollifier defined by 

equivalently, 

{ 1/a" 
V'a(Y) := O 

if y E [-a/2, a/2]", 
otherwise; 

1 1•1+0/2 1••+0/2 
la(x) = ~ · ·· l(y)dy1 ... dyn, 

Q :z:1 -o./2 ::t'n -a/2 

The partia] derivatives of la are given by (cf. [ENW95, Prop. 3.11], [Gup77]) 

(2.4) 8la J. -8 (x) = 1,(x,a,()d( 
X,: Boo 
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for i = l, ... , n, where IR00 := [-1/2, 1/2)" is the unit cube centered at O and 

(2.5) ,,(x, a,() := 

.!_[f(x1 + ~(1, · + ( + I + ( + ( ) O' u. .,Xi-1 Oi-l,Xi 20\Xi+l O'i+l,···,Xn On 

- f(xi + 0:(1, .. , ,Xi-1 + o(i-1, Xi - ½a,Xi+l + a(i+I, ... , Xn + o(n)]. 

Thus, for the unit cube Z := TI:'.:, IR00 in IR"x", we may estimate 'il f,,(x) by 

(2.6) 1 (x,a,z) := (,1(x,a,(1), ... ,,n(x,a,(")) for z:= ((1, ... ,(") EZ. 

This needs just 2n evaluations off; f„ is convenient only for convergence analysis. 
We now state our NS algorithm. lt employs a sequence of mollifier parameters 

<>k 1 O in (O, l]. For a closed convex set G, Proj(O IG) is its minimum-norm element. 
ALGORITHM 2.1 (NS algorithm). 
Step O (initialization). Select an initial point x 1 E !Rn, optimality tolerances 

v0 p,, <opt 2'. O, line search parameters /3, "-, i in (O, 1), reduction factors µ, 0 in (O, 1), 
a sampling radius , 1 > O, a stationarity target v1 2'. O and a sample size m 2'. n+ I. 
Set k := I. 

Step 1 (approximate the Clarke ,-subdifferential by sampling estimates ofmollifier 
gradients). Let {xk'}i:1 and {zk'}i:1 be sampled independently and uniformly from 
B(xk, ,k) and Z, respectively. Set 

(2.7) Gk := co{,(xk1,ak,zk1), ... ,1 (xk"',ak,zkm)}. 

Step 2 (direction finding). Set gk := Proj(O I Gk)-
Step 3 (stopping criterion). If jgkj $ v0 p, and <k $ <opt, terminate. 
Step 4 (sampling radius update). If jgkl $ vk, set vk+1 := Bvk, <k+1 := Wk, 

tk := O, xk+I := xk and go to Step 7. Otherwise, set Vk+I := vk, 'k+I := <k and 

(2.8) 

Step 5 (limited Armijo line search). Find a step size tk as follows: 
(i) Choose an initial step size t = t~0 ; 2'. t~;n := min{.(, "-'k/3}. 

(ii) If f(xk + tdk) $ f(xk) - /3tlgkl, return tk := t. 
(iii) If 1<t < t~;n, return tk := O. 
(iv) Set t := 1<t and go to (ii). 

Step 6 (updating). Set xk+I := xk + tkdk. 
Step 7. Increase k by 1 and go to Step I. 
Since ldkl = 1 by (2.8), Steps 5 and 6 ensure the usual Armijo condition 

(2.9) f(xk+ 1) $ f(xk) - f3tklil = f(xk) - f31xk+I - xkl lł l, 

which also holds when xk+ 1 := xk at Step 4. 

3. Convergence analysis. We start with severa! technical lemmas. The first 
lemma on approximate least-norm elements extends [Kiw07, Lemma 3.1). 

LEMMA 3.1. Let 0 -f CC IR" be compact convex and /3 E (O, 1). Jf O~ C, there 
exists o> O such that u E !Rn, dist(u I C) $ ó, lul $ dist(O I C) + ó and v EC imply 
(v, u) > filul 2 • 

Proof If the assertion were false, we could pick two sequences {u'} CIR", {v'} C 
C satisfying dist(u' I C) $ 1/i, lu'I $ dist(O I C) + 1/i and (v", u') $ /31u'l 2 . By 
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compactness, we may assume u'--> u EC, v'--> ii EC; thus (ii, u)$ Pliil2. However, 
ii= Proj(0 I C) I O satisfies (v, ii) ~ liil2 for all v E C, a contradiction. D 

We now show that 7(·, a, z) approximates 'il fon D w hen a is small enough, for 
any z E Z. To this end, for Lemmas 3.2 and 3.3 we could use other standard approxi
mations (e.g., central differences with z= O). However, for asymptotic stationarity in 
Lemma 3.7, the random choice of zk1 gives crucial connection between -y(xk1,ak,zkl) 
and 'il fa, (xk1) via Lemma 3.4, whereas Lemmas 3.5 and 3.6 relate 'il fa with 8,f. 

LEMMA 3.2. Let x E D and 6 > O. There exist l > O and a > O such that 
l'v f(x) - -y(x, a, z)I < 6 for all x E B(x,l), c, E (O, a] and z E Z . 

Proof. Since 'il f is continuous on the open set D, there exist l > O and ó > O such 
that l'v f(x) - 'il f(x)I < 6 := 6/ ,/n for all x E B(x,l) + &B00 CD. Let x E B(x, l), 
a E (O, a], z := ((1, ... , (n) E Z. For each 1 $ i $ n, by (2.p) and the mea.n 
value theorem, there is x' E B(x,l) + aB00 with -y,(x,a,(') = l;;(x') and hence 

1/t(x) - -y;(x, a, (')I < J; in effect, l'v f(x) - -y(x, a, z)I < 6 by (2.6).• • 
It is useful to note that B(x, <) in (2.2) ma.y be replaced by its interior B(x, <), 

since the set 'il J(B(x, <) n D) = cl 'il f(B(x, <) n D) is bounded by our assumption on 
f, whereas co cl S = cl co S for any bounded set S C ]Rn. 

The next lemma states basie properties of the set of points close to a given point x 
that can be used to provide a 6-approximation to the least-norm element of G,(x); it 
extends [BLO05, Lemma 3.2] and [Kiw07, Lemma 3.2] by replacing gradients 'il f(y1) 

with their estimates -y(y1, a, z1) for points y1 E D and z1 E Z. For <, 6, a > O and 
1\ x E IRn, using the measure of proximity to E-stationarity 

(3.1) 

let 

(3.2) 

and 

p,(x) := dist(0 I G,(x)) , 

m 

D;"(x) := IT(B(x,<)nD) C ITIRn 

(3.3) v.,,,(x, x, 6) := 

{ (y 1 , ... , ym) E D;"(x) : dist(0 I co{'Y(y1, a, z1)}i'.:, 1) $ p,(x) + 6, 

dist({'Y(y1,a,z1)}i'.:,1 IG,(x)) $ 6, for all {z1}i'.:, 1 c Z,a E (O,&]}. 

LEMMA 3.3. Let <>O and x E ]Rn_ 

(i) For any 6 > O, there are a > O, r > O and a nonempty open set ii satisfying 
ii c V., 0 (x, x, 6) for all x E B(x, r). 

(ii) Assuming O~ G,(x), pick 6 > O as in Lemma 3.1 for C := G,(x), and then 
a, T and ii as in statement (i). Suppose at iteration k of Algorithm 2.1, Step 5 is 
reached with xk E B(x, min{r,</3}), <k = <, c,k $ a and (x" 1 , ... ,xkm) E ii. Then 
tk ~ min{t, x:</3}. 

Proof. (i) Let u E co 'il J(B(x, <) n D) be such that !ul < p,(x) + 6. Then 
Ca.ratheodory's theorem [Roc70] implies the existence of (x 1 , •.. , xm) E D;"(x) and 
A E llł';' with I:;'.:, 1 A, = 1 such that u= I:;'.:,, A1'vf(x1). By Lemma 3.2, there 
are < E (O,<) and a E (O, l] such that the set ii := IT;'.:,1 B(x1, l) lies in D;'.'..,(x), 
I I:;'.:,, An(y1, a, z1)1 $ p,(x) + 6 and <list( {'Y(y1, a, z1)}i:1 I G,(x)) $ 6 for all points 
(y 1 , ..• ,ym) E ii, {z'}i:1 c Z, a E (0,a]. Hence for all x E B(x,r) with r := l, the 
fact that B(x, < - l) C B(x, <) yields ii C V. ,,.(x, x, 6) by the definitions (3.2)-(3.3). 
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(ii) Since (xk 1, ... , x•m) E V C V.,&(i , i, ó) in statement (i), we get dist(0 I Gk) $ 
p,(x) + ó and dist(Gk / C) $ ó from (3.3) and (2.7). Thus, by the construction of g• 
at Step 2, /g•/ $ p,(x) + ó and dist(gk I C) $ ó. Hence by (3.1) and the choice of ó in 
Lemma 3.1, 

(3.4) (v,l) > ,6/l/2 for all v E G,(x) , 

Let t E (O, e/3]. By Lebourg's mean value theorem (cf. [Cla.83, Theorem 2.3.7]), 
f(xk + tdk) - f(xk) = t(v , dk) for some v E 8/(x) with x E [xk + tdk,xk]. Then, 
using dk := -gk//gk/, t/dk/ $ e/3 and lxk - x/ $ e/3 imply x E B(x, 2e/3) and hence 
v E G,(f), and so (v, dk) < -,6/gk/ by (3.4). Therefore, f(xk + tdk) < f(xk) - ,5t/gk/ 
for all t E (O, e/3], and the conclusion fo!lows from the rules of Step 5. O 

The fo!lowing result implies that 'l'(x, a, z) provides a p-approximation to 'v f 0 (x) 
when z happens to !ie in a cube of side s := min{p/2Ln, 1/2✓,i} contained in Z , 
where L is a Lipschitz constant for f on x + llł00 and a E (O, l]; this occurs with 
probability at least sn' when z is sampled from a uniform distribution on Z. 

LEMMA 3.4. Let a E (O, lj, p > O and x EX, where X C !Rn is bounded, and let 
L be a Lipschitz constant for f on X + allł00 • 

(i) For each l $i$ n, there exists i; E llł00 such that /~(x) -')';(x, a, ()I $ p 
for all ( in the set llł00 n B((,p/2L). Moreover, this set contains a cube of side 
s := min{p/2Ly'n, 1/2}. 

(ii) f'vf0 (x)-1'(x,a,z)/ $ pforall z in a cube ofside s := min{p/2Ln,1/2fo} 
contained in Z. 

Proof (i) Let 1>(() := ')';(x , a,() - ~(x). By (2.4)-(2.5), fe= 1>(() d( = O and 

2L is a Lipschitz constant for q, on !lł00 • Hence there is i; E llł00 with q,(() = O. Indeed, 
if q,( (') > O for some (' E llł00 , then q,( (") < O for some (" E 1 00 ( otherwise the 
continuity of q, on llł00 would give f8 = q,(() d( > O, a contradiction), so 1>(() = O for 

some i; E [(', ("]; similarly for q,((') < O. Since /q,(()-1>(()/ $ 2Lf(-(/ forall ( E llłoo, 
the first assertion follows. For the second assertion, using B( i;, p/2L) :> i;+ 2sllł00 , 
take the cube ( + sllł00 with (,:=i;, - sign((,)s/2 for i= 1, ... ,n. 

(ii) This fo!lows from (2.6) and statement (i) with p replaced by p/ fo. • 
For asymptotic stationarity, we need the following resu]t of [MaP84, Prop. 2.2]. 
LEMMA 3.5. Let x E !Rn, a> O. Then 'v f 0 (x) E co8/(x+2allł00 ) C 8,;;;0 /(x). 
Proof The derivative of la at x in any direction d E !Rn, /d/ = 1, is given by 

{'v f 0 (x), d) =lim~ { {[f(x+y+td)- f(x+y)]/t} dy= lim~ { (v(y, t), d) dy, 
t!O a lasoc t!O Q laBoo 

where, by Lebourg's mean value theorem, v(y, t) E 8/(x +y + atd) for some a E [O, l]. 
Hence, v(y, t) Eco 8/(x + 2allł00 ) for all y E allł00 and t E [O, a/2], so that 'v / 0 (x) E 
co8f(x + 2allł00 ). Since x + 2allł00 C B(x, foa), (2.1) yields the conclusion. O 

Actually, we mostly need only the following simple consequence of Lemma 3.5. 
LEMMA 3.6. Let i E !Rn, E <'. O, p > O. There exist <' > E and & E (O, l] such 

that dist('vf0 (B(i,<)) /8.f(x)) $ p for all a E (O,&]. 
Proof Since 8.f(x) is closed, there is ,, > E with 8,, f(x) C 8.f(x) + B(O, p). 

Pick < > e and & E (O, l] such that < + y'n& $ ,'. By Lemma 3.5, 'v f 0 (B(x, <)) c 
co8f(B(x,<+ y'na)) C 8,, f(x) for all a E (O,&], and the conclusion follows. O 

In the GS algorithm, one has gk E 8,J(xk), so when gk vanishes around a cluster 
point x, then OE 8.f(x) for•• l, because 8./(·) is closed. Here we only have gk E Gk 



6 KRZYSZTOF C. KIWIEL 

in (2.7), but we may relate -y(xk1,<>k,zk1) with 'v/0 ,(x•') via Lemma 3.4, and then 
'v / 0 , (xk1) with 8.J(x) via Lemma 3.6 to get the following. 

LEMMA 3. 7. Suppose <>k l O, <k l , c>: O, xk K x and 9• K O for a subsequence 
Kc {I, 2, ... }. Then OE 8.J(x) with probability I. 

Proof. Let C := 8.f(x). Suppose Or/. C, i.e., p := dist(0 I C) > O. Let p := p/4. 
By Lemma 3.6, since {x•1}f,;1 C B(x•, <k), there are < > f, & E (O, I] and k such that 
for all kin k := {k E K: kc>: k}, we have <>k $ &, l9kl $ p, {x•1}f,;1 C X:= B(x, <) 
and <list( {'v Io, (x•1)}f,;1 I C) $ p. Hence, if we had for same k E k, 

(3.5) 

then with 9k E Ck in (2.7) we would get dist(g• I C) $ 2p and dist(0 I C) $ Jgkl+2p $ 
3p, i.e., p $ 3p/4, a contradiction. Therefore, (3.5) musi fai! for all k E k. This 
event has probability O, since for each k E /( and I = I, ... , m, z•1 is sam pled 
independently and uniformly from Z, which by Lemma 3.4 contains a cube z•1 of 
side s := min{p/2Ln, 1/2,/n} (with L a Lipschitz constant for fon X+ &1800 ) such 
that l'v / 0 , (x•') - -y(xk1, <>k, z)I $ p for all z E zkl_ The conclusion follows. O 

Our convergence results parallel those in [Kiw07] for the GS algorithm. We start 
with the case where •• and "k are allowed to decrease. 

THEOREM 3.8. Let {xk} be a sequence 9enerated by Al9orithm 2.1 with v1 > 
l.lopt = fopt = O andµ, 0 < I. With probability l either f(xk) l -oo, or l.lk l O, fk l O 
and every cluster point of { xk} is stationary for f. 

Proof (i) If f(x•) l -oo, there is nothing to prove, so assume infk f(xk) > -oo. 

Then summing ,Btkl9kl $ f(xk) - f(xk+ 1) in (2.9) gives 

(3.6) 

00 

(3.7) I: lxk+I - x•llłl < oo. 

k=l 

(ii) Suppose there is k1 , ;;; > O and < > Osuch that l.lk = ;;; and •• = < for all 
k c>: k,. Using l9kl c>: ;;; in (3.6)-(3.7) yields tk --+ O, Lk jx•+1 - x•j < oo, and 
hence the existence of a point x such that xk --+ x. Let f := <. First, suppose 
O r/. G,(x). For c5, ći, T and V chosen as in Lemma 3.3(ii), we can pick k2 c>: k1 such 
that xk E B(x, min{ T, •/3} ), <>k $ a and tk < min{!, 1<</3} yield (x•1 , .. , x•m) r/. V 
for all k c>: k2. This event has probability O, since for each k c>: k 2, (xkl, ... , xkm) is 
sampled independently and uniformly from cl D;"(xk), which contains the open set 
V =J 0. Second, suppose OE G,(x). For c5 := v/2 and ći, T, V chosen as in Lemma 
3.3(i), we can pick k3 c>: k1 such that x• E B(x, T), <>k $ a, ;;; $ 19•1 = dist(0 I Gk) 
in (2.7) and p,(x) = O imply (xkl, . . , xkm) r/. V for all k c>: k3. This event has 
probability O as well. 

(iii) Consider the event where vk L O, fk L O and {xk} has a cluster point x. If 
xk f, x, we claim that lim• max{lxk - xl, j9kl) = O. Otherwise, there exist ;;; > O, 
k and an infinite set K := {k · k c>: k, lxk - xl $ v) such that l9kl > ;;; for all 
k E K, so (3.7) gives LkEK lxk+ 1 - x•j < oo. Since x• f, x, there is v > O such 
that for each k E K with lxk - xl $ ;;; /2 there exists k' > k satisfying lxk' - xk I > C, 

and lx' - xl $ ;;; for all k $ i < k'. Therefore, by the triangle inequality, we have 

v < lxk' - xkl $ E~~-;;1 lx'+ 1 - x'I with the right side being less than v for large 
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k E K from I:keK lxk+I - xkl < oo, a contradiction. If xk --+ x, then Vk l O at Step 
4 also gives limk max{ lxk - xl, lgk I} = O. Using this relation to pick a sui table K for 
Lemma 3. 7 yields the conclusion. O 

THEOREM 3.9. Let {xk) be a sequence generated by Algorithm 2.1 with v 1 > 
Vopt = <opt = O and µ,0 < I. Sv.ppose the level set {x: f(x) $ f(x 1)) is bounded. 
Then with probability I, Vk l O, <kl O, every cluster point of {xk) is stationary for 
f and gk KO for K := {k: Vk+1 < vk). 

Proof Since {xk) lies in the bounded set {x: f(x) $ f(x 1)}, infkf(xk) > -oo 
and the conclusion follows from Theorem 3.8. O 

Our convergence results for fixed sampling radius follow. 
THEOREM 3.10. Lei {xk) be a sequence generated by Algorithm 2.1 with v1 = 

Vopt = O, <1 = <opt = E > O and µ = I. With probability I either the algorithm 
terminates at same iteration k with gk = O, or f(xk) ! -oo, or there is a subsequence 
K ~ { I, 2, ... } such that gk K O and every cluster point x of { xk heJ< satisfies 
OE 8.f(x). 

Proof We may assume that no termination occurs and infk f(xk) > -oo. 
By part (ii) of the proof of Theorem 3.8, for ii := limk lgk l/2, the event ii > O has 

probability O. In the remaining case of ii= O, !imk IYkl = O and the conclusion follows 
from Lemma 3.7. O 

THEOREM 3.11. Lei {xk) be a sequence generated by Algorithm 2.1 with v1 = 
Vopt = O, <1 = <opt =,>O andµ= I. Suppose the set {x: f(x) $ f(x 1)} is bov.nded. 
With probability I either the algorithm terminates at some iteration k with gk = O, 
or gk--+ O and every cluster point x of {xk) satisfies OE 8.f(x). 

Proof. Arguing by contradiction, it suffices to consider the case where there are 
a set J C {1 , 2, . .. } and ii > Osuch that limkeJ l9kl 2: W. Since {xk) lies in the 
bounded set {x: f(x) $ f(x 1)}, infk f(xk) > -oo and we may assume with no loss 
of genera!ity that there is a point x such that xk y' x. Since (3.6) gives tk y' O, 
arguing as in part (ii) of the proof of Theorem 3.8 we deduce the existence of k4 and 
an open set V f 0 such that (xk 1, ... , xkm) ,t V c D;"(xk) for all k 2: k4 , k EJ. This 
event has probability O, since for each k, (xk 1, ... , xkm) is sampled independently and 
uniformly from cl D;"(xk)_ O 

Remark 3.12 . If Step 3 is omitted, then Theorems 3.10 and 3.11 hold with the 
statements about termination omitted (by their proofs). In particular, if gk' = O for 
some k', we may have O ,t 8,f(xk'), but if xk = x•' for all k 2: k', then OE 8,f(xk') 
with probability I. 

4. Modifications. In this section we propose severa! themes, supported by the
ory, that might prove useful in improving the practical performance of the method. 

4.1. Stopping criteria. Recalling Remark 3.12, consider the following result. 
LEMMA 4 .1. Let •~ := Ek + )nok. ff (3 .5) holds for some p > O, then 

(4.1) 

Thv.s, for any p > O, (3.5) and (4.1) hold with probability at least smn', where s .
min{p/2Ln, 1/2Jn} with L a Lipschitz constant for f on B(xk, ,k) + Boo-

Proof Since {xk1}l'.;1 c B(xk,,k), Lemma 3.5 gives G~ := co{v'fo,(xk1)}1=1 C 
8,J(xk). Thus dist{0 I 8,J(xk)) $ dist(0 I GU, where dist{0 I GU $ dist(0 I Gk) + p 

by (2.7) if (3.5) holds; then (4.1) follows with Jgkl = dist(0 I Gk). The fina! assertion 
about probabilities stems from Lemma 3.4 as in the proof of Lemma 3. 7. O 
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Remark 3.12 and Lemma 4.1 suggest that in practice, for Vopt, <opt > O, the 
stopping criterion of Step 3 should be augmented with the condition that, for a given 
integer k1 ... , xk has not changed during the last k1Mt iterations. 

Alternatively, for a given integer O'max 2'. 1 (playing the role of k1.,,), we may 
consider a resampling variant where Step O sets the sampling counter O't := I, Step 7 
sets O'k+t := 1, and Step 3 is replaced by the following. 

Step 3' (stopping criterion). If jgkj > Vopt or •k > <opt, go to Step 4. If O'k = O'max, 

terminale. Otherwise, set O'k := O'k + l and return to Step 1. 
Upon termination in Step 3', by Lemma 4.1, for any p > O, we have 

(4.2) 

with probability p 2'. 1- (1- smn')""' .. , where s is given in Lemma 4.1. In particular, 
p 2'. j5 for a given j5 E (O, 1) if O'max 2'. log(l - p)/ log(l - smn'), 

4.2. Initial step sizes. Since Algorithm 2.1 employs search directions dk := 

-gk/lgkl of unit norm, the choice of an initial step size t~ni at Step 5(i) may be crucial 
in practice. For instance, if ttni = 1, then the number of /-evaluations per line search 
grows to infinity when tk = jxk+I - x•I--> O (e.g., {xk} converges). To provide more 
freedom for implementations, at Step 5(i) we may replace t~,n by 

(4.3) 

Then, e.g., t~ni = jgkj corresponds to using a unit initial step size for the nonnormalized 
search direction -gk as in [Kiw07, §4.l]. whereas t~ni = fk corresponds to searching 
within the sampled trust region B(xk, ,k) as in [Kiw07, §4.2]. 

For (4.3), we need only replace tk 2'. min{!, ,c,/3} by tk 2'. min{!, 1t•/3, jgkl} in 
Lemma 3.3(ii), and tk < min{!, ,ce/3} by tk < min{t, 1t•/3, v} in part (ii) of the proof 
ofTheorem 3.8 (where jgkj 2'. v). In effect, the preceding convergence results hold for 
this modification. 

4.3. Using the current gradient estimate. Since the GS algorithm augments 
its bundle with the current gradient "il f(xk), we now consider a similar extension. At 
Step I, let zkO be sampled independently and uniformly from Z, set xkO := xk and 

( 4.4) Gk := co{ 'J'(XkO' "'•· zko), 1'(x•1. °'k' zkl ), ' '. ''J'(Xkm' °'k, zkm)}' 

To extend our preceding results, we replace Lemma 3.3(ii) by the following. 
LEMMA 4.2. Let , > O and x E !Rn. Assuming O~ G,(x), pick ó > O as in 

Lemma 3.1 for C := G,(x), and then a, rand ii as in Lemma 3.3(i). Let & E (O, l] 
be such that dist("il/a(B(x,e/2)) 18,;2 /(x)):,; ó/2 for all a, E (O,&] (cf. Lemma 3.6), 
and let L be the Lipschitz constant off on B(x, r) + IIJ00 • Suppose at iteration k of 
Algorithm 2.1, Step 5 is reached with x• E B(x, min{r,,/3}), •• = ,, °'k:,; min{a, &} 
and (x•1, .. . , xkm) E ii. Using Lemm.a 3.4 with p := ó/2, let z•0 be a cube of side 
s := min{p/2Ln, 1/2,/n} contained in Z such that l"i! /0 , (xk) - 'l'(xk, °'k, z)I :,; p for 
all z in this cube, and suppose ,ko E zko. Then tk 2'. min{!,,ce/3}. 

Proof. Since °'k:,; &, x• E B(x, ,j2), 8,;2f(x) c C and ,•0 E z•0 , we have 

Let Gk := co{'l'(xk',<>k,z•1n,,:,1, Since (xk1, .. , ,x•mi E ii C v.,,,(x,x,ó) in Lemma 
3.3(i), we get dist(0 I CI.) :,; p,(x) + ó and dist(Gk I C) :,; ó Crom (3.3). Thus, by 
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(4.4) and the construction of gk at Step 2, dist(Gk I C) ś ó, lgkl ś p,(x) + ó and 
dist(gk I C) ś ó. The conclusion fellows as in the proof of Lemma 3.3(ii). D 

The proof of Lemma 3.7 goes through (with I= I replaced by l = O and (2.7) by 
(4.4)). In part (ii) of the proof of Theorem 3.8 for O (je G,(x), replacing Lemma 3.3(ii) 
by Lemma 4.2, we can pick k2 such that ((xk 1 , ..• , xkm), zk0 ) (je V x zko for all k :OC: k2, 
again concluding that this event has probability O by the uniform and independent 
sampling of (xk 1 , ... , xkm) in cl D;"(xk) and zkD in Z, since cl D;"(xk) contains the 
open set V i O and Z contains the cube zko of side s := min{ó/4Ln, 1/2,/n}. The 
proof of Theorem 3.11 is modified accordingly. In elfect, the preceding convergence 
results hold for this modification. 

4.4. Larger samples for Monte Carlo estimates. At Step I, the estimates 
-y(xk1, °'k, zk1) stem from single samples zkl E Z. In the Monte Carlo spirit, we may 
consider estimates that are averages over several samples. Thus, for a :2:' I denoting 
the z-sample size, !et z := rrj=l z be the sample set, and !et 

(4.5) -y(x, a, z) := :_ "'~ -y(x, a, z1) for z:= (z 1 , .•. , za) E Z. 
Cf L1=l 

Then at Step I, {zkl}i:!,1 and Z are replaced by {zk'}r;:, 1 and Z, respectively. 
The preceding convergence results extend easily to this modification. Indeed, 

it suffices to notice that if lg - -y(x, a, z')I ś p for j = I, ... , a, then (4.5) gives 
lg--y(x,a,z)I śp, whereg = 'vf(x) andp= ó forLemma3.2, andg= 'vf0 (x ) with 
a= °'k and x = xk1 in the proof of Lemma 3.7. 

By similar arguments, we could use a variable sample size ak with supk ak < oo. 

4.5. Sampling in cubes instead of balls. Replacing the bali B(x, <) in (2.1)
(2.2) by the cube B00 (x, <) := {y: IY - xl00 ś <} = x + 2<1800 centered at x of side 2<, 
where I· 100 is the oo-norm, we may replace B(xk, <k) by B00 (xk, <k) at Step I. 

The preceding results extend easily with B00 (-, •) replacing B(-, •) in Lemma 3.2, 
(3.2), Lemma 3.3 and its proof (also using fd"l 00 ś I there), ,/n omitted in Lemma 
3.5 and the proof of Lemma 3.6, and<~ := <k + °'k in Lemma 4.1. 

4.6. Incrementa! sampling. At Step I, the whole bundle of gradient estimates 
Gk of size m 2'. n+ I is generated in one stage. Instead, we may build the bundle 

(4.6) 

incremental!y by increasing its size mk until either descent occurs or mk = m. This 
may save the aracie work when mk < m suffices for descent or reducing lgkl-

To this end, setting mo := O at Step O, replace Step 1 by the following. 
Step I (approximate the Clarke <-subdilferential by sampling estimates of mollifier 

gradients). Pick the current sample size mk E [mk-l + l,m]. Let {xk1};'.'.,"m,_,+J 
and {zk1};'.:,'m,_,+J be sampled independently and uniformly from B(xk, <k) and Z, 

respectively. Compute {-y(xk1,ak,zk1)};'.:,~n,_,+ 1 and set Gk by (4.6). 

At Step 4, if lgkl ś vk, set mk := O to start new sampling. At Step 6, if tk = O 
and mk < m, set mk-l := mk and go back to Step l; otherwise, set mk := O. 

Thus Steps 4 and 6 restart sampling by setting mk := O if there is progress in 
stationarity (lgkl ś vk), descent (tk > O) or the sample is full (mk = m). 

The preceding convergence results extend easily to this modification. Indeed, in 
view of (4.6), we may replace m by mk in the proof of Lemma 3.7. In part (ii) of the 
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proof of Theorem 3.8, we have tk = O for k 2: k2 in generał (cf. t~; 0 at Step 5) , and 
hence mk = m by the modified Step 6 above. 

Remark 4.3. 
(i) lf Step 5 chooses an initial t~0 ; = t~;n, it gives either tk = t~;n or tk = O; 

thus, the additional worst-case cost of the incrementa] version is relatively small: at 
most m - 1 f-evaluations relative to 2mn for computing the full Gk with mk = m . 

(ii) For mk = mk-1 + 1 and t~; = t~; 0 , Steps 1 and 5 need 2n+ 1 f-evaluations. 

4. 7. Bundling past information. The incrementa] version of Sect. 4.6 can be 
equipped with additional bundle memory, using the following notation. 

The current sampled bundle Gk := co{-y(xk1, ak, zkl)}I:j is managed as in Sect. 
4.6. Some gradient estimates obtained earlier are stored in the past bundle 

(4.7) Gk :=co{-y(xi1,a;,zi1)}u.i)E[, with h C {l, ... ,k-1} x {l, ... ,m}, 

where h is chosen so that for a fixed past bundle size m 2: 1, 

(4.8) 

(4.9) ó~ax := max O!j --+ O as k -+ oo. 
(j,l)El, 

To check fxi' - x•[ $ O.99ek in (4.8) without storing x11 , fxi' - xkf may be replaced 
by its overestimate fxi1 - xif + I":~;;:) fx' - xi+ 1[. As for (4.9), since ak 1 O, we may 
require that ó~,.x $ 1<0 ak for a constant 1<0 > 1. Finally, the total bundle is 

(4.10) 

Formally, this version employs the modifications of Sect. 4.6 for managing mk, 
Additionally, Step O chooses m 2: O and sets Ii := 0, whereas Step 1 sets {;. as in 
(4.6), chooses Gk via (4.7)- (4.9) and sets Gk by (4.10). Of course, there is stili room 
for implementation choices. For instance, when Step 6 returns to Step 1, we may keep 
the same Gk, At Step 7, we may obtain Gk+t from Gk by dropping points with "too 
large" values of fxi' - xk+1[ or a1. 

To extend our preceding results, we replace Lemma 3.3(ii) by the following. 
LEMMA 4.4. Let e > O and x E IRn. Assuming O 1/c G,(x), pick ó > O as in 

Lemma 3.1 for C := G,(x), and then ii, -r and V as in Lemma 3.3(i). For p := ó/2, 
let & E (O, 1) be such that dist(v' f 0 (B(x, 0.999e)) I 80.000.f(x)) $ p for all a E (O,&) 
(cf. Lemma 3.6), and let L be the Lipschitz constant off on B(x, e)+B00 • Suppose at 
iteration k of Algorithm 2.1, Step 5 is reached with xk E B(x, min{-r, e/1000} ), Ek = e, 
max{ak,Ó~a,J $ min{ći,ó}, mk = m and (xk 1 , ... ,xkm) EV. Using Lemma 3.4, 
for each (j, l) Eh, let zi' be a cube of side s := min{p/2Ln, 1/2,/n} contained in Z 
such that fv'fa;(xi1)-'Y(xi1,a;, z)f $ p for all z in this cube, and suppose zi1 E zi' . 
Then tk 2: min U, 1<e/3}. 

Proof For each (j,l) Eh. since a;$ & by (4.9), xi1 E B(x,O.999e) by (4.8) with 
fxk - xf $ e/1000, 80.999,f(x) c C and zi1 E Zi 1, we have 

dist("((x11 , a;, z11 ) f C) $ dist(v' fa ; (x11) f C) + ['Y(x11 , a;, z11 ) - v' fa, (x11 )f $ ó. 

For Gk := co{-y(xk1 ,ak, zk1)}~1> since (xk 1 , ••• ,xkm) E V c V.,,.(x, x, ó) in Lemma 
3.3(i), we get dist(0 / Gk) $ p,(x) + ó and dist(Gk / C) $ ó from (3.3). Thus, by 
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(4.10) and the construction of gk at Step 2, dist(Gk I C) $ o, fgkf $ p,(x) + o and 
dist(gk I C) $ o. The conclusion follows as in the proof of Lemma 3.3(ii). O 

The proof of Lemma 3.7 goes through, with the additional conditions that for kin 
k, a::,ax $ & (cf. (4.9)), {x11 }(j,l)Eh C X (cf. (4.8)), dist({'ii'fo;(x11)}(j,l)Eh fC) $ p, 
(3.5) is augmented with f'ii' Io; (x11 ) - 1(x11 , °'i• z11 )1 $ p for all (j, I) E h, and (4.10) 
replaces (2. 7). In part (ii) of the proof of Theorem 3.8 for O ~ G,(x), replacing Lemma 
3.3(ii) by Lemma 4.4, we may argue as in Sect. 4.3, with zkO and zkO replaced by z'' 
and Z 11 . The proof of Theorem 3.11 is modified accordingly. In effect, the preceding 
convergence results hold for this modification. 

Remark 4.5. 
(i) By modifying Lemma 4.4 and its proof, we may replace the factor 0.99 in 

(4.8) by any number in (O, 1); e.g., 0.999999. 
(ii) The sampling region may change re!atively slowly to keep most of past 

estimates; e.g., we have fxk+ 1 - xkf $ <k/6 for K = 1/2 and tfni = t~,in = <k/6. 

REFERENCES 

[ABLDOS] C. AUDET, V. BECHARD, AND S. LE DICAl3EL, Nonsmooth optimization through mesh 
adaptive direct search and variable neighborhood search, J. Global Optim., 41 (2008), 
pp. 299-318. 

[AuD06] C. AUDET AND J. E. DENNIS, JR., Mesh adaptive dire.ct search algori.thms Jor constrained 
optimization, SIAM J. Optim., 17 (2006), pp. 188-217. 

[8HLO06J J. V. BURKE, D. HENRI0N, A. S. LEWIS, AND M. L. OVERT0N, Stabilization via 
nonsmooth, nonconvex optimization, IEEE Trans. Automat. Control, 51 (2006), 
pp. 1760-1769. 

[8LO02a] J. V. DunKE, A. S. LEWIS, AND M. L. OVERTON, Approximating subdifferentials by 
random sampling of grodients, Math. Oper. Res., 27 (2002), pp. 567-584. 

IBLO02b) --, Two numerical methods Jor optimizing matrix stability, Linear Algebra Appl., 
351/352 (2002), pp. 147-184. 

{BLO04J --, Pseudospectral components and the distance to uncontollability, SIAM J. Matrix 
Ana!. Appl., 26 (2004), pp. 350-361. 

{BLO05J --, A robust gradient sampling algorithm for nonsmooth, nonconvex optimization, 
SIAM J. Optim., 15 (2005), pp. 751-779. 

(CDV08j A. L. CUSTÓDIO, J. E. DENNIS, Jn., AND L. N. VICENTE, Using simplex gradients of 
nonsmooth Junctions in dire.ct search methods, IMA J. Numer. Ana!., 28 (2008), 
pp. 770-784. 

!Cla83J F. H. CLARKE, Optimization and Nonsmooth Analysis, Wiley, New York, 1983. 
[CuV07J A. L. CUSTÓDIO AND L. N. VICENTE, Using sampling and simplex derivatives in pattern 

search methods, SIAM J. Optim., 18 (2007), pp. 537-555. 
[ENW95] Yu. ERMOLIEV, V. NORKIN, AND R. J.-!3. WETS, The minimization of semicontinuous 

functions: Mollifier subgradients, SIAM J. Control Optim., 32 (1995), pp, 149-167. 
[Gol77J A. A. GOLDSTEIN, Optimization of Lipschitz continuous functions, Math. Programming, 

13 (1977), pp. 14-22. 
[Gup77J A. M. CUPAL, On a minimization metl1od for almost-differentiable functions, Kiber-

netika , (1977), pp. 114-116 (Russian). English trans!. in Cybernetics 13 (1977) 115-
117. 

[Gup79] --, Stochastic Methods for Solving Nonsmooth Extremum Problems, Naukova Dumka, 
I<iev, 1979 (Russian). 

[Kiw96] I<. C. KIWIEL, Restricted step and Levenberg-Marquardt techniques in proximal bundle 
methods for nonconvex nondifferentiable optimization, SIAM J. Optim., 6 (1996), 
pp. 227-249. 

jl<iw07] --, Convergence of the gmdient sampling algorithm for nonsmooth nonconvex opti-
mization, SIAM J. Optim., 18 (2007), pp. 379-388. 

[Lew05J A. S. LEWIS, Local structure. and algorithms in nonsmooth optimization, in Optimiza-
tion and Applications, F. Jarre, C. Lemarlichal, and J. Zowe, eds., Mathematisches 
Forschungsinstitut Oberwolfach, Oberwolfach, Germany, 2005, pp. 104-106. 

[MaP84] O. Q. MAYNE AND E. POLAI<, Nondifferential optimization via adaptive smoothing, J. 
Optim. Theory Appl., 43 (1984), pp. 601-613. 



12 

[Roc70) 
[RoW98) 

KRZYSZTOF C. K!WIEL 

R . T. ROCKAFELLAR, Convex Analysis, Princeton University Press, Princeton, NJ, 1970. 
R. T. RocKAFELLAR AND R. J.-B. WETS, Variational Analysis, Springer, Berlin, 1998. 








