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1 Introduction
‘We consider the convex constrained minimization problem

inf f(u), veC, hu)<O0; (1.1)
here C is a “‘simple” closed convex set in the Euclidean space R™ (typically a polyhe-
dron); f(-) is a “simple” convex real-valued function (typically linear, or quadratic);
h(-) is also a convex real-valued function,! but only known via an oracle which delivers

appropriate information at any given u € C.
The present paper relies upon the assumption that a Slater point

u® e ¢ suchthat A% <0 (1.2)

exists and is available; motivating applications are given in Sects. 3.2-3.3.
We are interested in algorithms of the cutring-plane type, whose building bricks

are linearizations of h(.), i.e., affine functions £(#) = wa — y minorizing A{u).
At the current iteration k¥ of such an algorithm, the oracle has been called at a
number of trial points u!, ..., u* in C, and has returned the corresponding couples

@' aly, ..., (0, a*) in R x R”. Normally, B =h(/)yanda’ € dh(u/) denote the
(exact) constraint value and a subgradient at u/. In this paper, the oracle is allowed to
be noisy: we assume for all j

B =h(u!) —n/ and a’ €3 ;h(ul), withn/ 20, 1.3)

where the inaccuracies 7/ are unknown, and need not go to zero; Sect. 5.4 will specify
the influence of large inaccuracies on the quality of the algorithm.
The above notation introduces the 7-subdifferential®

ph(u) = {a:h(:) 2 h(u) —n+ (- —wa). (1.4)

As far as cutting planes are concerned, each (hd, a’) from the oracle defines the
linearization

i W) =0+ (- ul)ad, (1.5)
and the 5/ -subgradient inequality gives for all v € R™
h(u) = haely — 11j + (u — uj)aj =hl + (u— uj)aj = h' (). (1.6)

In this context, the general bundle methodology [[4, Sect. XV.3] maintains

! In this paper, we will systematically use notation such as f'(:), h(+), ... for functions, while £, h, ... will
be reserved to particular valiees of such functions

2 . . .

= For reasons to come in Sect. 3 below, u and « are considered as row and column vectors respectively: «
will be a column of an m x i constraint matrix A and & will be a multiplier vector.
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e amodel i*(-) of ii(-), which must satisfy
/;k(u) < h(u) forallu e C, (1.7

o astability center 4%,
o astability parameter t* > 0.

and the next reference point «**! is the optimal solution of
inf £(u) + gl — 4% weC, Aw) <o (1.8)

In fact, i) 1= /;"(-) is piecewise linear {so (1.8) is typically a quadratic program-
ming problem]; as such, it can be written for some finite index set Jk:

l;(u) = max{uai - yj 1j€ J"}. (1.9)

where each (v/,a’) lies in R x R™; we will call bundle the data {(v/, a’))} e
characterizing /;(-). The affine functions in (l._9) are lixle;\rilationls of A(-). They can
be those of (1.5), with j € {I,... k} and ¥/ := w/a’/ — h/; note that (1.6) then
guarantees (1.7). However, Sect. 2.3 below will introduce “exogeneous” linearizations,
through the operation of aggregation.

Remark 1.1 We have introduced two ways for characterizing an affine function such

as I;j(-):

e (1.9) is the natural way: it uses the constant term v/, which will be useful for the
applications in Sect. 3;

o (1.5)rather translates the origin to i/, which is useful for the description and analysis
of the algorithm; we will see in Sect. 2.4 that translating the origin to & is even more

appropriate.

With the above notation, (1.8) can be more concretely written as

inf £} + elu— P weC wal —y/ <0, jedt (1.10)

Lemma 1.2 Under assumption (1.2), (1.8) has a unique optimal solution u*+! given
by

d = g R gE i gF = bR ket K (1.11)

where

b* € R" is a subgradient of f at uFt1,
wr > 0 sarisfies pk ik (bt = 0,

G eR"isa subgradient of & atu
v & R™ lies in the normal cone N¢ (uk+1y 10 C ar u*+1,

k+1
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With the explicit expression (1.9), we have in (1.11)

‘u_k = Z VY oand ‘u_kf]k = Z )\jaj, (1.12)

jedt jesk

where the nonnegative multipliers A satisfy A (uk“aj — yj) =0.

Proof Because of (1.7), the Slater assumption is transmitted to (1.8), which has a
unique optimal solution due to strong convexity of its objective. Then these state-
ments are just the standard optimality conditions, see for example [34, Chap. 28]: a
subgradient ot the Lagrangian is opposite to the stated normal cone. Such a subgradient
can be written b + %= + 24 for (1.8) or b + ﬂ—lﬂ + 32 Mal for (1.10). u]

This result reveals the crucial m-vectors g and 4%, Up to the approximation A (-) ~
R, & is a distinguished subgradient of the Lagrangian associated with (1.1) and
the update formula ! = &% — (*g* of (1.11) resembles a subgradient step with
stepsize r¥, to minimize that Lagrangian. With respect to footnote 2, page 2, note that
the subgradient g* is a column; but % §* should be viewed as a row. The whole business
of convergence will be to drive g to 0. As for 4%, it takes its importance for aggregation
(Sect. 2.3), and also for Lagrangian relaxation, or rather column generation (Sect. 3.1).

The paper is organized as follows: Sect. 2 reviews the various points in the paper
which make its originality; Sect. 3 is devoted to our motivating application: column
generation; Sect. 4 states the algorithm, whaose convergence is analyzed in Sect. 5
and interpreted in the primal space in Sect. 6; we conclude in Sect. 7 with numerical
illustrations on cutting-stock problems.

2 Main ideas in the paper

We first proceed to outline the algorithm studied in this paper, by describing its current
kth iteration. In this informal description, we will often drop the index k to alleviate
notation; then the superscript “+ will stand for k + 1.

2.1 Maintaining the stability center

The role of & := i is to control a suitable balance between objective and constraint
values. Our variant uses the Slater point (1.2) to take care of feasibility of each it; as
a result, the management of the stability center may disregard h-values and needs to

check f-values only.
More precisely, having called the oracle at the new iterate #™*, we construct the

interpolated point
1 if B+ <o,

ik =0 +,§k(uk+I — “0) with ﬂ“’ = —n0 R 2.1
otherwise.
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ity Jor

Fig. 1 Interpolation guarantees i1 (#F) < (1 — o+ Bt

Note here that E € [0, 1]. The algorithm uses the (strictly negative) answer h° from
the oracle, but a need not be used. The next result is illustrated by Fig. 1.

Lemma 2.1 h(ii*) < i = (1 — AAn® + A5 t) < max (70, p* ).
Proof By convexity of 1i(.),

h(it) € (1= A)h® + Bhut)
= (1= HrO+9% + frt + 94
=m0+ At — % + (1 — Hn® + B,

where we have used (1.3). Inspection of (2.1) shows that h0 + A+ — %) < 0'in
either case, so the result follows. u]

Thus, possible infeasibility of i is controlled in the same way as the oracle’s
inaccuracy. In particular, i is feasible in the case of an exact oracle.

Now let us assume for the moment that & is feasible in (1.8)—we will see that
this is the case for an exact oracle. Then the predicted decrease v .= f(i) — f(u")
is positive (the case v = 0, i.e., ™ = 4, is uninteresting; and Sect. 2.2 below will
explain how to enforce positivity of v in the noisy case). As a result, the following
strategy makes sense:

o Improve the current stability center if f (it) is “definitely smaller” than f (). More
precisely, fix a coefficient x € J0, I and set &+ := i if f(&) — f(ii) > «v; this is
a descent step.

e If such is not the case, make a null step: &+ := ii.

o In either case, update f(-) and ¢ and proceed to the next iteration.

The above interpolation idea is reminiscent of versions of the cutting-plane
algorithm which also use points like «® and i#; see {38] and the references therein.
In these versions, however, the oracle is called at i, while our variant disregards i for
the oracle, which is called at u™ only. However, Sect. 3.2 below will show that both
approaches become closer in an important special case.

Except for the two recent filter methods [9,15], the existing bundle methods for
constrained optimization require a merit function, forexample an exact penalty ( f (u)+
st max{0, h(x}}, as in SQP) or an “F-distance” (max { £ (1) — f(&), h(u)}, as in the
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method of centers). The earliest feasible-point methods of [32] and [18, Ch. 5}, as
well as the recent variant of [35), may converge slowly when their method-of-centers
subproblems prevent approaching the constraint boundary fast. The penalty function
methods of [19,20] tend to perform better; still, they require additionally that C be
bounded, and may converge slowly when their penalty parameter estimates are 100
high. Finally, the level method of [29] (also see [24] and [2]) has good efficiency esti-
mates when the set C is bounded, even if a Slater point does not exist; not surprisingly,
therefore, it cannot benefit from the knowledge of a Slater point.

2.2 Coping with the noise

Suppose 1 := t* = 400 in (1.8): there is no stabilizing term and (1.8) becomes a
relaxation of (1.1), thanks to (1.7). If, in addition, we take J¥ = {I,...,k}, we
obtain the pure cutting-plane algorithm® [5, 16] used for standard column generation,
see Sect. 3 below. This algorithm is little affected by inaccuracies: it just requires the
oracle to provide linearizations satisfying (1.6). Accumulating linearizations even-
tually drives A to 0; insofar as it is close to (™) (depending on the noise in the
oracle), a small h* implies that 1™ is approximately feasible, and therefore approxi-
mately optimal for (1.1).

This observation indicates that the noise can disturb our bundle algorithm only via
the stabilizing term in (1.8). In fact, the new stability center i is constructed so as
to be feasible in the current problem (1.8) (see Fig. 1), Nevertheless, k(") may be
positive and the property (1.6) need not guarantee i to stay feasible in all subsequent
problems (1.8). When the stability center is not feasible, the predicted decrease may be
negative: the algorithm is so much fooled that it seeks points worse than the stability
center.

Our previous remark immediately suggests the cure, already proposed in [26]: just
increase ¢ in (1.8) in order to lessen the influence of the stabilizing term; do this until

e either v gives a safe descent test,
e orf is deemed large enough so that the whole algorithin can stop, just as the pure

cutting-plane method would do.

Remark 2.2 We will see (end of Sects. 4 and 5.4) that more accurate answers from
the oracle are required only at descent steps: large errors h(u/) — h/ at null steps do
not deteriorate the final answer of the algorithm. [n]

To give a safe descent test, v should be “substantially” positive. Technically, it is
convenient to require a decrease of the whole objective function in (1.8) from # to ut:
descent is tested only when

T (2.2)

A\
-

F@) — f@t)y =St —aP 20, ie, v

otherwise 7 is simply increased and (1.8) is solved again, with the same ¢ and 1;(»).

3 Whenr = —+00, (1.8) may have no solution; we skip this difficulty here.
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Remark 2.3 (Bounding the objective) Let us mention here that no feasible & need ever
be produced when the oracle is noisy; it may not be straightforward to bound from
above the optimal value f* of (1.1).

It is known that f(u) + 7 max {0, h(u)} > f* forany u € C if x is large enough
(larger than an optimal multiplier 1*). Yet, such bounds assume some information
about p*—and are corrupted by noise anyway.

However, assume that the oracle is also able to answer upper bounds, say o>
h(u/). They can be inserted in the above exact penalty function, but better bounds can
be obtained. In fact, introduce analogously to (2.1) the upper interpolated point

1 ifit <0,

g=1u"+ ﬂ(u+ — uo) with B = ~h? .
———— otherwise
h+ — i

and assume 7% < 0. Then § € [0, 1] and h(ii) < 0 by convexity, as in Lemma 2.1.
This construction can be useful in applications, see Remark 3.5 below. u}

Our algorithmic constructions and analysis of inaccuracies in the oracle extend to
the constrained case the inexact linearization framework of [26,27]; for earlier related
developments, see [13,17,22,33,37].

2.3 Managing the constraint model: the aggregate linearization

The management of /;(-) should guarantee convergence in spite of possible non
simoothness of /(-). To this aim the standard idea, which is used in the pure cutting-
plane algorithm, is to accumulate information coming from the oracle (the “bundling”
process): with the new linearization it (u) := At + (u — ut)ya*—recall notation
(1.5)—one sets it (-) := max (k(:), it ()}, ie., /T := J U {+). This results in
storing all the (y/, a/) in (1.10), which may become inconvenient or impossible when
the iteration index & grows; the question is therefore: Which linearizations should it )
be made from? To answer it, (1.7) should be kept in mind.

Naturally, the new couple (2%, a*) must appear in the new model: /* > {+]}. As
for information accumulation, it uses the set

Ji={eltutal =y =™ 2.3)
of active linearizations at 4. From standard convex analysis (see [ 14, Sect. V1.4.4 or

Example V1.3.4] for example), the subdifferential of ﬁ(~) at u™ is the convex hull of
the corresponding slopes:

Iy =1>"elal o/ 20, Dol =17, (24)

jed jei
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By the definition of subgradient, the function £(u) := Rt + (1 — u)a satisfies
() £ h( Yyifa € 311(1:*) With reference to (1.9), this £(-) can be put in the form
() = ua — y and its constant term y is easy to compute:

Lemma 2.4 Witha € B};(u*“), the above function £(-) has
Y= (7 i J =
(a).—Za (af) formmea}OwuhZa =1. (2.5)
jed jed

Proof Because uta’ — y/ = h(ut) = €(u™) = u*a — y forall j € J, we obtain
for any set o of convex multipliers

Zajaj - Zajyj = };(u*') =l =uta—y.

ie
This holds in particular for the o making up a—see (2.4). [}

Then the bundling process distinguishes three cases:

(1) A descent step is made. Then the descent property is strong enough to imply
convergence, even if J T is reduced to the singleton {+}.

(2) The constraint is not active in (1.8); more precisely, i = 0. Again, we may set

J* = {+] without impairing convergence.

A null step is made and g > 0. Then Lemma 1.2 reveals the aggregate lineariza-

tion

3

P

u - h~ ) = hRw) = )Y + - A Hak (2.6)

which satisfies /;‘(4) < /;(»). Indeed, A~ (-) somehow gathers the whole informa-
tion contained in the current bundle, entailing the memorization effect crucial for
convergence; this is explained in {6, Sect. 4] for example.

Altogether we have max (@), (1)} < h(u) for all i, which reveals a pie-
cewise linear function satisfying (l 7): it is a valid candidate for the next model
i -). Taking this candidate as h*’( ) corresponds to the “minimal” set {—, +}
tor J¥. A “maximal” J* would be {1, ...,k + 1}, as in the pure cutting-plane
algorithm. We therefore see that the new index set just has to satisfy

{—k k+1) C J* o~k k+ 1y U JE @

No matter how J ¥ is chosen as above, the resultis a new model function satisfying—
recall the notation (2.6), (1.5):

max{h™* ), " )} <) < hw), forallu e C. (2.8)

We conclude this section with a few remarks:
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A consequence of (2.5) is that the {—}-linearization is useless if J * already contains
the whole of J. When m is not too large a reasonable choice is J+ = J U {+}.
An even more sensible choice reduces J to the set of those j such that A/ > Uin
Lemma | .2; this is linearization selection, in which each J* can be forced to have
at most m + 1 elements; see [18,27].

In case (3), the software solving (1.10) usually provides the multiplier vector A of
(1.12), s0 a is readily available: just take af = AJ/uin (2.5).

Reducing J* to {+} in cases (1), (2) is not recommended: the next iteration will be
(close to) steepest descent, well known for its numerical inefficiency. Even when
Bty <0 (in which case g = 0), bundling is probably worthwhile.

This latter point suggests that aggregation might be desirable even if o = 0. For this,
we can take any linearization of the form (2.6), where d is any convex combination
of active a/’s at u™.

2.4 Convergence analysis

For later use, we return in this section to the full k-notation. We start with
elementary relations: the properties b* € 3f (uk+1), &k € ah(u**t"), v¢ & Ne(@rth)
in Lemma 1.2, and (1.7) give forallu € C

ORI @Y + (- W* b, (2.9)
Q) = ) 2 kY + @ — ok THak, (2.10)
02 (u —uH")u. .10

Multiply (2.10) by % > 0, use complementarity slackness and sum up to obtain
YueC, flu)y+ ,uk/l(u) 2 f)+ ;Lk/;k(Ll) = f(uk‘H) + (4 — Ltk+l)§k. (2.12)
In a bundle method, convergence of the “natural iterates” u¥ is not a relevant

property: the actual candidates to solving (1.1) are rather the stability centers. This is
why the optimality conditions of (1.8) or (1.10) are traditionally translated to 4:

Theorem 2.5 With the noration of Lemma 1.2, sef

cky k+1y _ (pk o k+bysk
= f(u) f(u Y- wThHgk, @.13)

Then
& > —pkhia). (2.14)
Besides, for all u feasible in (1.8) [(e.g., feasible in (1.1)]:
f) > f@) — 8+ w - ahgh (2.15)
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or equivalently
Fl) = F@%) =8 +ugk (2.16)

Proof We use (2.12). First take « = i and arrange terms to obtain & 2 ~,u.l;(ﬁ) >
—uh(). Then take « feasible in (1.8): A(u) < Oand f(u) > fu¥) + (u — ut)g.
Straightforward manipulations then give (2.15) and (2.16). Note that the feasible set
of (1.8) contains the feasible set of (1.1) thanks to (1.7). [u]

Note that € may be negative if i is not feasible in (1.8). In connection with Sects. 2.1
and 2.2, use (1.11) and (2.13): the predicted decrease is

= faty ~ ety = 25 4 AR (2.17)

As explained in Sect. 2.2, it is “substantially” positive when (2.2) holds, which has
several equivalent expressions obtained by suitable manipulations based on (2.17):

ok

1
& K+l sk (2 P Y SN Y 1+
vtz Py fu [ R Vel I S 1 2]g |~ (2.18)

When this holds, the descent test is
S = £ 2 0 (2.19)

with i#* given by (2.1) and « €]0, 1[.

Traditional convergence analyses of bundle methods consist in showing that 0 is a
cluster point of the sequence {&%, g¥) € R x R™; then (2.15) implies that f (i) is
“asymptotically good”. Here we use a slightly different argument, namely:

The sequence {(3", £%)} has a cluster point @, 0), with$ <0, (2.20)

i.e., liminfy_ 100 max {85, (g1} = 0.

Remark 2.6 This argument goes back to [26] and has an interesting background in
convex analysis. Call ¢ () the actual objective function of ().1) (¢ (1) = f(u) if u
is feasible, 4-00 otherwise) and admit that every i is feasible, Then write (2.16) as
ugh — ¢ () < 8F — (%) for all v € R™ and take the supremum over «: ¢*(§5) <
5 — ¢ (i) where ¢*(-) is the convex conjugate of ¢(-). Finally take a subsequence
stipulated by (2.20): knowing that ¢*(-) is lower semicontinuous and that ¢ (ii¥) has
alimit (¢ (#*) = £(*) is monotone),

$*(0) < liminf ¢*(8%) <limsup*(8*) < 8 — limp (") < — lim ¢ (2).
Remembering that —¢*(0) is the infimum of ¢ (-), this establishes that 2% is a mini-

mizing sequence for (1.1).
With the traditional approach, the term 4¥g¥ in (2.15) brings trouble if 4 is

unbounded. O
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Thus, f-values of the stability centers are assessed by (2.15) or (2.16). Their
h-values are assessed by Lemma?2.1. Supposing that the latest descent step occur-
red at iteration K (i.c., after the X + Ist oracle’s call), feasibility of i depends on #%,
i.e.,on p®and nX+1; for example, h(i) < #¥+H1ifpE+ <0

3 Motivation: column generation

Consider the following primal-dual pair of LP problems (¢ is an n-row, b is an
m~-column)

min ¢A, AL+b620, rAeR], @3B.D
max —ub, uA <c, uweRY, 3.2)

where 1 is a huge number: then column generation is a method of choice. Fori €
(1,....n}, let A; denote column i of A. Setting C := R, f(u) := ub and

ey = nlmx (MA; —ci) 3.3)

clearly puts (3.2) in the form (1.1).
The possibility of an inaccurate oracle is useful in this framework. In fact (keeping

Remark 2.2 in mind), the oracle in charge of solving (3.3) is allowed to compute an
arbitrary i = i/:
Proposition 3.1 For given w e R™andil €(l,...,n}, set h/ :=ul Ay — ¢; and
al = A;j. Then

11j = /1(uj) —i/ 20 and a’ e B,I,‘h(u*").

Proof The property ! Z 0is obvious from the definition (3.3) of 1 (u/ ). Now consider
the definition of 8,4 (x’) in (1.4): for all u

B!y —nd + (u —uhal =hl 4 (u ~uj)A,,- = ujA,-, —c+ —llj)Aij;

the last term is just uA;; — c¢;;, which is not larger than s (u). a

As for the availability of a Slater point, it is application dependent; note that we
may take 1% = 0 in (1.2) if ¢ > 0. A particularly interesting situation will be seen in

Sect. 3.2 below.
In this section, we explain how our bundle method for the dual problem (3.2) can

solve the primal problem (3.1). Again we drop the index & whenever possible.

3.1 Primal recovery

We proceed to show that the multiplier vector A of Lemmal.2 provides a good
candidate for solving (3.1), once properly embedded in R”. In fact, the (y/,a’)’s
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in (1.9) or (1.10) connote the (c;, A;)’s in (3.3) or (3.2). The A/’s of (1.12) define pua
as well as

“p :=Zyj)\j; G4

jes

then (P, a) connotes (ck, Ax) in (3.1). .
A primal-dual optimal pair for (3.1), (3.2) is a (&, it) € R} x RY satisfying

AA<c, AA+b320, ch+iab<0, (3.5)

where the last <-sign could just be replaced by = (weak duality). In the construction
of an optimal pair by our bundle method (remember from Sect. 2.4 that the candidate
to dual optimality is the stability center 1), the next result deals with the second and

third inequalities:
Lemma 3.2 Wirh (3.4), (2.13) and the notation of Lemma 1.2, there holds

wp +iib =34, (3.6)
pa+b2g. (3.7

Proof By the definition of normal cone, v in (1.11) is in complementarity with u*:
0 < ut L (—v) 20, hence

b4uid—g>0 and ut (b4 ps~$)=0,

which gives (3.7) and u¥(ua) = utg — utb. Besides, complementarity slackness
in (1.10) guarantees that u¥a/ = y/ if A > 0, hence u*(ud) = pp; this gives
uy =utg —u*b Since § = (& —uT)b 4+ utg by (2.13), (3.6) follows. a

The role of the convergence property (2.20) for primal recovery is now clear: toge-
ther with the constraint k(i) < 0, it aims at satisfying the three inequalities in (3.5).
Assume for the moment that / C {1, ..., n}. Extending the A47s by zero gives LeR",
which satisfies approximately the optimality conditions when the algorithm is close
to convergence. Actually, / can be slightly more general:

Theorem 3.3 Assume in (1.9) that the (y7,aly’s are linear combinations of the
(ci, Af)'sin (3.1):

J L .
(Zl) =3 (:'i) foreach j € J . (3.8)
i=1

With X of Lemma 1.2, define AeRrr by

e :=Zﬂa,’ forie{l,....n}. (3.9)

jed
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Then there holds
chtiab=5 AL+b2g.

Proof Using successively the definition (3.9) of i, (3.8) and the definitions (1.12),
(3.4) of (¥, @), we have

(4)-55(:)- 5 (1) -5 () ()

i=l
The result is then just Lemma3.2. O

Naturally, « should be nonnegative to guarantee A > 0. In our framework. the
a's actually form convex multipliers, coming into play when aggregating: in (2.7),
a e ah(u"') is a convex combination of the a/'s making up h(-)—see (2.4). The
above result is therefore useful to deal with a bundle with negative indices. This will
be seen more precisely in Sect. 6.

3.2 The positively homogeneous case

The main innovative feature of our method is the interpolation technique outlined in
Sect. 2.1; arguably, its efficiency relies lieavily on the choice of the Slater point: for
example, would it not be a good idea to improve u#® whenever a strictly better feasible
point is found? Our technique, however, seems convenient in the particular instances
of (3.1), (3.2) where c is the vector of all ones in R". Then the constraint in (1.1) has
the form

h(u) =o(uw)—1, whereo(u) = max uA,'. (3.10)

Here come a few key observations:

(1) The above o (-} is a positively homogeneous function of u: o(Su) = Bo (u) for
alt 8 2 0.

(2) An obvious Slater point is #° = 0, for which k% := r(u") = —1I is readily
available.

(3) Assume it = h(u™) > 0in (2.1) and use positive homogeneity (n° = n* = 0
and /s{-) is affine with respect to 8 in Fig. 1, o (-) is linear):

a@@) = o) + flow™) - U(u")) = o(ut) = 1.

aut)
Thus, in the noiseless case, the candidate i for the next stability center lies on the
boundary of the feasible domain in (3.2).

(4) Of course, it is o (-) which is computed by the oracle, and this computation can
be inaccurate, as in the general case.
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Property (3) above is very convenient and assesses the choice of 1% = 0 as the
interpolation center: first, optimal solutions of (3.2) should be sought on the boundary
of its feasible domain; second, the stability centers are feasible (if the oracle is exact),
so each —itb is a lower bound for the primal optimal value. These two features are a
definite advantage of our approach, which can thus be called a “conic” variant.

Remark 3.4 Note an interesting consequence of positive homogeneity: suppose the
oracle is called at a point Bu/, with 8 > 0. Then chances are that the oracle will find
the same index i/ (see Proposition 3.1) that would be obtained at u/: calling (cré, aé)
its answer, we will have

aé =fo’/ and aé =a’.

Setting & (-) = h(-) + 1 for i given in (1.5) and using 6/ = u/a’ gives
&l{(u) = aj + (u— ﬂuj)aé = Bo! + (u — puya’

ol +Bo/ + (u—uhYal — Bula’
=al(u)+ Bo’ — o/ =g/ (u).

I

|

In other words: assuming that the oracle is reasonably deterministic, its answer at ™+
or it of (2.1) produces the same linearization (1.3). o

3.3 Combinatorial applications

Linear programs with a constant cost row may not be so frequent. However, (3.1)
may come from the Dantzig—Wolfe formulation of various combinatorial problems;
A is then an integer vector, and the constraint A € N” is relaxed to A > 0; see [42,
Sect. 11.2]. The case ¢; = | occurs in the classical approach [12] of Gilmore and
Gomory to the cutting-stock problem; Sect. 7 below gives an illustration. Then (3.10)
is a knapsack problem, for which the possibility of an inexact oracle is particularly
welcome. The same situation occurs in some relaxations of the graph-coloring problem
(31], in which the oracle computes a maximum stable set. See also [4].

When ¢ is a general positive vector, positive homogeneity can of course be recovered
by modeling the constraint #A < c as

Ni(u) ;== max (LI——C'-) = max (Li) —-1<0; (3.11)
=1 Ci i=l .0\ ¢

i=l,..n

see {3,36]. This, however, implies that the oracle maximizing v A; accommodates
scaled columns of A.

Remark 3.5 Dual feasible points are useful to produce primal lower bounds. From this
point of view, the it’s from (2.1) are useful if the oracle is exact; actually, f (i) = —&b
is just Farley's bound of [8], see also [1,7,30,39,40} (o realize this, compare (3.11)
with the equation preceding the theorem in {8]).
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_ Ifabranch and bound algorithm is used to approximate /1 (1) in (3. [ 1), upper bounds
I are available and convenient Farley-type bounds f (i) = —ib can still be produced,
via the interpolation mechanism mentioned in Remark 2.3. O

More generally, Dantzig—Wolfe formulations of combinatorial problems are
min cA +de, AL+ Ba+b20, reN' ael0 1}’

(see [40]). Their associate auxiliary problems (to maximize the Lagrangian, see [28])
are

min(c —uA)A+ min (d —uB)a — bu.
A20 0<e <!

They result in a dual problem of the form (1.1), but where the objective function

=ub— min (d —uB
flu) =u Urgnalgl(c uB)a

is given through an oracle, just as the constraint (-). Then (1.1) becomes a fully

nonsmooth constrained optimization problem, for which there are a number of possi-

bilities:

o It can be solved by standard versions of constrained bundle methods, as reviewed
in Sect. 2.1.

e An additional variable can be introduced, say v, and (1.1} can be formulated as
minimizing v, subject to the constraint max { f (1) — v, A(x)} < 0.

o Qur present variant can be tailored to this situation.

4 The inexact conic proximal bundle method

We now specify the algorithm outlined in Sect. 2. In our description, the model i
of (1.7) is abstract. It may have the particular form * (-} = max; jesk iy, J* being
managed as described in Sect. 2.3; but this level of detail is not necessary in our
description. The management of the stepsize ¢* is also left vague. However we do
describe the management of the stability center %, as specified in Sect. 2.1.

The algorithm uses the Slater point u? of (1.2), a descent parameter ¥ €O, I[
and a lower bound /i, > 0O for the stepsize: K () will mark descent iterations (at
iteration &, the last descent iteration was the K (k)th one) and the flag N A will secure
the noise-attenuation mechanism of Sect. 2.2 (during which a decrease of the stepsize
is untimely).

Algorithm 4.1 An initial point u! € C and an initial stepsize t1 > g are given.

Step O (lnmanon) Call the oracle at ! to obtain i and a' of (1.3). Choose a function
it () satisfying (1.7). Compute #° by (2.1) and set ii' = ii%. Set NA = 0,
K(D=0k=1
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Step 1 (Trial point finding). Find uktl gk uk g% as described by Lemmal.2.
Compute v* of (2.17), & and §* of (2.13).
Substep 1’ (Stopping criterion). If ¥ = 0 and sk <o, stop.
Substep 1" (Noise attenuation). If (2.18) does not hold, seti = 1015, NA =

1 and loop back to Step 1.

Step 2 (Oracle call). Call the oracle at 1**1 to obtain h**! and a*+!. Compute itk
of (2.1).

Step 3 (Step distribution). Perform the following operations, depending on the des-
cent test (2.19).

Descent-step: If (2.19) holds, Null-step: If (2.19) does not hold,
set 5t = gk, set ! = 4%;
selK(k+ 1) =k, Na =0. set Kk + 1) = K(k).
IENA = |, settftl =%,
R > ,
Select 7557 > - IENA =0, select £ € [tmins 4],

Step 4 (Model updating). Choose a function alyo) satisfying (2.8).

Step 5 (Loop). Increase & by 1 and go to Step 1. u]

A few comments on the method are in order.

(1) The initial #' may be the Slatel point itself; in this case, il =% =u! =40

(2) The simplest initial model is il () = h'(). However, the algorithm may be hot-

started, with a nonempty initial bundle: J' in (1.9) will contain more than one

index. Being higher, the model Iz (+) will thus be more accurate.

Similarly, multiple cuts may be used at each iteration: the oracle may answer

several values for h and a at a given u, each of which providing its linearization

h(-) satisfying (1.6). The main change in the algorithmn is notational; we will not

elaborate on this technique here.

(4) Step | may use the QP method of {21] or [10], which can solve efficiently

sequences of subproblems (1.10) when € and f are polyhedral. The same method

can also handle a quadratic f.

Section 5 below will establish that either (i) — —o0 or the convergence pro-

perty (2.20) holds. An additional stopping criterion could accordingly be inserted

in Substep 1’: stop if £(ii*) is deemed small enough.

Along the same lines, tolerances may be inserted in Substep 1°: one can stop when

184 < p and N < 5 with p > 0 and 5 > 0. Admitting that £ (6% is bounded

from below, (2.20) will guarantee that the algorithm stops anyway. Note that §is

homaogeneous to f-values; as for p, (3.7) shows that if is a constraint residual in

3.1).

(6) Substep 1" may of course use extrapolation formulae more sophisticated than just
multiplying #* by 10. The only important thing is to drive r* to 400 in case of an
infinite loop within Step 1.

Step 3 may likewise use sophisticated updating formulae. Note that the stepsize
may not increase after a null step. _

(7) As mentioned in Sect. 2.3, the property iX*1(:) > 27*(-) in Step 4 is (always
recommended but) only necessary when a null step is made and uf > 0.

IE]
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parametric QP method such as [23], which is thus useful to shorten such potentially
fruitless loops.

5.2 Finitely many descent steps

This section is devoted to the case where the stability center stops, say at iteration k;
accordingly, we denote by # the stability center(s) i* = i* for k > k.

First of all, a rather simple situation, similar to that of the previous section, is when
there are infinitely many loops within Step 1. Then NA = | forever, and * is never
decreased in Step 3; in fact, r¥ — 4-co.

Proposition 5.3 Suppose there are only mill steps after iteration k. Denote by K the
set of k > k for which at least one loop within Step I oceurs. If K is an infinire set,
then (2.20) holds: indeed limgex §5 = O and lim supyex 8° < 0.

Proof This is essentially Proposition 5.2(1): write (5.1), (5.2) for ¥ € K and let (¥
tend to +o00 for k € K. ]

The other situation is when (2.18) holds for all & large enough. From then on, ¥

may only decrease (or stay fixed forever). Besides, (2.17) implies % < vk so we

clearly have

Akl

184 < v and 43512 < 20 if (2.18) holds . (5.5

B

Introduce the Lagrangian associated with (1.8)
vk { A
Cour LKu):= fl) + ,u‘h‘(u) + ﬁlu — % (5.6)

We start with properties linking successive null steps, which are crucial for establishing

convergence of bundle-type methods. They explain the importance of the aggregate

linearization (2.6).

Lemma 5.4 After a null step issued from ii, the Lagrangian (5.6) satisfies

() LE@) 4 gkt — o < LA @),

(2) LEarh + #IUHZ — u* 2 < LYy, this relies upon the properties
Wt = hoand HfY <R

Proof Linearize the non-quadratic part of L to obtain the quadratic function
—t T 1 N
Cour> L‘(u) = _f(ul‘“) + (1 — u‘“)g‘ + ﬁlu - u|2. (5.7)

In view of (2.12), we dohave L~ < L* over C.
Developing the square ju — u*+! 4 u*+! — 3|2, direct calculations using (1.1]) give

- . i - ! v
T = T @ + Sl — R LR GAy 4 Sl - HHE (5.8)
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Then Lemma 5.4(1) and (1.7) give
LAYy < LYy < £(@) + fmax{h(@), O}.

Because Lemma 5.4(2) implies that the sequence {L* (k1)) is increasing, we see
from Lemma 5.4(1) that [«*+! — ii{ is bounded: u* is bounded; and 7* is also bounded
by assumption. Knowing that the n-subdifferential of (1.3) is locally bounded ([14,
Prop.X1.4.1.2]},

the sequence {a*} is bounded . (5.10)

Besides, L* («**!) has a finite limit, hence

the sequence {|u*+t2 — u**![} tends to 0 . 5.1
Now consider the linearization 257! () of (1.5). Note that k*+! > 0: otherwise i#*
of (2.1) would be equal to **' and the descent test (2.19) would be passed, just by
the definition (2.17) of v*. Note also that A*T! (1**2) < 0, hence ”FH!(u*t2) < 0
from (2.8). Then we have by the Cauchy-Schwarz inequality

0 < BRHD = pRtlhtly o pltl b2y kbt _ ka2y ket
< I”k+l . llk+2| |(lk+lf,

so that k¥t = 0 from (5.10), (5.11). In (2.1), E" — lso ﬁk 2 « for k large enough.
Start from “not (2.19)": —kv* < f@i*) — f(i*) and write

(=Wt < Q@) = fa*h
< 0~ B F W) - Futrh)
= (1 = A1 W) = F@) + vF].
fadd v = f(d) ~ ft))
[convexity of f between 0 and wt]

o PO -1

Take k so large that E‘ — k> 0 and obtain v* < E‘ (r — ﬁk); hence
— K

13
v — 0.

To finish the proof, observe from (5.5) that §k — O because t* 2 tmin, and also
8% — 0. So from (2.13), ¥ = & + iig"* — 0. Finally observe from (2.18) that
[t* ! — 3 tends to 0 just as v*, since 1* does not increase. Q

5.3 Case of infinitely many descent steps

The last situation is when the algorithm “looks like” an ordinary optimization
algorithm, consisting of a series of descent iterations.
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First we fix the case of bounded objective values. This does not depend much on the
actual construction of {ii*} but rather on the properties of (1.1) itself.

Proposition 5.7 Ler the optimal objective value f* of (1.1) be finite. Then:

(1) there exists u* 2 0 such that infyee f(u) + p*h{u) = f*;

(2)  withthe notation (5.13), lim inf f(&%) > f*— u*5, so thar { £ (GF)} is bounded
Sfrom below if 5™ < +oc.

Proof Statement (1) is just {34, Cor. 28.2.1]. To obtain (2), use Lemma 2.1 and write
F* < FORY + prh(d*) < F@EF) 4 K% for all k; then pass to the limit. 0

Then convergence of the algorithm is as follows:

Theorem 5.8 Suppose that Algorithm 4.1 neither terminares nor loops infinitely in
Step 1 (so that k — 00), and the oracle inaccuracies W are bounded. Call f* the

optimal value of (1.1) and f the limit of f(ii*). Then:

(1) The convergence property (2.20) holds if f* > —o0. .

(2) It this case, let K be an index set such that limyx max {8, 1851} = 0. Then the
corresponding subseguence (*) is bounded:

0y __ foo
lim sup ,uk < M—O—f—
kek —h(u®)

(3) Inany case, £ < f* and limsup h(ii*) < 7% of (5.13).

Proof Propositions 5.3, 5.5 and 5.6 guarantee (1).
Now the first relation below is obtained by setting u = u® in (2.12); the second is

direct from (2.13):

Fu® - futy -l +uti 2 —uh(uog
fwh)y —utg = f)—48.

Sum up, divide by —h(u%) > 0and pass to the limit to prove (2).

The second statement in (3) follows directly from Lemma 2.1, For the first, assume
[ > —oo (otherwise the proof is finished); write (2.16) with an arbitrary » feasible
in (1.1) and pass to the limit to obtain f* > . [u]

6 Convergence in the primal

When the algorithm is used in the framework of Sect. 3, attention must be paid to
the primal candidate & introduced in Sect. 3.1. The model /i has the piecewise linear
form (1.9) and several strategies are possible for the management of the bundle. To be
specific, we will assume that Step 4 of Algorithm 4.1

o arbitrarily destroys indices from J*,
o appends if necessary the aggregate column defined by (2.6),
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o then appends the new column coming from u*+!,

50 that the resulting JEH satisfies 2.7.

J
Lemuna 6.1 With this strategy, the columns (Z i)ied k are convex combinations

of the columns (;’ ) in (3.1).
i

Proof Two sorts of columns make up the bundle at a given iteration:

e The “natural” columns, which have yj = Cifs al = a;; with j > 0, computed at
the jth call of the oracle by a (possibly inaccurate) resolution of (3.3) for w = ul.
o Theaggregate columns, with negative indices; consider the aggregate column —k <0,
constructed at the kth iteration:
o from (2.4), a=% = &* of Proposition 1.2 is a convex combination of the /s in
Ik,
o fromLemma24,y % = wkHigk — l;"(uk“) is the same convex combination of
the y/7s.
Thus, the very first aggregation during the algorithm introduces a convex combination
of natural colunms. The subsequent aggregations introduce further convex combina-
tions. Now taking convex combinations is a transitive operation, so these are again
convex combinations of the original columns. o

To construct A* of (3.9) from A of (1.12) is then a matter of computer programming,
using appropriately the history of the successive aggregations. In (3.8), we haveor! > 0

and X°7_, @] = 1 for each j: hence

>0 and iif:inia{=ZA!=uk, 6.1)
j=

jedt i=1 jeJk
while Theorem 3.3 gives
chk 4 qkp = 8%, (6.2)
ARS b2 gk (6.3)

With these premises, the convergence properties of 3% follow naturally from
Theorem 5.8:

Theorem 6.2 Let the primal problem (3.1) have a feasible point, so that (3.1) and
(3.2) have a finite common optimal value 7* and (3.2) has a multiplier u*, as stared
in Proposition 5.7.

Suppose that the algorittun neither terminates nor loops infinitely in Step I (so
that k — o00), and the oracle inaccuracies n* are bounded. Define the asymptotic
primal error €* := p*5% from (5.13) and let K C N be an index set as described in

Theorem 5.8(2). Then:
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(1) Each cluster point 3.2 of the bounded sequence {/i“')ke,c lies in the ¢*-optimal
primal solution set

Ae =L eRL A< +6% AL +b 20} (6.4)

(2) The distance a’(i") = Mijga,. l):“ — Al from 10 the e*-optimal set satisfies
limgex d(3F) = 0.

Proof When both (3.1) and (3.2) are feasible, their respective optimal solution sets
are nonempty and there is no duality gap. Comparing (3.2) with (1.1}, their common
optimal value z* is — f* of Theorem 5.8.

Use Proposition 5.7(2) and Theorem S.8(3). —z* 2 f® 2 —z* — ¢*. Besides,
Theorem 5.8(2) gives lim supy.. 1k < oo: from (6.1), {i“)ke,c is bounded.

Let A% be a cluster point of {i"]ke;g Write (6.2) as chk = 8% — ikp and pass to
the Himit:

A% Climsupd® — f° 0= f* 4% =7" + 6%
kel

Pass likewise to the limit in (6.3): AR® ++ b = 0. This proves (1); then (2) follows
from the continuity of the distance function d(-). 0

7 Numerical illustrations

We conclude this paper with a brief account of our conic variant in practice, on
the application that really motivated it: cutting-stock problems in the formulation
of Gilmore~Gomory [12]; see also [30].

7.1 The cutting-stock problem

Recall that the problem is to minimize the number of stock pieces of width W, used
to meet demands d}, ..., d", for m items to be cut at their widths w!, ..., w™.
Hereafter, w € R™ denotes the vector of widths. Let x; denote the number of units
of item / cut in a given roll. This makes up a vector x € R™ which characterizes a
cut pattern, and which is feasible if wx < W; let n be the (huge) number of feasible
cut patterns. Then let A; be the number of rolls cut according to pattern i; relaxing the

integrality constraint on A, we obtain the formulation

" n
min Y A, > My zdeR" iz0.

i=l i=l

This is (3.1), where ¢ € R" is the vector of all ones and the feasible cut patterns make
up the columns of A. The dual is to maximize ud over R, subject to the constraint
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o (1) 1= maxj. _; uxi < | and the oracle computing & has to solve the knapsack
problem

max ux, wx < W, xeN" 7.D

7.2 Data sets

To save space, we give results only for the following randomly generated instances
employed in [25]: the 4,000 instances of Wischer and Gau [41] and the 3,360 instances
of Degraeve and Peeters [7].

The instances of [41] are constructed by the CUTGENI generator of {11], using
the following parameter values:

e Number of items m = 10, 20, 30, 40, 50.

e Width of the wide rolls W = 10,000.

e Interval fraction ¢ = 0.25,0.5,0.75, 1; the widths w; are uniformly distributed
integers between 1 and ¢W.

o Average demand d = 10, 50; with s uniform random numbers Ry, ..., Ry €
(0, 1), the demands are d; := LR—M—J for i < m, and d,, := md — Z,<m
(in fact slightly more compllcated formulas are used by [11]}

Duplicate widths are aggregated by summing their demands. Combining the different
values for m, ¢ and d results in 40 classes; in each class, 100 random instances are
generated for a total of 4,000.

The small-item-size instances of {7] are generated similarly form = 10, 20, 30, 40,
50,75, 100, ¢ = 0.25,0.5,0.75, 1 and d = 10, 50, 100, except that R(, ..., R, €
(0.1, 0.9) for the demand distribution. In the medium-itemn-size instances of {7]. only
d = 50 is used and the widths are uniformly distributed on [wyyin, c W], where wyin =
500, 1,000, 1,500. Both cases have 84 data classes, and 20 random instances are

generated in each class for a total of 2x 1,680.

7.3 Implementation

Our testing environment uses a notebook PC (Pentium M 755 2 GHz, 1.5 GB RAM)

under MS Windows XP, and Fortran 77.

In order to emphasize the primal-dual aspect of the algorithm, we report on the
simultaneous generation of feasible primal solutions, along with the dual iterates u*.
These solutions are obtained by various heuristics, as described in [25].

We use the QP solver of [21] for ({.10). For the dual algorittun and primal heuristics,
the knapsack problems (7.1) are solved by Martello-Toth’s procedure MTIR, with an

early termination test inserted (see [25, Sect. 2.2]): the branch and bound procedure

is terminated when jt obtains a feasible knapsack which is optimal within 5, = 107
of relative accuracy.
A relative accuracy of ¢ = 1077 is required fr()m the conic algorithm. More

precisely, Algorithin 4.1 is stopped when either vk from (2.17) or {g*| + & from
(1.11), (2.13) is smaller than g(1 + fi*d), with (2.18) holding in the former case.
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fl‘able 1 Smalbitem-size - Yo Koms oy P e g
instances of Degraeve and
Peeters (240 instances per row) 10 14.92 1 0.00 0.01 108 0
20 32.66 61 0.01 0.04 110 1)
30 53.05 97 0.06 10.63 115 1
10 71.61 140 0.04 0.32 124 4]
50 93.20 171 0.09 0.68 139 0
75 145.80 259 0.26 1.89 140 I
100 192.05 338 0.46 4.07 147 0
’.Tn.ble 2 -Medlum»llem»size " Kav K fay . e g
instances of Degraeve and
Peeters (240 instances per row) 10 17.33 27 0.00 0.01 54 0
20 34.92 58 0.01 0.08 63 0
30 53.43 86 0.02 0.14 83 0
40 70.73 123 0.04 0.61 68 0
50 90.10 164 0.07 0.89 69 1
75 139.22 236 0.36 8.28 80 1
100 191.29 300 1.46 59.67 78 0
Table 3 CSP instances of
Wiischer and Gau (800 i n Kav Kanx fav fx e s
per row) 10 14.24 3l 0.00 0.02 425 0
20 3110 63 0.02 13.13 461 [
30 48.95 110 0.0} 0.15 475 0
40 66.34 139 0.04 0.33 513 2
50 86.68 171 0.07 0.58 530 1

Besides, “early” termination occurs if the heuristic discovers a primal-optimal solu-
tion (this implies that the dual problem is solved as well, but the algorithm need not
know it yet).

7.4 Results

Tables |, 2, and 3 give the statistics for the three series of problems in Sect. 7.2; in

.2,

these tables,

o kyy and kuyy are respectively the average and maximum numbers of iterations for
the corresponding series of experiments;

e f5y and 1y are likewise running times in wall-clock seconds;

o 1, is the number of “early” terminations due to the discovery of an optimal primal

solution;
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Table 4 Number of oracle calls R R N
5 small-size medium-size
compared with standard column
generation on small- and m kav nsp Kav nsp
~size i
10 15 16 7 18
20 33 42 35 50
30 53 63 53 96
40 72 100 71 128
50 93 138 50 174
75 146 232 139 332
100 192 318 191 551

ng is the number of instances with a nonzero final gap between the incumbent primal
value and the dual bound rounded up to the next integer; we stress that this gap,
which is 0 most of the time, never exceeds one unit.

These results demonstrate the validity of the method. Actually, they are quite similar
to those reported in [25]. The latter concerns a highly elaborate bundle implementation
to solve (3.2) by exact penalty, with a very smart choice of the penalty parameter via
the FFD heuristic. By contrast, our implemented conic variant is quite simple. At
present, its heuristics perform slightly worse on the instances of [7] (on 3 360 runs, 4
nonzero gaps instead of 3); their improvement is left for future work.

A real assessment of our method should involve comparisons with standard column
generation. To be fair, however, such comparisons are not easy to perform: two (very)
different and rather sophisticated pieces of software must be run by the same person,
on the same computer, and under the same computing environment. Interested readers
might want to consult [4,7,25,39—41]. Here we briefly mention some points not related
to CPU time,

It is commonly admitted that convergence of standard column generation is often
hard to obtain. This motivates for example the hybrid mechanism of [7], with per-
iodic switches to subgradient steps. By contrast, Algorithm 4.1 is “homogeneous”,
as it consistently uses the single cutting-plane paradigm.

e A comparison can be sketched concerning the number k,, of oracle calls, which
is reported in [7] for small- and medium-size instances. Table 4 reproduces side-
by-side column k,, of Tables 1 and 2 and column nsp of Tables 2, 3, and 4 from
{7] (lines all); numbers have been rounded.

Beware that this comparison is not entirely meaningful since &,, refers to one single
solution of (1.1)-—or rather (3.2)—while nsp includes several such solutions, at
several nodes of the branch-and-bound tree.

Although it is not directly related with solving (J.1), let us recall the striking fact
that a proven optimal integer solution is found at the root node, in quasi all of our
tests; by contrast, the branching strategy is an important ingredient in {7].

At this point, observe that the number i, of early terminations is fairly big. However,
the influence of these early terminations is marginal: roughly speaking, s, and kpy
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increase by some 10% if optimal primal solutions are just ignored by the dual
optimization algorithm.
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