632.

ON ARONHOLD'S INTEGRATION-FORMULA.

[From the Messenger of Mathematics, vol. v. (1876), pp. 88-90.]

The fundamental theorem in Aronhold's Memoir, "Ueber eine neue algebraische Behandlungsweise der Integrale...П $(x, y) d x$, \&c.," Crelle, t. LxI. (1863), pp. 95-145, is a theorem of indefinite integration. The form is

$$
\Lambda \int_{(\alpha x+\beta y+\gamma)(h x+b y+f)}=\log \frac{(a \xi+h \eta+g) x+(h \xi+b \eta+f) y+g \xi+f \eta+c}{\alpha x+\beta y+\gamma}
$$

where y is a certain irrational function of x, determined by a quadric equation, and the other symbols denote constants connected by certain relations; viz. writing, for shortness,

$$
U=(a, b, c, f, g, h \chi x, y, 1)^{2},=(a, \ldots \chi x, y, 1)^{2} \text { for shortness, }
$$

that is,

$$
\begin{aligned}
& =a x^{2}+2 h x y+b y^{2}+2 f y+2 g x+c ; \\
W & =(a, b, c, f, g, h \chi x, y, 1 \nmid \xi, \eta, 1),=(a, \ldots \nmid x, y, 1 \chi \xi, \eta, 1),
\end{aligned}
$$

that is,

$$
=(a x+h y+g) \xi+(h x+b y+f) \eta+g x+f y+c,
$$

or

$$
\begin{aligned}
(a \xi+h \eta+g) x & +(h \xi+b \eta+f) y+g \xi+f \eta+c \\
(P, Q, R) & =(a x+h y+g, \quad h x+b y+f, \quad g x+f y+c) \\
\left(P_{0}, Q_{0}, R_{0}\right) & =(a \xi+h \eta+g, \quad h \xi+b \eta+f, \quad g \xi+f \eta+c) \\
\Omega & =\alpha x+\beta y+\gamma \\
\Omega_{0} & =\alpha \xi+\beta \eta+\gamma,
\end{aligned}
$$

$(A, B, C, F, G, H)=\left(b c-f^{2}, c a-g^{2}, a b-h^{2}, g h-a f, h f-b g, f g-c h\right)$,
then y is determined as a function of x by the equation $U=0$, that is,

$$
(a, b, c, f, g, h \chi x, y, 1)^{2}=0
$$

or, what is the same thing,

$$
b y=-\left\{h x+f+\sqrt{ }\left(-C x^{2}+2 G x-A\right)\right\}
$$

the constants α, β, ξ, η are such that

$$
\begin{gathered}
(a, b, c, f, g, h \gamma \xi, \eta, 1)^{2}=0 \\
a \xi+\beta \eta+\gamma=0 \\
\Omega_{0}=0
\end{gathered}
$$

that is,
and the value of Λ is given by

$$
\Lambda^{2}=-\left(A, B, C, F, G, H \gamma(\alpha, \beta, \gamma)^{2} .\right.
$$

The theorem may therefore be written

$$
\Lambda \int \frac{d x}{\Omega Q}=\log \frac{W}{\Omega}
$$

where the several symbols have the significations explained above.
The verification is as follows. We ought to have

$$
\frac{\Lambda d x}{\Omega Q}=\frac{P_{0} d x+Q_{0} d y}{W}-\frac{\alpha d x+\beta d y}{\Omega}
$$

when $d x, d y$ satisfy the relation $P d x+Q d y=0$, viz. substituting for $d y$ the value $-\frac{P d x}{Q}$, the equation becomes

$$
\frac{\Lambda}{\Omega}=\frac{P_{0} Q-P Q_{0}}{W}-\frac{\alpha Q-\beta P}{\Omega}
$$

that is, substituting for Ω its value,

$$
\Lambda W=\left(P_{0} Q-P Q_{0}\right)(\alpha x+\beta y+\gamma)-(\alpha Q-\beta P) W
$$

On the right-hand side, substituting for W its value,
coeff. $\alpha=x\left(P_{0} Q-P Q_{0}\right)-Q\left(P_{0} x+Q_{0} y+R_{0}\right), \quad=Q_{0} R-Q R_{0}$,
coeff. $\beta=y\left(P_{0} Q-P Q_{0}\right)+P\left(P_{0} x+Q_{0} y+R_{0}\right), \quad=R_{0} P-R P_{0}$,
(as at once appears by aid of the relation $U=P x+Q y+R=0$),
coeff. γ
$=P_{0} Q-P Q_{0}$.
The equation to be verified thus is

$$
\Lambda W=\left|\begin{array}{lll}
\alpha, & \beta, & \gamma \\
P_{0}, & Q_{0}, & R_{0} \\
P, & Q, & R
\end{array}\right|
$$

which, substituting therein for $P, Q, R, P_{0}, Q_{0}, R_{0}$, their values, and writing

$$
(\lambda, \mu, \nu)=(\eta-y, x-\xi, \xi y-\eta x)
$$

is in fact

$$
\Lambda W=(A, \ldots \gamma \lambda, \mu, \nu \gamma(\alpha, \beta, \gamma) .
$$

We have identically

$$
(a, \ldots 久 x, y, 1)^{2} \cdot(a, \ldots \curlywedge \xi, \eta, 1)^{2}-W^{2}=(A, \ldots 久 \lambda, \mu, \nu)^{2},
$$

which, in virtue of $(a, \ldots \chi \xi, \eta, 1)^{2}=0$, gives

$$
W^{2}=-(A, \ldots \gamma \lambda, \mu, \nu)^{2} ;
$$

and since $\Lambda^{2}=-\left(A, \ldots \gamma(\alpha, \beta, \gamma)^{2}\right.$, the equation is thus

$$
\sqrt{ }\left\{-\left(A, \ldots \gamma\langle\alpha, \beta, \gamma)^{2}\right\} \cdot \sqrt{ }\left\{-(A, \ldots \gamma \lambda, \mu, \nu)^{2}\right\}=(A, \ldots \gamma \lambda, \mu, \nu \gamma\langle\alpha, \beta, \gamma)\right.
$$

that is,

$$
\left(A, \ldots \gamma\langle\alpha, \beta, \gamma)^{2} \cdot(A, \ldots \gamma \lambda, \mu, \nu)^{2}-[(A, \ldots \gamma \lambda, \mu, \nu \gamma \alpha, \beta, \gamma)]^{2}=0\right. \text {. }
$$

The left-hand side is here identically

$$
=K(a, \ldots \not \subset \gamma \mu-\beta \nu, \alpha \nu-\gamma \lambda, \beta \lambda-\alpha \mu)^{2}:
$$

substituting for λ, μ, ν their values, we find

$$
(\gamma \mu-\beta \nu, \alpha \nu-\gamma \lambda, \beta \lambda-\alpha \mu)=\left(x \Omega_{0}-\xi \Omega, y \Omega_{0}-\eta \Omega, z \Omega_{0}-\zeta \Omega\right)
$$

viz. in virtue of $\Omega_{0}=0$, these are $=-\xi \Omega,-\eta \Omega,-\xi \Omega$, and the quadric function is $=K \Omega^{2}(a, \ldots \backslash \xi, \eta, 1)^{2}$, vanishing in virtue of the relation $(a, \ldots \chi \xi, \eta, 1)^{2}=0$.

The equation in question

$$
\sqrt{ }\left\{-(A \ldots \chi \alpha, \beta, \gamma)^{2}\right\} \cdot \sqrt{ }\left\{-(A \ldots \gamma \lambda, \mu, \nu)^{2}\right\}=(A \ldots \gamma \lambda, \mu, \nu \nmid \alpha, \beta, \gamma)
$$

is thus verified, and the theorem is proved.

