653.

ON A TORSE DEPENDING ON THE ELLIPTIC FUNCTIONS.

[From the Quarterly Journal of Pure and Applied Mathematics, vol. xiv. (1877), pp. 235-241.]

On attempting to cover with paper one half-sheet of the foregoing sextic torse, [652], I found that the paper assumed approximately the form of a circular annulus of an angle exceeding 360°, and this led me to consider the general theory of the construction of a torse in paper, and, in particular, to consider the torses such that when developed into a plane the edge of regression becomes a circular arc. It is scarcely necessary to remark that, to construct in paper a circular annulus of an angle exceeding 360°, we have only to take a complete annulus, cut it along a radius, and then insert (gumming it on to the two terminal radii) a portion of an equal circular annulus; drawing from each point of the inner circular boundary a halftangent, and considering these half-tangents as rigid lines, the paper will bend round them so as to form the half-sheet of a torse having for its edge of regression this inner boundary, which will assume the form of a closed curve with two equal and opposite maxima and two equal and opposite minima, described on a cylinder, and being approximately such as the curve given by the equations

$$
x=\cos \theta, y=\sin \theta, z=m \cos 2 \theta .
$$

Considering, in general, an arc $P Q$ (without inflexions) of any curve, and drawing at the consecutive points $P, P^{\prime}, P^{\prime \prime}$, \&c. the several half-tangents $P T, P^{\prime} T^{\prime \prime}, P^{\prime \prime} T^{\prime \prime}, \ldots$, then, considering these as rigid lines and bending the paper round them, we have the half-sheet of a torse, having for its edge of regression the curve in question now bent into a curve of double curvature. It is, moreover, clear that the edge of regression has at each point thereof the same radius of absolute curvature as the original plane curve; in fact, if in the plane curve $P P^{\prime}=d s$, and the angle $T^{\prime} P T$ between the consecutive half-tangents $P T$ and $P^{\prime} T^{\prime}$ be $=d \phi$, these quantities $d s$ and c. x .
$d \phi$ remain unaltered in the curve of double curvature; and the radius of absolute curvature is given by the equation $\rho d \phi=d s$. In particular when, as above, the are is a circular one, say of radius $=\alpha$, then, however the paper is bent, the edge of regression has at each point thereof the radius of absolute curvature $=\alpha$.

Consider on any given surface, at a given point P thereof, and in a given direction, an element of length $P P^{\prime}$, then (under the restrictions presently mentioned) we can determine the consecutive element $P^{\prime} P^{\prime \prime}$, such that the curve $P P^{\prime} P^{\prime \prime} \ldots$ shall have at P a radius of absolute curvature $=\alpha$; in fact, r being the radius of curvature of the normal section of the surface through the element $P P^{\prime}$, the radius of curvature of the section inclined at an angle θ to the normal section is $=r \cos \theta$; so that we have only to take the section at the inclination $\theta,=\cos ^{-1}, \frac{\alpha}{r}$ to the normal section, and we have the consecutive element $P^{\prime} P^{\prime \prime}$ such that the radius of absolute curvature of the curve $P P^{\prime} P^{\prime \prime}$ is $=\alpha$. The necessary restriction, of course, is that $r>\alpha$; thus, if at the given point P the two principal radii of curvature are of the same sign (to fix the ideas, let the two principal radii and also α be each of them positive), then we may on the surface determine a direction $P Q$, for which the radius of curvature of the normal section is $=\alpha$; and then the direction of the element $P P^{\prime}$ may be any direction between $P Q$ and the direction $P R$, corresponding to the greatest of the two principal radii.

Having obtained the element $P^{\prime} P^{\prime \prime}$, we may, if the radius of absolute curvature at P^{\prime} be given, construct the next element $P^{\prime} P^{\prime \prime}$, and so on; that is to say, on a given surface starting from a given point P and given initial direction $P P^{\prime}$, we can (under a restriction, as above, as to the curvature at the different points of the surface) construct a curve having at the successive points thereof given values of the radius of absolute curvature; viz., the value may be given either as a function of the coordinates of the point on the surface, or as a function of the length of the curve measured say from the initial point P; it is in this last manner that in what follows the value of the radius of absolute curvature is assumed to be given.

We may thus, taking on paper an arc $P Q$ with its half-tangents, apply it to a given surface, the point P to a given point, and the infinitesimal arc $P P^{\prime}$ to an element $P P^{\prime}$ in a given direction from the given point; and we thus obtain the half-sheet of a torse having for its edge of regression a determinate curve upon the surface. In particular, the arc $P Q$ may be circular of the radius α, and the surface be a circular cylinder of radius a; and we thus obtain the torse having for edge of regression a curve on the cylinder radius α, and such that the radius of absolute curvature is at each point $=a$. There are three cases according as $a>\alpha, a=\alpha$, or $a<\alpha$; it is to be remarked that if $a>\alpha$, then the curve must at each point cut the generating line of the cylinder at an angle not exceeding $\cos ^{-1} \frac{\alpha}{a}$, but that in the other two cases the angle may have any value whatever; and, further, that in every case when the angle is $=0$, viz. when the curve touches a generating line of the cylinder, then the osculating plane of the curve coincides with the tangent plane of the cylinder.

The analytical theory is very simple. Taking x, y, z as functions of the length s, we have

$$
\left(\frac{d x}{d s}\right)^{2}+\left(\frac{d y}{d s}\right)^{2}+\left(\frac{d z}{d s}\right)^{2}=1 ;
$$

the condition, which expresses that the radius of absolute curvature is $=a$, then is

$$
\left(\frac{d^{2} x}{d s^{2}}\right)^{2}+\left(\frac{d^{2} y}{d s^{2}}\right)^{2}+\left(\frac{d^{2} z}{d s^{2}}\right)^{2}=\frac{1}{a^{2}} .
$$

By what precedes, the point (x, y, z) may be taken to be upon a given surface, say upon the cylinder $x^{2}+y^{2}=\alpha^{2}$; and we may then write $x=\alpha \cos \theta, y=\alpha \sin \theta$. Taking instead of s any independent variable u whatever, and using accents to denote the derived functions in regard to u, the equations become

$$
\begin{gathered}
x^{\prime 2}+y^{\prime 2}+z^{\prime 2}=s^{\prime 2}, \\
x^{\prime \prime 2}+y^{\prime \prime 2}+z^{\prime \prime 2}-s^{\prime \prime 2}=\frac{1}{a^{2}} s^{\prime 4}, \\
x=\alpha \cos \theta, y=\alpha \sin \theta .
\end{gathered}
$$

From the last two equations we obtain

$$
x^{\prime 2}+y^{\prime 2}=\alpha^{2} \theta^{\prime 2}, x^{\prime \prime 2}+y^{\prime \prime 2}=a^{2}\left(\theta^{\prime 2}+\theta^{\prime 4}\right),
$$

and the first two equations thus become

$$
\begin{gathered}
a^{2} \theta^{\prime 2}+z^{\prime 2}=s^{\prime 2}, \\
a^{2}\left(\theta^{\prime \prime 2}+\theta^{\prime 4}\right)+z^{\prime \prime 2}-s^{\prime \prime 2}=\frac{1}{a^{2}} s^{\prime 4},
\end{gathered}
$$

and from the first of these we find

$$
s^{\prime \prime}=\frac{\overline{\alpha^{2}} \theta^{\prime} \theta^{\prime \prime}+z^{\prime} z^{\prime \prime}}{\left(\alpha^{2} \theta^{\prime 2}+z^{\prime 2}\right)^{\frac{1}{P}}}
$$

whence the second equation is

$$
\alpha^{2}\left(\theta^{\prime \prime 2}+\theta^{\prime 4}\right)+z^{\prime \prime 2}-\frac{\left(\alpha^{2} \theta^{\prime} \theta^{\prime \prime}+z^{\prime} z^{\prime \prime}\right)^{2}}{\left(\alpha^{2} \theta^{\prime 2}+z^{\prime 2}\right)}=\frac{\left(\alpha^{2} \theta^{\prime 2}+z^{\prime 2}\right)^{2}}{a^{2}}
$$

or reducing, this is

$$
\left(\alpha^{2} \theta^{\prime 2}+z^{\prime 2}\right)\left(\theta^{\prime \prime 2}+\theta^{\prime 4}\right)+\left(\theta^{\prime 2} z^{\prime \prime 2}-2 \theta^{\prime} \theta^{\prime \prime} z^{\prime} z^{\prime \prime}-\alpha^{2} \theta^{\prime} \theta^{\prime \prime 2}\right)=\frac{1}{a^{2} \alpha^{2}}\left(\alpha^{2} \theta^{\prime 2}+z^{\prime 2}\right)^{3}
$$

Taking here θ as the independent variable, we have $\theta^{\prime}=1, \theta^{\prime \prime}=0$, and the equation becomes

$$
\left(\alpha^{2}+z^{\prime 2}\right)+z^{\prime \prime 2}=\frac{1}{a^{2} \alpha^{2}}\left(\alpha^{2}+z^{\prime 2}\right)^{3} ;
$$

or, what is the same thing,

$$
z^{\prime \prime 2}=\frac{1}{a^{2} \alpha^{2}}\left(\alpha^{2}+z^{\prime 2}\right)^{3}-\left(\alpha^{2}+z^{\prime 2}\right)^{2}
$$

Write here

$$
\alpha^{2}+z^{\prime 2}=\Omega^{2}
$$

then

$$
z^{\prime \prime}=\frac{\Omega \Omega^{\prime}}{\sqrt{ }\left(\Omega^{2}-\alpha^{2}\right)},
$$

and the equation becomes

$$
\frac{\Omega^{\prime 2}}{\Omega^{2}-\alpha^{2}}=\frac{\Omega^{4}}{a^{2} \alpha^{2}}-1
$$

or say

$$
\frac{a \alpha d \Omega}{\sqrt{\left(\Omega^{2}-\alpha^{2} \cdot \Omega^{4}-a^{2} \alpha^{2}\right)}}=d \theta
$$

viz. this equation determines Ω as a function of θ, and we then have

$$
\left\{\begin{array}{l}
d s=\Omega d \theta \\
d z=\sqrt{ }\left(\Omega^{2}-\alpha^{2}\right) d e \\
x=\alpha \cos \theta \\
y=\alpha \sin \theta
\end{array}\right.
$$

equations which determine x, y, z, s as functions of the parameter θ, and give thus the edge of regression of the torse in question.

It is clear that the formulæ are very much simplified in the case $\alpha=\alpha$, where the radius of absolute curvature a is equal to the radius α of the cylinder; but it is worth while to develope the general case somewhat further.

Considering the elliptic functions $\operatorname{sn} u$, cn $u, \operatorname{dn} u$, to the modulus $k\left(=k^{\prime}\right)=\frac{1}{\sqrt{ }(2)}$, assume

$$
\Omega=-\frac{\sqrt{ }(a \alpha)}{k} \frac{\operatorname{dn} u}{\operatorname{sn} u}
$$

then

$$
\begin{aligned}
d \Omega & =-\frac{\sqrt{ }(a \alpha)}{k} \frac{\mathrm{cn} u d u}{\operatorname{sn}^{2} u}, \\
\Omega^{2}-\alpha^{2} & =\frac{a \alpha}{k^{2} \operatorname{sn}^{2} u}\left(\operatorname{dn}^{2} u-\frac{\alpha}{a} k^{2} \operatorname{sn}^{2} u\right), \\
& =\frac{a \alpha}{k^{2} \mathrm{si}^{2} u}\left\{1-\left(1+\frac{\alpha}{a}\right) k^{2} \mathrm{sn}^{2} u\right\}, \\
\Omega^{4}-a^{2} \alpha^{4} & =\frac{a^{2} \alpha^{2}}{k^{4} \mathrm{sn}^{4} u}\left(\operatorname{dn}^{4} u-k^{4} \mathrm{sn}^{4} u\right), \\
& =\frac{a^{2} \alpha^{2}}{k^{4} \mathrm{sn}^{4} u}\left(1-2 k^{2} \mathrm{sn}^{2} u\right),=\frac{a^{2} \alpha^{2}}{k^{4} \mathrm{sn}^{4} u} \mathrm{cn}^{2} u,
\end{aligned}
$$

and hence

$$
\begin{aligned}
& d \theta=\frac{k^{2} \operatorname{sn} u d u}{\sqrt{ }\left\{1-\left(1+\frac{\alpha}{a}\right) k^{2} \operatorname{sn}^{2} u\right\}}, \\
& d s=\frac{k \sqrt{ }(a \alpha) \mathrm{dn} u d u}{\sqrt{ }\left\{1-\left(1+\frac{\alpha}{a}\right) k^{2} \mathrm{sn}^{2} u\right\}} \\
& d z=k \sqrt{ }(a \alpha) d u
\end{aligned}
$$

We have thus $z=k \sqrt{ }(\alpha \alpha) u$, no constant of integration being required, viz. u is a mere constant multiple of z : and the first and second equations then give s and θ as functions of u, that is, of z; but it is obviously convenient to retain u instead of expressing it in terms of z. As regards the form of these integrals observe that, writing sn $u=\lambda$, we have
and thence

$$
d u=\frac{d \lambda}{\sqrt{ }\left\{1-\lambda^{2} .1-k^{2} \lambda^{2}\right\}}
$$

$$
\begin{aligned}
& d \theta=\frac{k^{2} \lambda d \lambda}{\sqrt{ }\left\{1-\lambda^{2} \cdot 1-k^{2} \lambda^{2} \cdot 1-\left(1+\frac{a}{\alpha}\right) k^{2} \lambda^{2}\right\}}, \\
& d s=\frac{k \sqrt{ }(a \alpha) d \lambda}{\sqrt{ }\left\{1-\lambda^{2} \cdot 1-\left(1+\frac{\alpha}{a}\right) k^{2} \lambda^{2}\right\}},
\end{aligned}
$$

each of which is in fact reducible to elliptic integrals, but I do not further pursue this general case.

In the particular case $a=\alpha$, we have

$$
1-\left(1+\frac{\alpha}{a}\right) k^{2} \operatorname{sn}^{2} u=\operatorname{cn}^{2} u
$$

and the equations become

$$
d \theta=\frac{k^{2} \operatorname{sn} u d u}{\operatorname{cn} u}, d s=\frac{k \alpha \operatorname{dn} u d u}{\operatorname{cn} u},
$$

which admit of immediate integration ; viz. we have

$$
\theta=\frac{1}{2} \frac{k^{2}}{k^{\prime}} \log \frac{\mathrm{dn} u+k^{\prime}}{\mathrm{dn} u-k^{\prime}}
$$

or determining the constant so that θ may vanish for $u=0$, say

$$
\theta=\frac{1}{2} \frac{k^{2}}{k^{\prime}} \log \left(\frac{\operatorname{dn} u+k^{\prime}}{d \ln u-k^{\prime}} \cdot \frac{1-k^{\prime}}{1+k^{\prime}}\right)
$$

and

$$
s=\frac{1}{2} k \alpha \log \left(\frac{1+\operatorname{sn} u}{1-\operatorname{sn} u}\right)
$$

viz. to verify these results we have

$$
\begin{aligned}
\frac{d \theta}{d u} & =\frac{1}{2} \frac{k^{2}}{k^{\prime}} \cdot k^{2} \operatorname{sn} u \operatorname{cn} u\left\{\frac{1}{\operatorname{dn} u+k^{\prime}}-\frac{1}{\operatorname{dn} u-k^{\prime}}\right\}, \\
& =\frac{k^{4} \operatorname{sn} u \operatorname{cn} u}{\mathrm{dn}^{2} u-k^{\prime 2}},=k^{2} \frac{\mathrm{sn} u}{\operatorname{cn} u},
\end{aligned}
$$

and

$$
\begin{aligned}
\frac{d s}{d u} & =\frac{1}{2} k \boldsymbol{\alpha} \cdot \operatorname{cn} u \operatorname{dn} u\left\{\frac{1}{1+\operatorname{sn} u}+\frac{1}{1-\operatorname{sn} u}\right\} \\
& =\frac{k \alpha \operatorname{cn} u \operatorname{dn} u}{1-\operatorname{sn}^{2} u},=\frac{k \alpha \mathrm{dn} u}{\operatorname{cn} u}
\end{aligned}
$$

Hence, recurring to the original equations, and writing for convenience $a=\alpha=1$, we see that a solution of the simultaneous equations

$$
\begin{gathered}
\left(\frac{d x}{d s}\right)^{2}+\left(\frac{d y}{d s}\right)^{2}+\left(\frac{d z}{d s}\right)^{2}=1 \\
\left(\frac{d^{2} x}{d s^{2}}\right)^{2}+\left(\frac{d^{2} y}{d s^{2}}\right)^{2}+\left(\frac{d^{2} z}{d s^{2}}\right)^{2}=1 \\
x=\cos \theta, y=\sin \theta, z=k u \\
\theta=\frac{1}{2} \frac{k^{2}}{k^{\prime}} \log \left(\frac{\operatorname{dn} u+k^{\prime}}{\operatorname{dn} u-k^{\prime}} \cdot \frac{1-k^{\prime}}{1+k^{\prime}}\right), s=\frac{1}{2} k \alpha \log \left(\frac{1+\operatorname{sn} u}{1-\operatorname{sn} u}\right)
\end{gathered}
$$

is
where, as before, $k=k^{\prime}=\frac{1}{\sqrt{(2)}}$.
Restoring the radius α, and writing the system in the form

$$
\begin{gathered}
x=\alpha \cos \theta, y=\alpha \sin \theta, z=k \alpha u \\
\theta=\frac{1}{2} \frac{k^{2}}{k^{\prime}} \log \left(\frac{\mathrm{d} \mathrm{~d} u+k^{\prime}}{\mathrm{dn} u-k^{\prime}} \cdot \frac{1-k^{\prime}}{1+k^{\prime}}\right), s=\frac{1}{2} k \alpha \log \left(\frac{1+\operatorname{sn} u}{1-\operatorname{sn} u}\right),
\end{gathered}
$$

we see that, as u passes from $u=0$ to $u=K$, and therefore z from $z=0$ to $z=k \alpha K\left(K\right.$ the complete function $\left.F_{1}\left\{\frac{1}{\sqrt{(2)}}\right\}\right)$, then θ and s each pass from 0 to ∞; and, similarly, as u passes from $u=0$ to $u=-K$, that is, as z passes from 0 to $-k \alpha K$, then θ passes from 0 to ∞, and s from $s=0$ to $s=-\infty$; viz. the curve makes in each direction an infinity of revolutions about the cylinder. Developing the cylinder, $\alpha \theta$ becomes an x-coordinate; viz. we have thus the plane curve

$$
\begin{aligned}
& z=k \alpha u, \\
& x=\frac{1}{2} \frac{k^{2} \alpha}{k^{\prime}} \log \left(\frac{\operatorname{dn} u+k^{\prime}}{\operatorname{dn} u-k^{\prime}} \cdot \frac{1-k^{\prime}}{1+k^{\prime}}\right),
\end{aligned}
$$

which is a curve extending from the origin in the direction x positive, to touch at infinity the two parallel asymptotes $z= \pm k \alpha K$; and conversely, when such a plane curve is wound about the cylinder, there will be in each direction an infinity of revolutions round the cylinder.

