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Application of evolutionary algorithm technique in long-term 
analysis of emission reduction on a regional scale 

Jarosław Stańczak', Piotr Holnicki' 

Abstract 

The paper deals with the problem as a long-term, eost-effeetive analysis of environmental quality related 
to air pollution and eonsidered in a predefined time horizon. The problem is formally stated the optima( 
alloeation of finaneial means for the long-term reduetion of SO2 eoneentration in a given region. The 
optimal ehoiee of desulfurization teehnologies during a given time horizon, within the predefined set of 
the eontrolled power and heating plants is a diffieult, integer-type optimization task. The paper presents 
solution of the basie task based on the evolutionary algorithm teehnique. The method has been 
implemented and tested on the real data for Silesia Region (Poland), with the set of the basie 
desulfurization teehnologies, whieh are to be alloeated to the major power plants loeated in the region. 
Two alternative formulations of the optimization problem are diseussed. The definition includes the 
measure of environmental damage related to air pollution and the eost of emission abatement strategy 
applied. 

1. Introduction 

Poland is one of the most polluted areas in the Central Europe. Air quality deterioration is, first 
of all, due to the sulfur oxides, emitted by a number of power and heating plants, industrial and 
domestic sources, transportation system. The most significant environmental damage is caused by 
the energy sector, since the dominating source of electricity production is coal (hard coal and 
lignite) combustion. The modernization of this sector and emission reduction is one of the 
fundamental environmental problems considered nowadays. In the paper the problem of a 
regional-scale strategy of S02 emission abatement is discussed. The main objective is to 
formulate decision-support algorithm for integrated analysis of cost-effectiveness and 
environmental impact related to the specific emission reduction strategy. 

Regional-scale abatement policy depends on the criteria upon which the environmental damage 
is evaluated (compare Carlson et al. 2004; Cofała et al. 2004; Haurie et al. 2004). It is obvious, 
that the process of pollution reduction must be treated as a long-term, time-dependent one, due to 
high financial requirements and time needed to implement new technologies. This leads to 
formulation of the problem in terms of optimization techniques, based on cost-effectiveness 
analysis of emission reduction, taking inio account the time factor. The problem is very difficult 
to solve using traditional optimization methods, thus an evolutionary algorithm has been applied 
(compare Stańczak et al. 2005, Trojanowski et al. 2001). 
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Similar problem, but formulated as a static emission abatement task, was considered in the 
earlier papers, where some dedicated algorithms were applied. Compare (Rolnicki and Kałuszko 
2004 - heuristic method) and (Holnicki et al. 2004 - heuristic and evolutionary method) for 
details. In this paper the time factor related to the investments of desulfurization technologies is 
taken into account. The dynamics of this process is also taken into consideration in the 
evolutionary algorithm discussed in the sequel. 

2. Formulation of the control problem 

Assume that there are N controlled (modemized) emission sources in a given region n and 
there are M technologies of emission reduction available. Each technology has its effectiveness 
and the unit costs (consisting of investment cost and operational cost). The goal is to allocate 
emission reduction technology to each source in such a way, that the value of the assumed 
objective function minimized, subject to the set of constraints (environmental, technological or 
financial, depending on the problem formulation), considered in a predefined time horizon. 

The environmental cost function has the following form: 

where: 

I r 
J (d) = - L f0 w(x,y) [ max(0,d1 (x,y) - d0d) ]2dn, 

2 l=l 

n = Lx x Ly - rectangle a rea und er consideration, 
w(x,y) - area sensitivity (weight) function, 
T - assumed time horizon (in years), 
1- current time (year), te { l, ... ,T}, 

dad - admissible concentration level, 
d1(x,y) - the concentration (deposition) forecast, calculated according the formula 

N 

(I) 

di(x,y) = d0 (x,y) + LA; (x,y)·uu, (x,y) en (2) 
i=I 

d0(x,y) - background concentration (impact ofuncontrolled sources), 

A;(x,y) - unit transfer matrix (relation emission to concentration) of the i-th source, 
N - number of controlled sources, 
uit - current emission intensity of source i at the time stage 1. 

The unit transfer matrix A 1(x,y) represents the contribution of the i-th source, referred to the 

unit emission intensity. All the matrices A;(x,y) (i= l, ... ,N), for controlled sources, are 
preprocessed off-line by the regional scale forecasting model (Holnicki et al. 2000). The 
computation was performed for the respective sequence of meteorological episodes, representing 
two-year period. In a similar way, the background pollution level d0(x,y) has been computed for 
uncontrolled, background emissions, including the inflow from the neighboring regions. The 
current emission intensity of the i-th source depends on the initial emission value - u;o and 
efficiency of the abatement technology applied during time T, according to the formula (3) 
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uu= u;0 ( 1-e,"), (3) 

where: 
e '" - efficiency of emission reduction technology applied for source i in the time step t, 

su - index of applied technology for the i-th in the time step t, 
u;0 - initial emission intensity of the i-th source. 

The cost of emission abatement in each source consists of two components: the investment cost 
and the operational cost. Both components depend on the specific abatement technology applied 
as well as on the parameters of energy generation technology utilized in the plant considered. 
Some details related to the unit investment and operational costs can be found in (Rolnicki and 
Kałuszko 2004; Holnicki et al. 2004). Thus, the total emission abatement cost per year, 
considered as a sum of reduction costs in the respective plants, can be formulated as follows: 

N N 
C = .._., c. ="' u -o (/1 +/2) t L,_ li L.J I Su Sit , (4) 

i=I i=I 

where: 
C1 - the total (investment and operational), annual costs in the control horizon, 

c;1 - total cost (investment and operational) of emission abatement in source i for year t, 

J,:,, f,~ - unit annual investment/operational cost of technology s applied to i-th source in 

year t. 

Now the following, two alternative formulations of the problem related to the optimal 
allocation of emission reduction technologies to the predefined set of the modernized ( controlled) 
emission sources can be considered. 

Allocation problem (Pl) 

Determine the set of emission reduction techno/ogies 

S={s;1 E{l, . .. ,N}: l5.i5.N, l5.t5.T}. 

such thai the assumed environment quality standard is obtained 

J(c(XaJ) $ JMAX 

at the minimum tata/ annual cost of the operat i on 

C, • min. 

Allocation problem (P2) 

Determine the set of emission reduction techno/ogies 

S={s;1 E{l, ... ,N}: l5.i5.N, 15.t5.T}. 

such that the environmental cost Junction is minimized 

J(c(Xad)) • min . 
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subject to the tata/ annual cost constrainl 

N 
C, = Ie; 5CMAX. (6c) 

i=l 

The next section presents evolutionary algorithm technique applied for formulation and solving 
the above, integer-type optimization problems. Results of the test computations, performed for 
the real data case study, are presented in section 4. 

3. Evolutionary algorithm 

3.1 Solution encoding 

The solutions obtained in the subsequent iterations of the algorithm are the population 
members. One population member is a quite complicated data structure (Figure 1). This data 
structure is used for both formulations of the optimization problem but with some modifications, 
described later in this paper. 

number of poDution sources • 
technologies ot S02 reduction--;)> 4 6 7 8 I 3 5 2 6 7 I 6 7 3 I 2 5 6 

I I I I I 

begin of new investmenl 3 I 2 I - 4 2 2 I 2 - 4 2 4 - 3 I I 
end of new invesłmenł ~ 4 2 4 3 - 5 4 5 3 4 - 5 3 5 - 5 2 2 

allocation ol linanci:f 
o.o 0.2 O.O 0.1 O.O O.O O.O O.O 0.3 o.o o.o o.o o.o O.O O.O O.O 0.1 0.3 

O.O 0.1 0.1 0.1 o.o o.o 0.1 0.1 0.1 0.1 O.O O.O 0.1 o.o o.o o.o 0.1 0.1 
means (!nvestmenO 

0.1 o.o 0.1 0.1 o.o O.O 0.1 0.1 0.1 0.1 o.o o.o 0.1 o.o O.O 0.1 0.1 O.O 
time 0.1 o.o 0.2 o.o o.o 0.1 0.1 0.1 O.O 0.1 o.o 0.1 o.o 0.1 O.O 0.1 O.O o.o 

O.O O.O O.O O.O O.O 0.2 O.O 0.3 O.O O.O o.o 0.2 O.O 0.2 O.O 0.1 O.O O.O 
population ~O O.O O.O O.O O.O O.O O.O O.O O.O O.O O.O O.O O.O O.O O.O O.O O.O O.O 
member 

-E-- number of genelic operators • 
3.45 0.46 1.24 6.01 / 4.15 / 4.17/2.08/1.11 / 

~-··-
t 

number of genelic operator chosen to 
modify the solution 

Figure I. The population member for both problem formulations. 

The mai n part of it is a vector of the length equal N (number of emission sources) with possible 
one of M different values on each position (number of abatement technology2). Each of N 
positions (emission source) has also two data fields for beginning and completion time of new 

1 Technology number 1 is a basie one and it means that no investment is applied. It is assumed that till the moment of new 
investment completion, aJI pollution sources use technology I. 
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investment. Time of beginning of new investment and the number of technology chosen for 
execution are generated by evolutionary operators. The time of investment completion of new 
technology is computed by the evaluation function using factors of financial means allocation. 
These factors are also modified by evolutionary operators and denote how financial means for 
new investments are divided among emission sources. It must be noticed that these financial 
factors have slightly different meaning for both considered problems. In the problem with cost 
minimization (Pl), these are the direct values offinancial means spent on pollution abatement for 
one year. In the problem (P2) their meaning is mare complicated, because money for current 
exploitation is the most important and investments are made only if there is a financial surplus. 
Thus, values of allocation factors are percents of this surplus allocated for investments to 
emission sources for one year. 

Moreover, the member of the population contains several mare data including: the vector of 
real numbers, which describe its knowledge about genetic operators and the number of the 
operator chosen for current iteration - mare related details will be given later in this paper. 

3.2 Fitness function 

In the case of the first problem formulation (PI), where constraints are imposed on the level of 
environmental cost function, the optimized by evolutionary algorithm fitness function bases on 
the objective function (Sc) and a penalty function for constraints violation (Sb) and is formulated 
as follows: 

(7) 

where: 

I r 2 J 1 (d) = 2 Jn w(x,y)[max(OA (x,y)- dad )] dQ, (7a) 

it is a small modification of the formula (!), while JMA:r represents the admissible level of 
environmental damage cost function for each year of the considered time horizon. 

The fitness function for the problem with cost constraints (P2) bases on the objective function 
(6b) and a cost constraint (6c) violation (a penalty function) 

Q=t~(J(d)+IOOOO · 8 tmax(O,tcil-CMAX)} (8) 

It is the weighted sum of two elements, with the experimentally tuned values of coefficients ( cost 
constraint violation is significantly less than the values of environmental damage function, thus 
this specific form of the penalty function is applied). In the conducted simulations we assumed 
that new technology is ready to use in the next year, after all financial means for investment are 
granted. 

3.3 Genetic operators 

There were several different genetic operators used: 
• mutation I - random change ofreduction method, 
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• mutation II - random modification of begin of investment time, 
• mutation ID- random modification of coefficients offinancial means allocation, 
• transposition - exchange ofmethods between two solutions on randomly chosen positions, 
• crossover - exchange offragments ofsolutions between two population members, 
• inversion - inversion of a fragment of solution, 
• "intelligent" mutation - on the randomly chosen position a method that gives best possible 

result is introduced (operator computes values of fitness function for tested cases). 

Application of specialized genetic operators requires utilizing some method of sampling them 
in all iterations of the algorithm. In the used approach (Stańczak 1999, 2000) it is assumed that an 
operator that generates good results should have bigger probability and more frequently affects 
the population. But it is very likely that the operator, that is good for one individual, gives worse 
effects for another, for instance because of its location in the do mai n of possible solutions. Thus 
every individual may have its own preferences. Every individual has a vector of floating point 
numbers, beside encoded solution. Each number corresponds to one genetic operation. It is a 
measure of quality of the genetic operator (a quality factor). The higher the factor is, the higher is 
the probability of the operator. The ranking of qualities becomes a base to compute the 
probabilities of appearance and execution of genetic operators. This set of probabilities is also a 
base of experience of every individual and, according to it, an operator is chosen in each epoch of 
the algorithm. Due to the gathered experience one can maximize chances of its offspring to 
survive. 

The method of quality factors computing is based on reinforcement learning (one ofalgorithms 
used in machine learning, Cichosz 2000). An individual is treated as an agent which role is to 
select and call one of the evolutionary operators. When the selected i-th operator is applied it can 
be regarded, as an agent's action a; leading to a new state S; that in this case is a new solution. 
Agent (genetic operator) receives reward or penalty respectively to the quality of the new state 
(solution). The aim of the agent is to perform the actions which give the highest long term 
discounted cumulative reward V*. 

where 
fl- strategy of the agent, 
vn - discounted cumulative reward obtained using strategy II, 
En- expected value ofreward using strategy II, 
k - index of the following time steps, 
I - index of the current time step. 

The following formula can be derived from (9) and is used for the evaluation purposes: 

where 
V(s,) - is a quality factor or discounted cumulative reward, 

(9) 

(IO) 

r,+i - represents the reward for the best action, which is equal to the improvement of the 
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quality ofa solution after execution of the evolutionary operator, 
a - a learning factor, 
y- a discount factor. 

In the presented experiments the values of a and y were set to O. I and 0.2, respectively. The 
quality coefficients can be easily converted inio a vector of probabilities of evolutionary 
operators' execution using normalization of its elements. 

3.4 Selection method 

The applied mixed selection method (Stańczak 1999, 2003) consists of two methods with different 
properties: a histogram selection (increases the diversity of the population) and a deterministic 
roulette (strongly promotes best individuals). 

These methods are selected in random during the execution of the algorithm. The probability of 
executing of the selection method is obtained from the formula (11). If individuals in the 
population are described by too small standard deviation of the fitness function (cr(F(t))) with 
respect to the extent of this function (max(F0 v(t)- Fm;n(t), Fmax(t)- F0 v(t))), then it is desirable to 
increase the probability of appearance of the histogram selection. On the contrary the probability 
of the deterministic roulette selection is increased. As far as parameters of the population are 
located in some range, considered as profitable we may keep approximately the same 
probabilities of appearance for both methods of selection. li is important that always 
Ph;,(t) +pde1(t) =l- it means that some method ofselection must be executed. 

I
Ph;,(t)•(l-a) for R(t) >3•a(F(t)) 

Ph;,(t+ 1) = Ph;,(t)•(l-a)+0.5•a for R(t)?. 0.5•a (F(t)) AR(t) ~ 3•a(F(t)) 

Ph;,(t)•(l-a)+a for R(t)<0.5•a ... (F(t)) 

R(t) = max (F,,v(t)-F min(/), F;,,.x(I) - F.v(I)) 

where 

(11) 

Ph;,(t+ 1) , Ph;,(t) - probability of histogram selection appearance in following iterations (l
Ph;,(t) is a probability of deterministic roulette method Pde1(t)), 
Fav(I}, Fm;n(t), F111ax(t) - average, minimal and maxima! values of fitness function in the 
population, 
a(F(t)) - standard deviation of fitness function (F(t)) in the population of solutions, 
a - a small value to change probability Phi,(t), in simulations (a=0.05). 

The method of deterministic roulette consists in setting the number of children of the 
population member according to formula 

where: 
N; - number of offspring of the i-th population mem ber, 
NPM - number of population members, 
Q; - value of the fitness function for the i-th population mem ber, 
Qave - averaged value of the fitness function for all population members. 
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In the histogram selection, the list of individuals of different values of the fitness function is 
created (this list resembles a histogram). The length ofthis list is usually shorter than the number 
of individuals in the population, due to elimination of repetitions. Next, a mean value of the 
fitness function is calculated, but using only once each value from the list, no matter how many 
individuals is connected with this value. Each individual (or rather value from the list) passes to 
the offspring population an adequate number of individuals 

where: 
N; - number of children of the i-th mem ber of the list, 
NPM - number ofpopulation members, 
Q; - value of the fitness function for the i-th list mem ber, 
Qave_l - averaged value of the fitness function for all list members. 

(13) 

In the case when calculated number is !ower than the size of base population (for both selection 
methods), an appropriate number of best creatures that were rejected in the first phase are added 
to the population. On contrary some worst are eliminated. 

4. Results of test computation 

The emission data represents the industrial Upper Silesia Region, which is characterized by 
high concentration of heavy industry and the energy sector installations. The domain considered 
is a rectangle area 110 km x 76 km. In this area 20 major power plants were selected and 
considered as the controlled sources (compare Holnicki and Kałuszko (2004) for technological 
details). Moreover, certain number of medium and small industrial sources constitutes the 
background emission field. 

Test computations consider 8 desulfurization technologies, characterized by the unit cost and 
effectiveness of emission reduction (5 basie technologies and 3 combined). The technologies and 
the respective emission abatement effectiveness are as follows: 

I. "do nothing" technology e =O.O, 
2. low-sulfur fuel e = 0.30, 
3. dry desulfurization method e = O. 35, 
4. low-sui fur fuel + dry desulfurization method e = 0.545, 
5. half-dry desulfurization method e = o. 75, 

6. low-sui fur fuel + half-dry desulfurization method e = O. 825, 
7. MOW AP method e = 0.85, 
8. low-sui fur fuel + MOW AP method e = 0.895. 

Simulations were performed for 20-year period and three different sets of constraints imposed 
on J,.ux for problem (PI) and on (C=) for problem (P2), respectively. The respective results are 
presented in tabl es I AB - 6AB. Grap hi cal representation of the related results is presented in 
Figures 2-5, respectively. 

Tabl es with indexes A show (in consecutive years of the assumed time period) the constraints 
imposed on emission sources, expensed funds and the obtained values of environmental damage 
function, related to the applied desulfurization technologies. 
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Computer simulation results for the environmental cost constraints problem (Pl) 

Table JA: Values ofimposed constraints (JMAK•J06), the obtained costs (c,) and environmental 
objective function (J(~• I 06) in the consecutive time stages. 

t o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 

JMAX 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 

c, O.O 1.48 20.3 20.3 20.3 20.3 20.3 20.3 20.3 20.3 20.3 20.3 20.3 20.3 20.3 20.3 20.3 20.3 20.3 20.3 

J(d) 3.24 3.24 1.99 1.99 1.99 1.99 1.99 1.99 1.99 1.99 1.99 1.99 1.99 1.99 1.99 1.99 1.99 1.99 1.99 1.99 

Table 18: A schedule ofmoments of new investments corresponding to values shown in Tab. JA 
(t,, t, - years of start and end of new investment). 

Source 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 

Techn. 2 I I I 6 I I I I I I I I 7 2 I I I I I 
(, I - - - o - - - - - - - - o o - - - - -
(, 2 - - - I - - - - - - - - I I - - - - -

Table 2A: Values ofimposed constraints (JMAK•I06), the obtained costs (c,) and environmental 
objective function (J(d) •106) in the consecutive time stages. 

t o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 
J,w 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 

c, O.O 9.36 124 124 124 124 124 124 124 124 124 124 124 124 124 124 124 124 124 124 
J(d) 3.24 3.24 0.49 0.49 0.49 K).49 K).49 0.49 0.49 .49 0.49 0.49 .49 0.49 0.49 0.49 0.49 0.49 0.49 0.49 

Table 28: A schedule of moments of new investments corresponding to values shown in Tab. 2A 
(t,, t,-years of start and end of new investment). 

Source 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 
Techn. 7 l 2 7 8 I I l l I l 6 7 8 2 l l 6 I l 

t, o - o o o - - - - - - o o o o - - o - -
t, I - I I I - - - - - - I l I I - - I - -

Table JA: Values ofimposed constraints (J,ux•I06), the obtained costs (c,) and environmental 
objective function (J(~ •I 06) in the consecutive time stages. 

t o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 

JMAX 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 
c, O.O 16.8 223 223 223 223 223 223 223 223 223 223 223 223 233 223 223 223 223 223 

J(d) 3.24 3.24 0.25 0.25 O 25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 
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Table 3B : A schedule ofmoments of new investments corresponding to values shown in Tab. 3A 

(t,, le -years of start and end of new investment) 

Source 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 
Techn. 7 5 8 8 8 I I I I I I 8 8 8 8 I I 8 I I 

t, o o o o o - - - - - - o o o o - - o - -
t, I I I I I - - - - - - I I I I - - 2 - -

3,5 
-

3 
I 

2,5 I --JMAX_1 
I - - -J(d)_1 I 2 --JMAX_2 

1,5 --J(d)_2 

JMAX_3 

1 --J(d) 3 

0,5 

o 
o 2 4 6 8 10 12 14 16 18 

Figure 2.Graphic representation of obtained values of J(d) and imposed Iimitations JMAX 
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Figure 3. Graphic representation of obtained values of c, 
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Computer simulation results obtained for the problem with cost constraints (P2) 

Table 4A: Values ofimposed constraints (CMAX), the obtained costs (c,) and environmental 
objective function (J(d)• 106) in the consecutive time stages. 

t o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 

c,= 5 5.5 4.5 13 7 8 6 5.5 7 5.5 6 5.8 6.1 5.9 6.3 7.5 7 5.8 7.5 10.5 
c, O.O 0.3 4.4 5.8 5.8 5.8 5.8 5.8 5.8 5.8 5.8 5.8 5.8 5.8 5.8 5.8 5.8 5.8 6.7 10.5 

J(d) 3.24 3.24 2.9 2.55 2.55 2.55 2.55 12.55 ~.55 2.55 .55 2.55 2.55 .55 .55 ~.55 2.55 2.55 2.50 2.28 

Table 4B: A schedule ofmoments of new investments corresponding to values shown in Tab. 4A 
(ts, te - years of start and end of new investment). 

Source 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 
Techn. I I I I 4 I I I I 6 I 6 4 7 I 3 I 2 I I 

t, - - - - 2 - - - - 19 - 19 18 I - 19 - 16 - -
t, - - - - 2 - - - - 20 - 20 18 I - 20 - 17 - -

Table SA: Values ofimposed constraints (CMAX), the obtained costs (c,) and environmental 
objective function (J(,i)•l06) in the consecutive time stages. 

t o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 
CMA 15 12 14 13 18 16 15 17 15 14 13 14 15 13 14.5 17 14 17.5 17 21.5 

c, O.O 0.9 12.9 12.9 12.9 12.9 12.9 12.9 12.9 12.9 12.9 12.9 12.9 12.9 12.9 12.9 13.2 16.8 16.9 19.1 
J(d) 3.24 3.24 2.03 2.03 2.03 2.03 .03 2.03 2.03 .03 2.03 2.03 .03 2.03 2.03 2.03 2.03 1.92 1.92 1.84 

Table SB: A schedule ofmoments of new investments corresponding to values shown in Tab. SA 
(I,, '• - years of start and end of new investment). 

Source 1 2 3 4 5 6 7 8 9 IO 11 12 13 14 15 16 17 18 19 20 
Techn. I I I 2 4 I I I I I I 2 4 4 2 I 7 4 I I 

t, - - - 16 I - - - - - - I I I I - 19 18 - -
t, - - - 16 I - - - - - - I I I I - 19 18 - -

Table 6A: Values ofimposed constraints (CMAX), the obtained costs (c,) and environmental 
objective function (J(d)• I 06) in the consecutive time stages. 

t o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 

C,w 25 22 24 23 28 26 25 27 25 24 23 24 25 23 24.5 27 24 27.5 27 31.5 

c, O.O 1.7 22.6 22.6 22.6 22.6 22.6 22.6 22.6 22.6 22.6 22.6 22.6 22.6 23.8 23.8 23.9 25.1 26.9 31.3 
J(d) 3.24 3.24 1.80 1.80 1.80 1.80 1.80 1.80 1.80 1.80 1.80 1.80 1.80 1.80 1.73 1.73 1.73 1.69 1.66 1.54 

11 



Table 6B: A schedule ofmoments of new investments corresponding to values shown in Tab. 6A 
(t,, t, -years of start and end of new investment) 

Source 1 2 3 4 5 6 7 8 9 10 11 12 13 
Techn. I I I 3 6 2 I I I 1 1 2 2 

t, - - - 18 I 17 - - - - - 1 l 
t, - - - 18 1 17 - - - - - 1 I 

35 ~---------------~ 

30 +-----------------,'-ł 

/··--~- /'•, /\ /----,/ 
25 -1-,--__ ...,.,~_-_=_~_~~,- _-.. -. 7,c-,-.,-"----,'-" --"'.v--~-ć-"----ł 

O 2 4 6 8 10 12 14 16 18 

14 15 16 17 
8 2 1 l 
1 13 - -
1 13 - -

--CMAX_4 
---ct_4 

--CMAX_5 

· · · · · ct_5 
--CMAX_6 

•··· · ···· ·· ct_6 

18 19 
2 2 

1 16 
l 16 

Figure 4.Graphic representation of obtained values of c, and imposed limitations CMAX 
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1,5 +-- - - - ------------'-I · · · · --J{d) 6 

0,5 -1-------------------ł 
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Figure 5. Graphic representation of obtained values of J(d) 
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Tables with index B show a schedule of new technologies implementation (technology number 
I - a base one - means no investment and no emission reduction). Due to the cost constraints, 
some emission sources are not modemized, it is denoted by "-" in the tables. Table 4B contains 
va lues of (t,) beyond the time horizon (t=20). It means that investment is not finished during the 
time horizon considered. Generally values at ends of considered time horizon are not very 
reliable, but it is common effect in this type of computations. 

Results presented in tables IAB-3AB (problem (Pl) present rather expected fact, that the !ower 
are limitations for environmental cost function, the higher are costs of pollution reduction. And 
similarly, it can be easily noticed in tables 4AB-6AB for problem (P2), the higher the cost 
constraints values, the !ower level of pollution and more pollution sources are equipped with 
more effective (and more expensive in investment and exploitation) desulfurization installations. 
Solutions of both problems are rather similar and it can be noticed that even the same pollution 
sources remained without modernization. 

5. Conclusions 

The evolutionary methods presented in this article have been successfully tested on three sets 
of cost and environmental function constraints. Evolutionary computations for the problem 
formulated in the paper lasted about 5.5 hours on the computer equipped with Athlon 1,8 GHz 
processor with Linux operating system. The authors also performed series of test computations, 
where the heuristic computational algorithms have been applied and tested. Such an approach 
usually leads to a simple and fast computational process, but the accuracy of the obtained 
solutions is in generał significantly worse than those discussed in the above sections. Moreover, 
the evolutionary algorithm formulation is more flexible, and relatively easily allows us to adopt 
the computational procedure to the specific problem formulation (as shown in the results 
presented above). On the other hand, the aspect of computing time (which is usually long in 
evolutionary method) is not a critical one in long-term scenario analysis. 
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