698.

ON A THEOREM RELATING TO COVARIANTS.

[From the Journal für die reine und angewandte Mathematik (Crelle), t. LXXXVII. (1878), pp. 82, 83.]

THE theorem given by Prof. Sylvester, *Crelle*, vol. LXXXV., p. 109, may be stated as follows: If for a binary quantic of the order i in the variables, we consider the whole system of covariants of the degree j in the coefficients, then

$$\Sigma \theta \left(k+1 \right) = \frac{\Pi \left(i+j \right)}{\Pi \left(i \right) \Pi \left(j \right)},$$

where θ denotes the number of asyzygetic covariants of the order θ in the variables, the values of θ being ij, ij - 2, ij - 4, ..., 1 or 0, according as ij is odd or even.

In the case of the binary quintic $(a, ... \oint x, y)^5$, (i = 5), we have a series of verifications in the Table 88 of my "Ninth Memoir on Quantics," *Phil. Trans.* vol. CLXI. (1871), [462]: viz. writing the small letters a, b, c, ..., u, v, w (instead of the capitals A, B, etc.) to denote the covariants of the quintic, a, the quintic itself, degree 1, order 5, or as I express it, deg-order 1.5: b, the covariant deg-order 2.2, etc., the whole series of deg-orders being

d, a, *b*, С, е, f, *g*, h, i, j, k, l, 3.3, 3.5, 3.9, 4.0, 5.7. 1.5, 2.2, 2.6, 4.4, 4.6, 5.1, 5.3, m, n, 0, *p*, q, r, 8, t, и, v, w, 7.1, 6.2, 7.5, 8.0, 8.2, 9.3, 11.1, 12.0, 13.1, 6.4, 18.0,

then the table shows for each deg-order, the several covariants of that deg-order, and

698]

the number of them which are asyzygetic; for instance, i=5 as above, j=6, an extract from the table is

j	k	θ		$(k+1) \theta$
6	30	1	a ⁶	31
	28	0	A PARA SA	0
	26	1	a^4c	27
	24	1	a^3f	25
	22	2	a^4b, a^2c^2	46
	20	2	a ³ e, acf	42
	18	3	$a^{3}d, a^{2}bc, c^{3}, f^{2}$	57
	16	2	a^2i , abf , ace	34
77XQ	14	4	a^2b^2 , a^2h , acd, bc^2 , ef	60
	12	3	abe, al, ce, df	39
-	10	4	a^2g , abd , b^2c , ch , e^2	44
	8	2	ak, bi, de	18
1.1	6	4	aj, b^3, bh, cg, d^2	28
	4	1	n	5
	2	2	bg, m	6
1000	0	0		0

 $462 = \frac{\Pi (11)}{\Pi (5) \Pi (6)},$

where, for instance deg-order 6.14, the covariants are a^2b^2 , a^2h , acd, bc^2 , ef, but the number against these in the third column being (not 5 but) 4, the meaning is that there exists between these five terms one syzygy, making the number of asyzygetic covariants of the deg-order 6.14 to be 4. The second column thus in fact contains the several values of k, and the third column the corresponding values of θ ; whence, forming the several products (k+1) as shown, the sum of these is as it should be = 462.

Cambridge, 13 July, 1878.