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1 . Introduction

Nowadays it is well-known that the surface phenomena are almost responsible for the mechanical and physical
properties of micro- and nanostructured materials. In particular, they are responsible for the size-effect observed
at the nano-scale. Among the theories of continuum which can describe such surface-related behavior it is worth
to mention the Gurtin-Murdoch surface elasticity model [5] and the first and second strain gradient elasticity
presented by Toupin [11], Mindlin [7,8], see also [9,10], and Aifantis [1,2]. The characterization of the surface
elasticity within the strain-gradient elasticity was performed in [4,6] considering anti-plane surface waves. Here
we compare the both models considering stress concentration in the vicinity of the linear defect such as a screw
dislocation. We analyze here a deformation of a hollow circular cylinder with a screw dislocation considering
the both theories of strain-gradient elasticity and of surface elasticity.

2 . Strain-gradient elasticity

In what follows we consider infinitesimal deformations of an elastic solid which are described by the displace-
ment fieldu = u(x), wherex is the position vector. Strain energy densityW is given by [7]

(1) W = W1 + W2, W1 =
1

2
e : C : e, W2 =

1

2
∇e

...A
...∇e, e =

1

2

(
∇u + (∇u)T

)
,

whereC = Cijklii ⊗ ij ⊗ ik ⊗ il and Einstein’s summation convention is used,A = Aijklmnii ⊗ ij ⊗ ik ⊗
il ⊗ im ⊗ in are the fourth- and six-order tensors of elastic moduli, respectively,ik, k = 1, 2, 3, are vectors of
Cartesian orthonormal basis. For an isotropic strain gradient solid the elastic moduli tensors are given by [3]

Cijkl = λδijδkl + µ (δikδjl + δilδjk) ,(2)

Aijklmn = a1 (δijδklδmn + δijδkmδln + δijδknδlm + δinδjkδlm) + a2 (δijδknδlm) ,

+ a3 (δikδjlδmn + δikδjmδln + δilδjkδmn + δimδjkδln) + a4 (δilδjmδkn + δimδjlδkn) ,(3)

+ a5 (δilδjnδkm + δimδjnδkl + δinδjlδkm + δinδjmδkl) ,

whereδij is the Kronecker symbol,λ, µ, a1, a2, a3, a4, anda5 are elastic moduli.

The equilibrium equation takes now the form

(4) ∇ · (σ − ∇ · τ ) = 0,

where the tensorsσ and τ are defined byσ = C : e, τ = A
...∇e, which are the second-order stress

tensor and third-order hyperstress tensor, respectively. Aifantis’ strain-gradient model [1,2] utilizes more simple
constitutive equation with one additional length-scale parameterℓ such thatτ = ℓ2∇σ. Eq. (4) should be
complemented by proper boundary conditions which we omit here.
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3 . Surface elasticity

For an isotropic material the Gurtin-Murdoch model results in the classic constitutive equation in the bulk
W = W1 and an additional constitutive relation for the surface strain energyWs [5]

Ws = µsǫ : ǫ +
1

2
λs(trǫ)

2, ǫ =
1

2

(
P · (∇su) + (∇su)T · P

)
, P ≡ I − n ⊗ n

whereλs andµs are the surface Lamé moduli,tr is the trace operator,∇s is the surface nabla operator,P is
the surface unit second-order tensor,n is the unit vector of outer normal. For a free surface the static boundary
condition takes the following form

n · σ = ∇s · s, s ≡ ∂Ws

∂ǫ
= µsǫ + λsP(trǫ).

Heres is the surface stress tensor.

4 . Screw dislocation

In order to compare the both theories we consider the hollow circular cylinder of radiusa with a screw disloca-
tion. It is known that the strain-gradient elasticity and surface stresses affect the singularity near defects. Using
the semi-inverse approach the deformation of a cylinder with a screw dislocation is given as a mapping [12]

(5) r = r(R), φ = Φ, z =
b

2π
φ + Z,

wherer, φ, z and R, Φ, Z are the polar coordinates in the actual and reference placements, respectively,
and b is the magnitude of the Burgers vector. For small deformations mapping (5) gives an example of an
antisymmetric deformations such as in [4]. We discuss the solutions behaviour fora → 0. We demonstrate that
the both theories give similar qualitative results for the displacement amplitudes. Nevertheless, there are some
quantitative differences which will be discussed during SOLMECH2018 in all details.
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