698.

ON A THEOREM RELATING TO COVARIANTS.

[From the Journal für die reine und angewandte Mathematile (Crelle), t. LxxxviI. (1878), pp. 82, 83.]

The theorem given by Prof. Sylvester, Crelle, vol. Lxxxv., p. 109, may be stated as follows: If for a binary quantic of the order i in the variables, we consider the whole system of covariants of the degree j in the coefficients, then

$$
\Sigma \theta(k+1)=\frac{\Pi(i+j)}{\Pi(i) \Pi(j)}
$$

where θ denotes the number of asyzygetic covariants of the order θ in the variables, the values of θ being $\ddot{i}, \ddot{j}-2, \ddot{i}-4, \ldots, 1$ or 0 , according as \ddot{j} is odd or even.

In the case of the binary quintic $(a, \ldots \chi x, y)^{5},(i=5)$, we have a series of verifications in the Table 88 of my "Ninth Memoir on Quantics," Phil. Trans. vol. clxi. (1871), [462]: viz. writing the small letters a, b, c, \ldots, u, v, w (instead of the capitals A, B, etc.) to denote the covariants of the quintic, a, the quintic itself, degree 1 , order 5, or as I express it, deg-order $1.5: b$, the covariant deg-order 2.2, etc., the whole series of deg-orders being

$$
\begin{array}{cccccccccccc}
a, & b, & c, & d, & e, & f, & g, & h, & i, & j, & k, & l \text {, } \\
1.5, & 2.2, & 2.6, & 3.3, & 3.5, & 3.9, & 4.0, & 4.4, & 4.6, & 5.1, & 5.3, & 5.7 \text {, } \\
m, & n, & 0, & p, & q, & r, & s, & t, & u, & v, & w, \\
6.2, & 6.4, & 7.1, & 7.5, & 8.0, & 8.2, & 9.3, & 11.1, & 12.0, & 13.1, & 18.0
\end{array}
$$

then the table shows for each deg-order, the several covariants of that deg-order, and
the number of them which are asyzygetic; for instance, $i=5$ as above, $j=6$, an extract from the table is

j	k	θ		$(k+1) \theta$
6	30	1	a^{6}	31
	28	0		0
	26	1	$a^{4} c$	27
	24	1	$a^{3} f$	25
	22	2	$a^{4} b, a^{2} c^{2}$	46
	20	2	$a^{3} e, a c f$	42
	18	3	$a^{3} d, a^{2} b c, c^{3}, f^{2}$	57
	16	2	$a^{2} i, a b f$, ace	34
	14	4	$a^{2} b^{2}, a^{2} h, a c d, b c^{2}$, ef	60
	12	3	$a b e, a l, c e, d f$	39
	10	4	$a^{3} g, a b d, b^{2} c, c h, e^{2}$	44
	8	2	$a k, b i, d e$	18
	6	4	$a j, b^{3}, b h, c g, d^{2}$	28
	4	1	n	5
	2	2	$b g, m$	6
	0	0		0
$462=\frac{\Pi(11)}{\Pi(5) \Pi(6)},$				

where, for instance deg-order 6.14 , the covariants are $a^{2} b^{2}, a^{2} h, a c d, b c^{2}$, ef, but the number against these in the third column being (not 5 but) 4 , the meaning is that there exists between these five terms one syzygy, making the number of asyzygetic covariants of the deg-order 6.14 to be 4 . The second column thus in fact contains the several values of k, and the third column the corresponding values of θ; whence, forming the several products $(k+1)$ as shown, the sum of these is as it should be $=462$.

Cambridge, 13 July, 1878.

