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Some properties of B-efficiency preference relation 

in multiobjective optimization problems 

Drnitry Podkopaev 

We study B-efficiency preference relation which is used for modeling trade-offs 

in multiobjective optimization problems. This relation is the weak Pareto domi-

nance relation over transformed vector evaluations, where the transformation is 

linear and is defined by a matrix of special case. We describe the situation, where 

number of objecti ve functions is reduced due to singularity of the transformation 

matrix and interpret this situation in decision making terms. We compare the 

domination cone of B-efficiency preference relation with domination cones of 

two well-known preference relations. 

O. Introduction and problem setting 

We consider the multiple objective optirnization problem in the following generał state-

ment: 

max f(x), 
xeX 

(1) 

where 

X is the set of feasible solutions; 

f(x) = (f,(x)!z(x), ... fk(x)),J;: X • R, iENk, are objective functions; 

Nk={l,2, ... ,k). 

Solving this problem means deriving an element of X, which is the most preferred for the 

Decision Maker (DM). As a rule, it is impossible to obtain complete information about DM's 

preferences. Therefore methods of deriving and manipulating partia! inforrnation about DM's 

preferences gain in importance. 

One of approaches to handling partia! inforrnation about DM's preferences is to set upper 

bounds on trade-offs between objective functions (see for example Kaliszewski 2006). This ap-
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proach is widely used in interactive methods of MCDM with relative preference ex pressing (see 

for example Kaliszewski and Zionts 2004, Roy and Wallenius 1992). A technique of deriving 

trade-off solutions based on linear transformation of objective functions is proposed in Pod

kopaev, 2007a, 2007b. A transformation matrix of special kind is used to represent information 

of bounds on trade-offs. It was proved in Podkopaev, 2007a thai weakly Pareto optima! solutions 

of the transformed problem are Pareto optima! solutions of the initial problem with predeter

mined bounds on trade-offs. 

In this work we study properties of the transformation matrix in terms of DM's preferences. 

In pruticular, in Section 2 we interpret the case where the mauix is singular and obtain a condi

tion of its singularity. In Section 3 we compare the transfo1mation-based preference model with 

two other approaches of preference representation based on analysis of domination cones. 

1. Transformation-based approach to finding trade-offs solutions 

Lei us observe that in problem (1) each feasible solution xEX is represented by its vector 

evaluation y=f(x). Therefore instead of problem (1) we can consider the problem 

where 

is the set of evaluations, Y c Rk . 

maxy 
)EY 

Y = {f(x): xEX) 

(2) 

Given Y, the set of Pareto optima! evaluations P(Y) and the set of weakly Pareto optima! 

evaluations W(Y) are defined as 

P(Y) = { yE Y: i'! y'E Y (y'2'.y & y'aćy) ) , 
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Feasible solution x is called Pareto optima/ (weakly Pareto optima/) solution of problem 

(l), iff(x)EP(Y) (J(x)E W(Y)). 

For any /E Y and any j E Nk, Jet 

Definition 1 [3]. Let i, j E Nk, i,';j. lf Zj(y')nY ;r 0, then the number 

is called trade-off between i-th and j-th objective Junction for evaluation y •. lf Zj(y ')nY = 0, 

then by definition we assume T;i(Y •. Y)=- 00 • 

Interpretation 1. Trade-off T;j(y •, Y) indicates how much at most evaluation y • can be im

proved in i-th component relatively to its worsening in j-th component during passage from y • to 

any other evaluationfrom Y, imder the condition that the remaining components do not worsen. 

It was proposed in (Podkopaev 2007a) to impose constraints on upper trade-off bounds 

with the help of linear transformation of vector evaluations. The transformation matrix 

B=(l3;)kxkE Rkxk is to be positive, its main diagonal elements have to be equal to one, and the 

remaining elements have to satisfy following conditions: 

~ij $ ll~ji, i,j, E Nk, itcj. 

The transformation of Y is defined by 

Ys = {By: y E Y}. 

Theo rem 1 [5). Let By• EW( Y s). The ny• E P(Y) and for any i,j E N k, i ";i, we have 

(3) 

(4) 
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The approach to setting bounds on trade-offs based on Theorem 1 is described as follows. 

Let for any iJENk number au>O represents the needed upper bound on trade-off between 

i-th andj-th objective functions. Suppose that these numbers satisfy following conditions: 

(5) 

(6) 

Define the elements of matrix Bas p;j=l!aji, i, jE Nk, i;<! j, and put Pu=l for all iENk. It is easy to 

see that those elements satisfy conditions (3) and (4). Then, by Theorem 1, any weakly Pareto 

optima! solution of the problem 

max Bf(x) 
xeX 

(7) 

is a Pareto optima! solution of problem (1) satisfying following bounds on trade-offs: 

We call weakly Pareto optima! solutions of problem (7) B-efficient solutions. 

A self-depended interpretation of elements pij in terms of decision making process and rea-

soning of conditions (5), (6) is presented in (Podkopaev 2007b). 

Interpretation 2. /Ju is the maximum loss in i-th objective which DM agrees to pay for 

unitary gain in j-th objective under the condition that all the other objectives do not worsen. 

The approach based on linear transfmmation provides some advantages in compmison to 

other approaches to handle trade-offs known before. In particular, i t allows to set bounds on 

trade-offs with k(k-1) degrees of freedom, i. e. independently for each pair of objective func

tions. Another advantage is enclosing the technique of finding trade-off solutions inro the 

framework of linear algebra, which makes possible to apply this theory to analysis of preference 

relation. 
., 
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2. Singularity of matrix B and reduction of the number of objectives 

Here and henceforth we assume that transfo1mation matrix B=(f3;1)kxkE Rkxk is positive, its 

main diagonal elements equal to one, and the remaining elements satisfy conditions (3) and (4). 

Theorem 2. Let i,j E Nk, i;rj. Equality /3;1/JJ; = 1 holds if and only if i-th and j-th rows of 

matrix B are proportional to each other. 

Proof. Suppose f3iJf3Ji = I and let us prove that i-th and j-th rows of matrix B are propor

tional to each other. Let sE Nk. Consider three possible cases. 

Case l. s=i. Then we have 

Case 2. s=J. Then we have 

/3;., = f3;J = /3;Jf3J.r· 

Case 3. scf.i, scf.j. Then from (3) taking into account f3iJf3J; = I we have 

f3;,;,: f3;Jf3J.,, 

f3Js;,: f3jif3is = f3;,/f3;J . 

The last inequality implies /3;., :S /3;1/31, . Combining this inequality and (8) we obtain 

f3;,. = f3;Jf3Js • 

(8) 

(9) 

In each of three cases we get (9). This means that i-th andj-th rows of matrix B are propor

tional to each other with coefficient of propo1tionality f3iJ• 

Now suppose thai there exists a constant c>O such that f3;,=cf31, for any sENk. Then we 

have f3iJ = c/311 = c and l = f3;; = cf3Ji which implies f3iJf3Ji = 1. o 

It follows from Theorem 2 that in the case f3;Jf3Ji = l mat1ix B is singular and problem (7) 

has i-th andj-th objective functions propo1tional to each other. 

To analyze implications from this fact, let us recall thai most of quantitative criteria in real

life optimization problems has ratio scale, i. e. meaning and properties of such a criterion are 
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invariant to multiplying the objective function to a constant. As an example, converting a quanti

tative criterion to another metric unit (meters to kilometers, kilograms to pounds etc.) does not 

change its properties. Using this argumentation we can formulate following assumption: 

lf two objective ftmctions in a multiple objective optimization problem are 

proportional to each other, then one ofthese objectiveftmctions is redundant. 

The situation where 13ul31; = 1 can be easily understood with the help of Interpretation 2. 

Decision Maker agrees to pay with j3;1 units of i-th objective function for unitary gain of j-th ob

jective function and at the same time agrees to pay with j31; = 1/j3;1 units of j-th objective function 

for unitary gain of i-th objective function. This implies 

Interpretation 3. If 13ul31; = 1, then i-th and j-th objective function are petfectly substitut

able and so they can be reduced to one surrogate function 13uf;+fj. 

Let us introduce the bi nary relation of substitutability on the set of objective functions f 1, 

fi, .,!k, We say, that i-th andj-th objective functions are substitutable, if 13ul31; = 1. Since relation 

of proportionality is an equivalence relation (it is reflexive, symmetric and transitive), it follows 

from Theorem 2 that relation of substitutability is an equivalence relation too. Let us formulate 

this as a corollary. 

Corollary 1. Let i,j,s E Nk, i'i';i, j;,=s. lf /Ju/JJi = 1 and /J;,/3.,-; = 1 then /J.,1/JJ, = 1. 

The prope1ties of an equivalence relation imparts to Corollary 1 an impo1tant interpreta-

tion. 

lnterpretation 4. The relation of substitutability generates partitioning of the set of objec

tive functions int o gro ups. In each of the re groups the objective ftmctions are perfectly substitut

able with each other and therefore each group can be reduced to one surrogate objective ftmc-

tion. 
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On aur hypothesis, equality 13;1131; = 1 for same iJ E Nk, ie/ej, is not only sufficient (as 

Theorem 2 states), but also necessary condition of singularity of B. This would imply thai rank 

of B is equal to the number of groups of substitutable criteria. 

3. Domination cones of B-efficient solutions 

Definition 2 [l]. Let K be a convex cone in Rk. Evaluation yEY (feasible solution xEX) is 

called efficient with respect to K, if 

((y}+K)nY={0} (({f(x)}+K)nY={0}). 

The cone associated with the notion of B-efficient solutions is defined as 

C(B) = {zERk: '<I iENk Z;:::>:- L 13ifz1 ) . 
jEN1; 
j-:1-i 

It is evident thai solutions efficient with respect to C(B) and only them are B-efficient solutions. 

Let us depict the facets of C(B) for the case of three objective functions. 
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If condition (4) for i=l, j=3 turns to inequality 1313!33,=l, then planes y, = 1312 Y2 + !313 y3 

and y3 = 1331 y 1 + j332 y2 coincide and the domination cone has 2 facets. This situation is depicted 

on the following picture. 

Let us compare C(B) with two well-known domination cones associated with methods of 

finding trade-off solutions. 

3.1. Proper efficiency with a prior bound E 

Wierzbicki (1986) introduced the concept of proper efficiency with a prior bound E. This 

type of efficiency is based on the domination cone 

D(E) = { zE Rk: dist(z,C+) :S E/lzll }, 

where O< E < l; C+ = { zERk: V iENk (z;<". O)}; li· li is a no1m in R\ <list(·,·) is Hausdorff 

distance between a point and a set defined by 

dist(z,Z) = min{llz-z'II*: z'EZ}, zER\ Zs:;;Rk. 

We consider the case, where: 
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k 

!lzll =1lzl11 = Ilz,I, zE Rk, 
i:l 

llz ll' = llzll= = max{lzd: iENk). 

The following lemma is evident. 

Lemma 1. IfzEC+, thell dist(z,C+J = O. Otherwise 

dist(z,C+J = max{ -z;: iENk}. 

Theorem 3. C( B) C D( c) if and ollly if 0ij ::; _E_ for a11y i,j E N k, i~-
1- E 

Proof. Sufficiency. Suppose that 

for any iJE Nk, i*j. 

Let yE C(B). If yE C+, then it is elear that yE D(E). 

(10) 

Assume that yil C+. Let iEargmin{y;: iENk). From the definition of C(B) and from (10) 

we have -y,::; L 0ijy1 ::; L 0ij /y1/ $-E- L /yJ Multiplying this inequality to 1-E we 
JeNt \fi l JENt \Iii 1- € Je N* \11 I 

k 

obtain -y, ::; E I/y1/ = e!IY!I. Taking into account Lemma l we get yE D(c). Thus C(B) CD( c). 
j:J 

Necessity. Suppose that (10) does not hold. Let -0ij < y, < --1 E , YFl and y,=0 for any 
-E 

sE Nk\{ iJ). Then we have y; 2: -0ijYj and y 1 2: _ _!_ y, 2: 01, y, which implies yE C(B). But on the 
0ij 

other hand e!IY!I = E(l +-E-) = _E_ < -y, = dist(y,C.) which implies y li'c C(E) . lt follows that 
1-E 1-E 

C(B) g, D(E). • 
From Theorem 3 we obtain an approach to finding properly efficient solutions with prior 

bound E. 
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Corollary 2. Let E < 1 and (10) ho/ds for any i,jE Nk, i;rj. Then all B-efficient solutions 

are properly efficient solutions with the prior bound E 

3.2. Findillg trade-off solutions with a surrogate objective Junction 

Consider the following cone: 

where p > O is a parameter, ek = (1,1, ... ,1) E Rk. 

Let y • be an element of Rk such that y7 > y for any yE Y 

This cone corresponds to solutions of the following parametric optimization problem: 

(11) 

for all A.;>0, iENk, 

This problem is widely used in multiobjective optimization and particularly in interactive 

method of decision making for deriving solutions with predetermined bounds on trade-offs (see 

for example Kaliszewski 2006). 

Theorem 4. Let elements of B be defined by 

Then C(B) = G(p). 

p /J;; = 1, /3;1 =--, i,j E Nk, i;rj. 
l+p 

Indeed, if the matrix elements are defined as above, we have 

(12) 

Corollary 3. Let elements of B be defined by (12). Then B-efficient solutions and only 

them a solutions of problem (1 l) for all A;>O, iENk. 
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