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Application of evolutionary algorithm technique in long-term 
analysis of emission reduction on a regional scale 

Jarosław Stańczak', Piotr Holnicki' 

Abstract 

The paper deals with the problem as a long-term, cost-effective analysis of environmental quality 

related to air pollution and considered in a predefined time horizon. The problem is formally 

stated the optima) allocation of financial means for the long-term reduction of SO2 concentration 

in a given region. The optima! choice of desulfurization technologies during a given time horizon, 

within the predefined set of the controlled power and heating plants is a difficult, integer-type 

optimization task. The paper presents solution of the basie task based on the evolutionary 

algorithm technique. The method has been implemented and tested on the real data for Silesia 

Region (Poland), with the set of the basie desulfurization technologies, which are to be allocated 

to the major power plants located in the region. Two altemative formulations of the optimization 

problem are discussed. The definition includes the measure of environmental damage related to 

air pollution and the cost of emission abatement strategy applied. 

1. Introduction 

Poland is one of the most polluted areas in the Central Europe. Air quality deterioration is, first of all, 

due to the sulfur oxides, emitted by a number of power and heating plants, industrial and domestic 

sources, transportation system. The most significant environmental damage is caused by the energy sector, 

since the dominating source of electricity production is coal (hard coal and lignite) combustion. The 

modernization of this sector and emission reduction is one of the fundamental environmental problems 

considered nowadays. In the paper the problem of a regional-scale strategy of SO2 emission abatement is 
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discussed. The main objective is to formulate decision-support algorithm for integrated analysis of cost­

effectiveness and environmental impact related to the specific emission reduction strategy. 

Regional-scale abatement policy depends on the criteria upon which the environmental damage 

is evaluated (compare Carlson et al. 2004; Cofała et al. 2004; Raurie et al. 2004). It is obvious, 

that the process of pollution reduction must be treated as a long-term, time-dependent one, due to 

high financial requirements and time needed to implement new technologies. This leads to 

formulation of the problem in terms of optimization techniques, based on cost-effectiveness 

analysis of emission reduction, taking into account the time factor. The problem is very difficult 

to salve using traditional optimization methods, thus an evolutionary algorithm has been applied 

(compare Stańczak et al. 2005). 

Similar problem, but formulated as a static emission abatement task, was considered in the 

earlier papers, where some dedicated algorithms were applied. Compare (Rolnicki and Kałuszko 

2004 - heu1istic method) and (Rolnicki et al. 2004 - heu1istic and evolutionary method) for 

details. In this paper the time factor related to the investments of desulfurization technologies is 

taken into account. The dynamics of this process is also taken into consideration in the 

evolutionary algorithm discussed in the sequel. 

2. Formulation of the control problem 

Assume that there are N controlled (modernized) emission sources in a given region Q and 

there are M technologies of emission reduction available. Each technology has its effectiveness 

and the unit costs (consisting of investment cost and operational cost). The goal is to allocate 

emission reduction technology to each source in such a way, that the value of the assumed 

objective function minimized, subject to the set of constraints (environmental, technological or 

financial, depending on the problem fonnulation), considered in a predefined time horizon. 
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The environmental cost function has the following form: 

where: 

1 T 
J ( d) = - L h w(x, y) [ max ( O,d1 (x, y) - dad) ]2dQ , 

2 t=I 

Q = L_, xLy - rectangle area under consideration, 

w(x, y) - area sensitivity (weight) function, 

T - assumed time horizon (in years), 

t - CUITent time (year), t E { 1, . .. , r}, 

dad - admissible concentration level, 

c/1(x, y) - the concentration (deposition) forecast, calculated according the formula 

N 

d1(x,y)=d0 (x,y)+LA;(x,y)·uif, (x,y)E.Q 
i=I 

d0(x, y) - background concentration (impact of uncontrolled sources), 

A;(x,y) - unit transfer matrix (relation emission to concentration) of the i-th source, 

N - number of controlled sources, 

u;, - cutTent emission intensity of source i at the time stage t. 

(1) 

(2) 

The unit transfer matiix A ;(x, y) represents the contribution of the i-th source, refetTed to the 

unit emission intensity. All the matrices A;(x, y) (i= 1, ... , N), for controlled sources, are 

preprocessed off-line by the regional scale forecasting model (Rolnicki et al. 2000). The 

computation was performed for the respective sequence of meteorological episodes, representing 

two-year period. In a si mi lar way, the background pollution level d0(x, y) has been computed for 

uncontrolled, background emissions, including the inflow from the neighboring regions. The 

cutTent emission intensity of the i-th source depends on the initial emission value - u;o and 

efficiency of the abatement technology applied dUiing time T, according to the formula (3) 
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U;1 = uiO ( 1-e511 ), (3) 

where: 

e5,, - efficiency of emission reduction technology applied for source i in the time step/, 

s;, - index of applied technology for the i-th in the time step t, 

u;o- initial emission intensity of the i-th source. 

The cost of emission abatement in each source consists of two components: the investment cost 

and the operational cost. Both components depend on the specific abatement technology applied 

as well as on the parameters of energy generation technology utilized in the plant considered. 

Some details related to the unit investment and operational costs can be found in (Rolnicki and 

Kaluszko 2004; Rolnicki et al. 2004). Thus, the total emission abatement cost per year, 

considered as a sum of reduction costs in the respective plants, can be formulated as follows: 

where: 

N N 

C, = I cit = I u;o U,'., + f,;,) , (4) 
i=I i=I 

C1 - the total (investment and operational), annual costs in the control horizon, 

cit - total cost (investment and operational) of emission abatement in source i for year t, 

J,'., , f/- unit annual investment/operational cost of technology s applied to i-th source in 

year t. 

Now the following, two altemative formulations of the problem related to the optima! allocation of 

emission reduction technologies to the predefined set of the modernized (controlled) emission sources can 

be considered. 

Allocation problem (Pl) 

Determine the set of emission reduction technologies 

S = {s;1 E {l, ... ,N}: I$ i $N, 1$t $T), (5a) 
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such that the assumed environment quality standard is obtained 

at the minimum total annual cost of the operation 

c, • min. 

Allocation problem (P2) 

Determine the set of emission reduction technologies 

S={s;,E{l, ... ,N}: l5,i5,N, l5,t5,T), 

such that the enviromnental cost Junction is minimized 

subject to the total annual cost constraint 

N 

C, =Ic;'.'óCMAX· 
i=I 

(Sb) 

(Sc) 

(6a) 

(6b) 

(6c) 

The next section presents evolutionary algorithm technique applied for formulation and solving the 

above, integer-type optimization problems. Results of the test computations, performed for the real data 

case study, are presented in section 4. 

3. Evolutionary algorithm 

3.1 Solution encoding 

The solutions obtained in the subsequent iterations of the algorithm are the population 

members. One population member is a quite complicated data structure (Figure l). This data 

structure is used for both formulations of the optimization problem but with some modifications, 

described later in this paper. 

s 



number of pollution sources • 

technologles of SOi reduction• 4 6 7 8 1 3 5 2 6 7 1 6 7 3 1 2 5 6 
I I I I I I I I I I I I I I I I I I 

begin of new investment • 3 1 2 1 - 4 2 2 1 2 - 4 2 4 - 3 1 1 
end of new investment 4 2 4 3 - 5 4 5 3 4 - 5 3 5 - 5 2 2 

I I I I I I I I I I I I I I I I I I 

a!location of financii 
O.O 0.2 O.O 0.1 O.O O.O O.O O.O 0.3 O.O O.O O.O O.O O.O O.O O.O 0.1 0.3 

means (investment) ---• O.O 0.1 0.1 0.1 O.O O.O 0.1 0.1 0.1 0.1 O.O O.O 0.1 O.O O.O O.O 0.1 0.1 

0.1 O.O 0.1 0.1 O.O O.O 0.1 0.1 0.1 0.1 O.O O.O 0.1 O.O O.O 0.1 0.1 O.O 

time 0.1 O.O 0.2 O.O o.o 0.1 0.1 0.1 O.O 0.1 O.O 0.1 O.O 0.1 O.O 0.1 o.o o.o 
O.O O.O O.O O.O O.O 0.2 O.O 0.3 O.O O.O O.O 0.2 O.O 0 .2 O.O 0.1 o.o O.O 

population ~O O.O O.O O.O O.O O.O O.O O.O O.O O.O O.O O.O O.O O.O O.O O.O O.O O.O 
member 

+- number of genetic operators ~ 

I Hs I o.46 I 1.24I601 I 4.1s I 4.11 I 2os I 111 I 
t. .. operator's quahty coeff1c1ent 

3 

t 
number of genetic operator chosen to 
modify the solution 

Figure I. The population member for both problem formulations. 

The main part of it is a vector of the length equal N (number of emission sources) with possible 

one of M different values on each position (number of abatement technology\ Each of N 

positions (emission source) has also two data fields for beginning and completion time of new 

investment. Time of beginning of new investment and the number of technology chosen for 

execution are generated by evolutionary operators. The time of investment completion of new 

technology is computed by the evaluation function using factors of financial means allocation. 

These factors are also modified by evolutionary operators and denote how financial means for 

new investments are divided among emission sources. It must be noticed that these financial 

factors have slightly different meaning for both considered problems. In the problem with cost 

minimization (Pl), these are the direct values of financial means spent on pollution abatement for 
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one year. In the problem (P2) their meaning is more complicated, because money for current 

exploitation is the most important and investments are made only if there is a financial surplus. 

Thus, values of allocation factors are percents of this surplus allocated for investments to 

emi ssi on sources for one year. 

Moreover. the member of the population contains several more data including: the vector of 

real numbers, which describe its knowledge about genetic operators and the number of the 

operator chosen for current iteration - more related details will be given later in this paper. 

3.2 Fitness function 

In the case of the first problem formulation (Pl), where constraints are imposed on the level of 

environmental cost function, the optimized by evolutionary algorithm fitness function bases on 

the objective function (Sc) and a penalty function for constraints violation (Sb) and is formulated 

as follows: 

(7) 

where: 

i r z 11 (d) = 2 .h w(x,y)[max(OA (x, y) - dad )] dQ, (7a) 

it is a small modification of the formula (1), while JMAX- represents the admissible level of 

environmental damage cost function for each year of the considered time horizon. 

The fitness function for the problem with cost constraints (P2) bases on the objective function 

(6b) and a cost constraint (6c) violation (a penalty function) 

2 Technology number I is a basie one and il means that no investment is applied. lt is assumed that till the moment of new 

investment completion. all pollution sources use technology I. 
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(8) 

It is the weighted sum of two elements, with the experimentally tuned values of coefficients (cost 

constraint violation is significantly less than the values of environmental damage function, thus 

this specific form of the penalty function is applied). In the conducted simulations we assumed 

that new technology is ready to use in the next year, after all financial means for investment are 

granted. 

3.3 Genetic operators 

There were severa! different genetic operators used: 

• mutation I - random change of reduction method, 

• mutation II - random modification of begin of investment time, 

• mutation III - random modification of coefficients of financial means allocation, 

• transposition - exchange of methods between two solutions on randomly chosen positions, 

• crossover - exchange of fragments of solutions between two population members, 

• inversion - inversion of a fragment of solution, 

• "intelligent" mutation - on the randomly chosen position a method that gives best possible 

result is introduced (operator computes values of fitness function for tested cases). 

Application of specialized genetic operators requires utilizing some method of sampling them 

in all iterations of the algorithm. In the used approach (Stańczak 1999, 2000) it is assumed that an 

operator that generates good results should have bigger probability and more frequently affects 

the population. But it is very Iikely that the operator, that is good for one individual, gives worse 

effects for another, for instance because of its Iocation in the domain of possible solutions. Thus 

every individual may have its own preferences. Every individual has a vector of floating point 
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numbers, beside encoded solution. Each number co1Tesponds to one genetic operation. It is a 

measure of quality of the genetic operator (a quality factor). The higher the factor is, the higher is 

the probability of the operator. The ranking of qualities becomes a base to compute the 

probabilities of appearance and execution of genetic operators. This set of probabilities is also a 

base of experience of every individual and, according to it, an operator is chosen in each epoch of 

the algorithm. Due to the gathered experience one can maximize chances of its offspring to 

survive. 

The method of quality factors computing is based on reinforcement learning (one of algorithms 

used in machine learning, Cichosz 2000). An individual is treated as an agent which role is to 

select and call one of the evolutionary operators. When the selected i-th operator is applied it can 

be regarded, as an agent's action a; leading to a new state s; thai in this case is a new solution. 

Agent (genetic operator) receives reward or penalty respectively to the quality of the ,new state 

(solution). The aim of the agent is to perform the actions which give the highest long term 

discounted cumulative reward V*. 

where 

Il - strategy of the agent, 

vn _ discounted cumulative reward obtained using strategy Il, 

En- expected value of reward using strategy Il, 

k - index of the following time steps, 

t - index of the current time step. 

The following formula can be derived from (9) and is used for the evaluation purposes: 

9 
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where 

V(s,+,l; V(s,) + a [ 'i+I + w · (s,+1l-V(s,)] • (10) 

V(s,) - is a quality factor or discounted cumulative reward, 

r,+i - represents the reward for the best action, which is equal to the improvement of the 

quality of a solution after execution of the evolutionary operator, 

a- a learning factor, 

y- a discount factor. 

In the presented experiments the values of a and ywere set to 0.1 and 0.2, respectively. The 

quality coefficients can be easily converted into a vector of probabilities of evolutionary 

operators' execution using normalization of its elements. 

3.4 Selection method 

The applied mixed selection method (Stańczak 1999, 2003) consists of two methods with different 

properties: a histogram selection (increases the diversity of the population) and a deterministic 

roulette (strongly promotes best individuals). 

These methods are selected in random during the execution of the alg01ithm. The probability of 

executing of the selection method is obtained from the formula (11). If individuals in the 

population are described by too small standard deviation of the fitness function (a(F(1))) with 

respect to the extent of this function (max( Fm,(t)- F,,,;,ll), Fmax(l)- Fall))), then it is desirable to 

increase the probability of appearance of the histogram selection. On the contrary the probability 

of the detenninistic roulette selection is increased. As far as parameters of the population are 

located in some range, considered as profitable we may keep approximately the same 

probabilities of appearance for both methods of selection. It is imp01tant that always 

p1,;ll)+pd,,(t)=l- it means that some method of selection must be executed. 

10 
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lp„Jt)•(l-a) for R(t)>3 • CT(F(t)) 

P1,;,.(t+I)= P1,;,.(1)•(1-a)+0.5•a for R(t)~0.5•c,(F(t))t..R(t)$3•c,(F(t)) 

P1,;,.(t) • (l-a)+a for R(t) <0.5•CT ... (F(t)) 

R(t) = max (F,,.(t)-Fmin(t), Fma/t)-F,,v(t)) 

where 

(11) 

p1,;_, (t+ 1 ). p1,;lt) - probability of histogram selection appearance in following iterations (l­

p1,;,(t) is a probability of deterministic roulette method Pde1(t)), 

F0 .,(t), F,,,;,lt), F„wxft) - average, minimal and maxima! values of fitness function in the 

population, 

a(F(t)) - standard deviation of fitness function (F(t)) in the population of solutions, 

a - a small value to change probability Phiit), in simulations (a=0.05). 

The method of deterministic roulette consists in setting the number of children of the 

population member according to formula 

where: 

Q 
N; =round(-'-·NPM), 

Qave 

N; - number of offsp1ing of the i-th population member, 

NPM - number of population members, 

Q; - value of the fitness function for the i-th population member, 

Q"''" - averaged value of the fitness function for all population members. 

(12) 

In the histogram selection, the list of individuals of different values of the fitness function is 

created (this list resembles a histogram). The length of this list is usually shorter than the number 

of individuals in the population, due to elimination of repetitions. Next, a mean value of the 

fitness function is calculated, but using only once each value from the list, no matter how many 

individuals is connected with this value. Each individual (or rather value from the list) passes to 

the offspring population an adequate number of individuals 
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where: 

Q 
N; =round(--'-·NPM) 

Qave_l 

N; - number of children of the i-th mem ber of the list, 

NPM - number of population members, 

Q; - value of the fitness function for the i-th list member, 

Qave_t - averaged value of the fitness function for all list members. 

(13) 

In the case when calculated number is !ower than the size of base population (for both selection 

methods), an approptiate number of best creatures that were rejected in the first phase are added 

to the population. On contrary some worst are eliminated. 

4. Results of test computation 

The emission data represents the indust1ial Upper Silesia Region, which is charactetized by 

high concentration of heavy industry and the energy sector installations. The domain considered 

is a rectangle area 110 km x 76 km. In this area 20 major power plants were selected and 

considered as the controlled sources (compare Rolnicki and Ka!uszko (2004) for technological 

details). Moreover, certain number of medium and small industtial sources constitutes the 

background emission field. 

Test computations consider 8 desulfutization technologies, charactetized by the unit cost and 

effectiveness of emission reduction (5 basie technologies and 3 combined). The technologies and 

the respective emission abatement effectiveness are as follows: 

l. "do nothing" technology e =O.O, 

2. low-sulfur fuel e = 0.30, 

3. dry desulfutization method e = 0.35, 

4. low-sulfur fuel + dry desulfutization method e = 0.545, 
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5. half-dry desulfurization method e = 0.75, 

6. low-sulfur fuel + half-dry desulfurization method e = 0.825, 

7. MOWAP method e = 0.85, 

8. low-sulfur fuel + MOWAP method e = 0.895. 

Computer simulation results for the environmental cost constraints problem (Pl) 

Table lA: Values of imposed constraints (JM,x•l06 ), the obtained costs (c,) and environmental 

objective function ( J(d) • 106 ) in the consecutive time stages. 

t o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 

l111Ax 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 

c, O.O 1.48 20.3 30.7 30.7 30.7 30.7 30.7 30.7 30.7 30.7 30.7 30.7 30.7 30.7 30.7 30.7 30.7 30.7 30.7 

J(d) 3.24 3.24 1.99 1.71 1.71 1.71 1.71 1.71 1.71 1.71 1.71 1.71 1.71 1.71 1.71 1.71 1.71 1.71 1.71 1.71 

Table 1B: A schedule of moments of new investments corresponding to values shown in Tab. lA 

(t_,., t, - years of start and end of new investment). 

Source 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 

Techn. 2 I I 1 6 1 1 1 1 1 l l l 7 2 l 1 l l I 

t, l - - - o - - - - - - - - o o - - - - -

t, 2 - - - 1 - - - - - - - - I l - - - - -

Table 2A: Values of imposed constraints (JM,x•l06), the obtained costs (c,) and environmental 

objective function (J(d)•l06) in the consecutive time stages. 

t o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 

]MAX 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 

c, O.O 9.36 124 124 124 124 124 124 124 124 124 124 124 124 124 124 124 124 124 124 

J,(d) 3.24 3.24 0,49 0,49 0,49 0,49 0,49 Kl.49 Kl,49 Kl,49 0,49 0,49 0,49 0,49 0,49 0,49 0,49 0,49 0,49 0,49 

Table 2B: A schedule of moments of new investments corresponding to values shown in Tab. 2A 

(t_,, t, - years of start and end of new investment). 
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Source 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 

Techn. 7 I 2 7 8 I 1 I I I I 6 7 8 2 I I 6 I I 

t, o - o o o - - - - - - o o o o - - o - -

t, I - I I I - - - - - - I I I I - - I - -

Table 3A: Values of imposed constraints (JMA x•I06), the obtained costs (c,) and environmental 

objective function (J(d)•I06) in the consecutive time stages. 

t o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 

jAIA.X 0.25 0.25 0.25 23 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 

c, o.o 16.8 223 223 223 223 223 223 223 223 223 223 223 223 233 223 223 223 223 223 

J(d) 3.24 3.24 0.25 0.25 0.25 0.25 0 .25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0 .25 0.25 0.25 0.25 

Table 3B: A schedule of moments of new investments corresponding to values shown in Tab. 3A 

(ts, t, -years of start and end of new investment) 

Source 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 

Techn. 7 5 8 8 8 I I I I I I 8 8 8 8 I I 8 I I 

t, o o o o o - - - - - o o o o - - o - -

t, I I I I I - - - - - - I I I I - - 2 - -

Computer simulation results obtained for the problem with cost constraints (P2) 

Table 4A: Values of imposed constraints (CMAx), the obtained costs (c,) and environmental 

objective function ( J(d) • 106) in the consecutive time stages. 

t o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 

CMA,\ 5 5.5 4.5 13 7 8 6 5.5 7 5.5 6 5.8 6.1 5.9 6.3 7.5 7 5.8 7.5 10.5 

c, o.o 0.3 4.4 5.8 5.8 5.8 5.8 5.8 5.8 5.8 5.8 5.8 5.8 5.8 5.8 5.8 5.8 5.8 6.7 10.5 

J(d) 3.24 3.24 2.9 2.55 12.55 12.55 12.55 2.55 2.55 2.55 2.55 12.55 12.55 2.55 2.55 2.55 12.55 12.55 2.50 2.28 
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Table 4B: A schedule of moments of new investments corresponding to values shown in Tab. 4A 

(ts, te - years of start and end of new investment). 

Source 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 

Techn. 1 1 1 1 4 1 1 l l 6 l 6 4 7 l 3 l 2 1 1 

t, - - - - 2 - - - - 19 - 19 18 l - 19 - 16 - -

t, - - - - 2 - - - - 20 - 20 18 l - 20 - 17 - -

Table 5A: Values of imposed constraints ( C„Ax), the obtained costs (c,) and environmental 

objective function (J(d) • 106) in the consecutive time stages. 

t o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 

C111,u. 15 12 14 13 18 16 15 17 15 14 13 14 15 13 14.5 17 14 17.5 17 21.5 

c, O.O 0.9 12.9 12.9 12.9 12.9 12.9 12.9 12.9 12.9 12.9 12.9 12.9 12.9 12.9 12.9 13.2 16.8 16.9 19. l 

l/,(d) 3.24 3.24 2.03 2.03 2.03 2.03 2.03 2.03 !2.03 2.03 2.03 2.03 2.03 2.03 2.03 2.03 2.03 1.92 1.92 1.84 

Table 5B: A schedule of moments of new investments corresponding to values shown in Tab. 5A 

(t,, t, - years of start and end of new investment). 

Source 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 

Techn. 1 1 1 2 4 1 1 1 1 1 1 2 4 4 2 1 7 4 1 l 

t, - - - 16 1 - - - - - - 1 1 1 1 - 19 18 - -

t, - - - 16 1 - - - - - - 1 l 1 1 - 19 18 - -
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Table 6A: Values of imposed constraints (CM,x), the obtained costs (c,) and environmental 

objective function ( J(d) • 106 ) in the consecutive time stages . 

t o I 2 3 4 5 6 7 8 9 IO Il 12 13 14 15 16 17 18 19 

CAf,U 25 22 24 23 28 26 25 27 25 24 23 24 25 23 24.5 27 24 27.5 27 31.5 

c, O.O 1.7 22.6 22.6 22.6 22.6 22.6 22.6 22.6 22.6 22.6 22.6 22.6 22.6 23.8 23.8 23.9 25.l 26.9 31.3 

J(d) 3.24 3.24 1.80 1.80 1.80 1.80 1.80 1.80 1.80 1.80 1.80 1.80 1.80 1.80 1.73 1.73 1.73 1.69 1.66 1.54 

Table 6B: A schedule of moments of new investments corresponding to values shown in Tab. 6A 

(t_,, t, -years of stat1 and end of new investment) 

Source I 2 3 4 5 6 7 8 9 IO Il 12 13 14 15 16 17 18 19 20 

Techn. 1 I 1 3 6 2 1 1 1 1 1 2 2 8 2 1 1 2 2 2 

t, - - - 18 1 17 - - - - - 1 I 1 13 - - I 16 16 

t, - - - 18 1 17 - - - - - 1 1 1 13 - - I 16 16 

Simulations were peńormed for 20-year period, and three different sets of constraints imposed 

on J,,,x for problem (Pl) and on (C,,,x) for problem (P2), respectively. The respective results are 

presented in tables IAB - 6AB. Tables with indexes A show (in consecutive years) constraints 

imposed on emission sources, expensed funds and obtained values of environmental damage 

function, related to the applied desulfurization technologies. 

Tables with index B show a schedule of new technologies implementation (technology number 

1 - a base one - means no investment and no emission reduction). Due to the cost constraints, 

some emission sources are not modernized, it is denoted by "-" in the tables. Table 4B contains 

values of (t,) beyond the time horizon (1=20). It means that investment is not finished during the 

time horizon considered. Generally values at ends of considered time horizon are not very 

reliable, but it is common effect in this type of computations. 

Results presented in tables 1AB-3AB (problem (Pl) present rather expected fact, that the !ower 

are Iimitations for environmental cost function, the higher are costs of pollution reduction. And 
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similarly, it can be easily noticed in tables 4AB-6AB for problem (P2), the higher the cost 

constraints values, the !ower level of pollution and more pollution sources are equipped with 

more effective (and more expensive in investment and exploitation) desulfmization installations. 

Solutions of both problems are rather similar and it can be noticed that even the same pollution 

sources remained without modemization. 

5. Conclusions 

The evolutionary methods presented in this article have been successfully tested on three sets 

of cost and environmental function constraints. Evolutionary computations for the problem 

formulated in the paper lasted about 5.5 hours on the computer equipped with Athlon 1,8 GHz 

processor with Linux operating system. The authors also performed series of test computations, 

where the hemistic computational algorithms have been applied and tested. Such an approach 

usually leads to a simple and fast computational process, but the accuracy of the obtained 

solutions is in generał significantly worse than those discussed in the above sections. Moreover, 

the evolutionary algorithm fmmulation is more flexible, and relatively easily allows us to adopt 

the computational procedure to the specific problem formulation (as shown in the results 

presented above). On the other hand, the aspect of computing time (which is usually long in 

evolutionary method) is not a c1itical one in long-te1m scenario analysis. 
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