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Abstract

The paper deals with the problem as a long-term, cost-effective analysis of environmental quality
related to air pollution and considered in a predefined time horizon. The problem is formally
stated the optimal allocation of financial means for the long-term reduction of SO; concentration
in a given region. The optimal choice of desulfurization technologies during a given time horizon,
within the predefined set of the controlled power and heating plants is a difficult, integer-type
optimization task. The paper presents solution of the basic task based on the evolutionary
algorithm technique. The method has been implemented and tested on the real data for Silesia
Region (Poland), with the set of the basic desulfurization technologies, which are to be allocated
to the major power plants located in the region. Two alternative formulations of the optimization
problem are discussed. The definition includes the measure of environmental damage related to

air pollution and the cost of emission abatement strategy applied.

1. Introduction

Poland is one of the most polluted areas in the Central Europe. Air quality deterioration is, first of all,
due to the sulfur oxides, emitted by a number of power and heating plants, industrial and domestic
sources, transportation system. The most significant environmental damage is caused by the energy sector,
since the dominating source of electricity production is coal (hard coal and lignite) combustion. The
modernization of this sector and emission reduction is one of the fundamental environmental problems

considered nowadays. In the paper the problem of a regional-scale strategy of SO, emission abatement is
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discussed. The main objective is to formulate decision-support algorithm for integrated analysis of cost-
effectiveness and environmental impact related to the specific emission reduction strategy.

Regional-scale abatement policy depends on the criteria upon which the environmental damage
is evaluated (compare Carlson et al. 2004; Cofata et al. 2004; Haurie et al. 2004). It is obvious,
that the process of pollution reduction must be treated as a long-term, time-dependent one, due to
high financial requirements and time needed to implement new technologies. This leads to
formulation of the problem in terms of optimization techniques, based on cost-effectiveness
analysis of emission reduction, taking into account the time factor. The problem is very difficult
to solve using traditional optimization methods, thus an evolutionary algorithm has been applied
(compare Stanczak et al. 2005).

Similar problem, but formulated as a static emission abatement task, was considered in the
earlier papers, where some dedicated algorithms were applied. Compare (Holnicki and Katuszko
2004 - heuristic method) and (Holnicki et al. 2004 — heuristic and evolutionary method) for
details. In this paper the time factor related to the investments of desulfurization technologies is
taken into account. The dynamics of this process is also taken into consideration in the

evolutionary algorithm discussed in the sequel.

2. Formulation of the control problem

Assume that there are N controlled (modernized) emisston sources in a given region £ and
there are M technologies of emission reduction available. Each technology has its effectiveness
and the unit costs (consisting of investment cost and operational cost). The goal is to allocate
emission reduction technology to each source in such a way, that the value of the assumed
objective function minimized, subject to the set of constraints (environmental, technological or

financial, depending on the problem formulation), considered in a predefined time horizon,




The environmental cost function has the following form;
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where:
£2 =L xL, - rectangle area under consideration,
w(x,y) — area sensitivity (weight) function,
T — assumed time horizon (in years),
t — current time (year), re{L...,T},

d,, —admissible concentration level,

ad

d,(x,¥) — the concentration (deposition) forecast, calculated according the formula

N
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dgy(x,y) — background concentration (impact of uncontrolled sources),
Ai(x,y) — unit transfer matrix (relation emission to concentration) of the i-th source,

N —- number of controlled sources,

u;, ~ current emission intensity of source i at the time stage .

The unit transfer matrix A ;(x,y) represents the contribution of the i-th source, referred to the
unit emission intensity. All the matrices A;(x,y) (i=1,...,N), for controlled sources, are
preprocessed off-line by the regional scale forecasting model (Holnicki et al. 2000). The
computation was performed for the respective sequence of meteorological episodes, representing
two-year period. In a similar way, the background pollution level dg(x, y) has been computed for
uncontrolled, background emissions, including the inflow from the neighboring regions. The
current emission intensity of the i-th source depends on the initial emission value — u;; and

efficiency of the abatement technology applied during time 7, according to the formula (3)
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where:
e;, — efficiency of emission reduction technology applied for source i in the time step 7,
s;; —index of applied technology for the i-th in the time step 1,
1;0— initial emission intensity of the i-th source.

The cost of emission abatement in each source consists of two components: the investment cost
and the operational cost. Both components depend on the specific abatement technology applied
as well as on the parameters of energy generation technology utilized in the plant considered.
Some details related to the unit investment and operational costs can be found in (Holnicki and
Katuszko 2004; Holnicki et al. 2004). Thus, the total emission abatement cost per year,
considered as a sum of reduction costs in the respective plants, can be formulated as follows:
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where:

C, — the total (investment and operational), annual costs in the control horizon,

¢;, — total cost (investment and operational) of emission abatement in source i for year 1,
f_\'l ,f;:— unit annual investment/operational cost of technology s applied to /-th source in

year f.

Now the following, two alternative formulations of the problem related to the optimal allocation of
emission reduction technologies to the predefined set of the modernized (controlled) emission sources can
be considered.

Allocation problem (P1)

Determine the set of emission reduction technologies

S={s,e{l,..,N}: 1<i<N, I<r<T), (5a)




such that the assumed environment quality standard is obtained
J(X ) S T yax

at the minimum total annual cost of the operation
C, = min .
Allocation problem (P2)

Determine the set of emission reduction technologies
S={s,e{l,..,N}: 1<i<N, 1<:<T},
such that the environmental cost function is minimized
J(c(X,4))= min,

subject to the total annual cost constraint
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The next section presents evolutionary algorithm technique applied for formulation and solving the

above, integer-type optimization probiems. Results of the test computations, performed for the real data

case study, are presented in section 4.

3. Evolutionary algorithm

3.1 Solution encoding

The solutions obtained in the subsequent iterations of the algorithm are the population

members. One population member is a quite complicated data structure (Figure 1). This data

structure is used for both formulations of the optimization problem but with some modifications,

described later in this paper.
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Figure 1. The population member for both problem formulations.

The main part of it is a vector of the length equal N (number of emission sources) with possible
one of M different values on each position (number of abatement technology®). Each of N
positions (emission source) has also two data fields for beginning and completion time of new
investment. Time of beginning of new investment and the number of technology chosen for
execution are generated by evolutionary operators. The time of investment completion of new
technology is computed by the evaluation function using factors of financial means allocation.
These factors are also modified by evolutionary operators and denote how financial means for
new investments are divided among emission sources. It must be noticed that these financial
factors have slightly different meaning for both considered problems. In the problem with cost

minimization (P1), these are the direct values of financial means spent on pollution abatement for




one year. In the problem (P2) their meaning is more complicated, because money for current
exploitation is the most important and investments are made only if there is a financial surplus.
Thus, values of allocation factors are percents of this surplus alfocated for investments to

emission sources for one year.

Moreover, the member of the population contains several more data including: the vector of
real numbers, which describe its knowledge about genetic operators and the number of the

operator chosen for current iteration - more related details will be given later in this paper.

3.2 Fitness function

In the case of the first problem formulation (P1), where constraints are imposed on the level of
environmental cost function, the optimized by evolutionary algorithm fitness function bases on

the objective function (5c) and a penalty function for constraints violation (5b) and is formulated

as follows:
T N
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it is a small modification of the formula (1), while Jyax- represents the admissible level of
environmental damage cost function for each year of the considered time horizon.
The fitness function for the problem with cost constraints (P2) bases on the objective function

(6b) and a cost constraint (6¢) violation (a penalty function)

? Technology number 1 is a basic one and it means that no investment is applied. It is assumed that till the moment of new
investment completion, all pollution sources use technology 1.
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It is the weighted sum of two elements, with the experimentally tuned values of coefficients (cost
constraint viojation is significantly less than the values of environmental damage function, thus
this specific form of the penalty function is applied). In the conducted simulations we assumed
that new technology is ready to use in the next year, after all financial means for investment are
granted.
33 Genetic operators
There were several different genetic operators used:

e mutation I - random change of reduction method,

e mutation II — random modification of begin of investment time,

o mutation III - random modification of coefficients of financial means allocation,

e transposition - exchange of methods between two solutions on randomly chosen positions,

e crossover - exchange of fragments of solutions between two population members,

e inversion - inversion of a fragment of solution,

e “intelligent” mutation — on the randomly chosen position a method that gives best possible

result is introduced (operator computes values of fitness function for tested cases).

Application of specialized genetic operators requires utilizing some method of sampling them
in all iterations of the algorithm. In the used approach (Stanczak 1999, 2000) it is assumed that an
operator that generates good results should have bigger probability and more frequently affects
the population. But it is very likely that the operator, that is good for one individual, gives worse
effects for another, for instance because of its location in the domain of possible solutions. Thus

every individual may have its own preferences. Every individual has a vector of floating point




numbers, beside encoded solution. Each number corresponds to one genetic operation. It is a
measure of quality of the genetic operator (a quality factor). The higher the factor is, the higher is
the probability of the operator. The ranking of qualities becomes a base to compute the
probabilities of appearance and execution of genetic operators. This set of probabilities is also a
base of experience of every individual and, according to it, an operator is chosen in each epoch of
the algorithm. Due to the gathered experience one can maximize chances of its offspring to
survive.

The method of quality factors computing is based on reinforcement learning (one of algorithms
used in machine learning, Cichosz 2000). An individual is treated as an agent which role is to
select and call one of the evolutionary operators. When the selected i-th operator is applied it can
be regarded, as an agent's action a; leading to a new state s; that in this case is a new solution.
Agent (genetic operator) receives reward or penalty respectively to the quality of the new state
(solution). The aim of the agent is to perform the actions which give the highest fong term
discounted cumulative reward V*,

ve=mx (yn) o yn =gy {i r"mm}, ©)
k=0

where
17T~ strategy of the agent,
V" discounted cumulative reward obtained using strategy /7,
E - expected value of reward using strategy /7,
k —index of the following time steps,

t —index of the current time step.

The following formula can be derived from (9) and is used for the evaluation purposes:



Vi) =Vis)+a [+ W (5,0 -V(s) (10)

where

V(s,) —is a quality factor or discounted cumulative reward,

r,;1 — represents the reward for the best action, which is equal to the improvement of the
quality of a solution after execution of the evolutionary operator,

o - a learning factor,

y - a discount factor.

In the presented experiments the values of & and y were set to 0.1 and 0.2, respectively. The
quality coefficients can be easily converted into a vector of probabilities of evolutionary
operators’ execution using normalization of its elements.

3.4 Selection method

The applied mixed selection method (Staficzak 1999, 2003) consists of two methods with different
properties: a histogram selection (increases the diversity of the population) and a deterministic
roulette (strongly promotes best individuals).

These methods are selected in random during the execution of the algorithm. The probability of
executing of the selection method is obtained from the formula (11). If individuals in the
population are described by too small standard deviation of the fitness function (6(F(r))) with
respect to the extent of this function (max(F,u(t)- Fuin(t), Fualt)- Faut))), then it is desirable to
increase the probability of appearance of the histogram selection. On the contrary the probability
of the deterministic roulette selection is increased. As far as parameters of the population are
located in some range, considered as profitable we may keep approximately the same
probabilities of appearance for both methods of selection. It is important that always

DPhis(t)+paedt)=1- it means that some method of selection must be executed.
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