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K. C. Kiwiel, C. Lemarćchal 

1 Introduction 

We consider the convex constrained minimization problem 

inf f(u), 11 E C, h(11) ~ O; (I.I) 

here C is a "simple" closed convex set in the Euclidean space IR"' (typically a polyhe
dron); f(-) is a "simple" convex real-valued function (typically linear, or quadratic); 
h(•) is also a convex real-valued function, 1 but only known via an aracie which delivers 
appropriate information at any given II E C. 

The present paper relies upon the assumption thai a Stater point 

„o E C such thai h (11°) < O (1.2) 

exists and is available; motivating applications are given in Sects. 3.2-3.3. 
We are interested in algorithms of the cutting-plane type, whose building bricks 

are linearizations of h(·), i.e., affine functions f(u) = 11a - y minorizing h(u). 
At the CUITent iteration k of such an algorithm, the aracie has been called at a 
number of trial points 11 1, ... , ,,k in C, and has returned the corresponding couples 
(h 1, a 1 ), ••• , (Il, ak) in IR x IR"'. Norrnally, hi = h(ui) and al E ah(ui) denote the 
(exact) constraint value and a subgradient at uf. In this paper, the aracie is allowed to 
be 110isy: we assume for all j 

(1.3) 

where the inaccuracies T/J are unknown, and need not go to zero; Sect. 5.4 will specify 
the influence of large inaccuracies on the quality of the algorithm. 

The above notation introduces the 'l-subdifferential2 

a,,h(11) :=(a: h(•) ;;, h(u) - 17 + (, - u)a} . (1.4) 

As far as cutting planes are concemed, each (hi, al) from the aracie defines the 
linearization 

(1.5) 

and the T/i -subgradient inequality gives for all u E IR"' 

In this context, the generał bundle methodology [ 14, Sect. XY.3) maintains 

1 In 1his paper, we will systematically use notalion such as f(·), h(•), . . forfimclions, while J, J,, ... will 
be reserved to particulur ,,afues of such functions. 

2 For reasons to come in Sect. 3 below, u and" are considered as row and column vectors respectively: a 
will be a column of an m x II constraint matrix A and u will be a muhiplier veclOr. 
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An inexact buncJle varianl suitecJ to column generation 

• a model lik(-) of h(• ), which must satisfy 

i?(u) ,;; h(u) for all u EC, (17) 

• a stability center ,,k, 
• a stability parameter l > O. 

and the next reference point ,/+I is the optimal solution of 

inf J(u) + t,rlu - ,i12. 11 EC, i?(u),;; O. (1.8) 

In fact, /1(-) := lik(-) is piecewise linear [so (1.8) is typically a quadratic program
ming problem]; as such, it can be written for same finite index set Jk: 

/1(11) = max {uai - yi: j E Jk}. (1.9) 

where each (yi, al) lies in IR x IR"'; we will call bundle the data {(yi, ai))JeJ' 

characterizing /1(-). The affine functions in ( 1.9) are linearizations of h(-). They can 
be those of (1.5). with j E {I, .... k) and yi := uiai -1,1; note thai (1.6) then 
guarantees ( 1.7). However, Sect. 2.3 below will introduce "exogeneous" linearizations, 
through the operation of aggregatian. 

Remark I.i We have introduced two ways for characterizing an affine function such 
as iii(·): 

• ( 1.9) is the natural way; it uses the constant term yi, which will be useful for the 
applications in Sect. 3; 

• ( 1.5) rather translates the origin to ui, which is useful for the description and analysis 
of the algorithm; we will see in Sect. 2.4 thai translating the origin to u is even mare 
appropriate. 

With the above notation, ( 1.8) can be mare concretely written as 

inf f(u) + t,rlu - ,iJ2, u EC, ua1 - y 1 ,;; O, j E Jk. (I.IO) 

Lemma 1.2 Under asswnption ( 1.2), ( 1.8) has a unique optima/ solution uk+I given 
by 

(I. 11) 

where 

• bk E IR"' is a sub gradient of J at ,/+ 1, 
• µ.k ~ Osatisfies µ.k/ik(1/+ 1) = O, 
• il E .IR111 is a subgradient of ,;kat uk+I, 
• vk E IR111 lies in the normal cone Ne (uk+ 1) to C ut uk+ 1• 
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With the explicit expression ( 1.9), we have in ( I.I I) 

(1.12) 

where the nonnegative multipliers ).i satisfy ).i(,/+ 1ai - yi) = O. 

Proof Because of ( 1.7), the Slater assumption is transmitted to ( 1.8), which has a 
unique optima! solution due to strong convexity of its objective. Then these state
ments are just the standard optimality conditions, see for example [34, Chap. 28): a 
subgradient of the Lagrangian is opposite to the stated norma! cone. Such a sub gradient 
can be written b +";';+µ.a for (1.8) or b + ";'; + Lj ).iai for (1.10). o 

This result reveals thecrucial 111-vectors gk and i,k. Up to the approximation h(·) _.., 
il(-), gk is a distinguished subgradient of the Lagrangian associated with (I.I) and 
the update formula ,/+I = ttk - rki of (1.11) resembles a subgradient step with 
stepsize tk, to minimize that Lagrangian. With respect to footnote 2, page 2, note that 
the subgradient gk is a column; but rk gk should be viewed as a row. The whole business 
of convergence will be to drive i to O. As for i/, it takes its importance for aggregation 
(Sect. 2.3), and also for Lagrangian relaxation, or rathercolumn generation (Sect. 3.1). 

The paper is organized as follows: Sect. 2 reviews the various points in the paper 
which make its originality; Sect. 3 is devoted to aur motivating application: column 
generation; Sect. 4 states the algorithm, whose convergence is analyzed in Sect. 5 
and interpreted in the prima! space in Sect. 6; we conclude in Sect. 7 with numerical 
illustrations on cutting-stock problems. 

2 Main ideas in the paper 

We first proceed to outline the algorithm studied in this paper, by describing its current 
kth iteration. In this info1mal description, we will often drop the index k to alleviate 
notation; then the superscript "+" will stand for k + I. 

2.1 Maintaining the scability center 

The role of,, := ,,k is to control a suitable balance between objective and constraint 
values. Our variant uses the Slater point ( 1.2) to take care of feasibility of each 11; as 
a result, the management of the stability center may disregard h-values and needs to 

check f-values only. 
More precisely, having called the aracie at the new iterate 11+, we construct the 

i11te,polated point 

,,k := 11° + flc11k+I - 11°) with ~k . - { l -ho 
1,k+I _ ho 

~ Springer 
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An inexact bundle varianl suited to column genenllion 

Fig. I lnterpolat ion guarantees /J(1i) ~ (I - iJ>,/1 + ft,,+ 

Note here that /3 E [O, l]. The algorithm uses the (strictly negative) answer 1z0 from 
the oracle, but a0 need not be used. The next result is illustrated by Fig. I. 

Lemma 2.1 h(1,k) ( ,i := ( I - /Jk)ry0 + f3kl+ 1 ( max [11°, l+1 ). 

Proof By convexity of h(•), 

h(,1) ( (l -/J)h(u0 ) + /jh(u+) 

= (I - /J)(l,o + ,,0) + /J(1t+ + ry+) 
= 1zo + /Ju,+ - 1,0) + (I - /3)170 + /3,,+, 

where we have used (l.3). Inspection of (2.1) shows that 1zo + /j(J,+ - ho) ( O in 
either case, so the result follows. o 

Thus, possible infeasibility of u is controlled in the same way as the oracle's 
inaccuracy. In particular, ,, is feasible in the case of an exact oracle. 

Now let us assume for the moment that ,, is feasible in ( 1.8)-we will see that 
this is the case for an exact oracle. Then the predicted decrease v := f(u) - f(u+) 
is positive (the case v = O, i.e., u+ = a. is uninteresting; and Sect. 2.2 below will 
explain how to enforce positivity of v in the noisy case). As a result, the following 
strategy makes sense: 

• Improve the current stability center if f(l'i) is "definitely smaller" than f(,1). More 
precisely, fix a coefficient K E JO, I [ and set a+ := ,, if f(u) - f(11) ~ KV; this is 
a descent step. 

• If such is not the case, make a null step: a+ := ,i. 
• In either case, update,;(-) and I and proceed to the next iteration. 

The above interpolation idea is reminiscent of versions of the cutting-plane 
algorithm which also use points like u0 and ,,; see [38] and the references therein. 
In these versions, however, the oracle is called at u, while our variant disregards 11 for 
the oracle, which is called at,,+ only. However, Sect. 3.2 below will show that both 
approaches become closer in an important special case. 

Except for the two recent filter methods [9, 15], the existing bundle methods for 
constrainedoptimization require a merit function, for example an exact penalty (f (u)+ 
rr max{O, h(u)), as in SQP) or an "F-distance" (max [!(11) - f(u), h(u)), as in the 

~ Springer 



K. C. Kiwiel, C. Lemarechul 

method of centers). The earliest feasible-point methods of [32] and [ I 8, Ch. 5], as 
well as the recent variant of [35], may converge slowly when their method-of-centers 
subproblems prevent approaching the constraint boundary fast. The penalty function 
methods of [19,20] tend to perform better; stili, they require additionally thai C be 
bounded, and may converge slowly when their penalty parameter estimates are too 
high. Finally, the !evel method of [29] (also see [24] and [2]) has good efficiency esti
mates when the set Cis bounded, even if a Slater point does not exist; not surprisingly, 
therefore, it cannot benefit from the knowledge of a Slater point. 

2.2 Coping with the noise 

Suppose t := 1k = +oo in ( 1.8): there is no stabilizing tenn and ( 1.8) becomes a 
relaxation of (I.I), thanks to ( 1.7). Jf, in addition, we take Jk = {I, . .. , k}, we 
obtain the pure cutting-plane algorithm 3 [5, 16] used for standard column generation, 
see Sect. 3 below. This algorithm is little affected by inaccuracies: it just requires the 
aracie to provide linea,izations satisfying (1.6). Accumulating linearizations even-
1ually d,ives 1,+ to O; insofar as 1,+ is close to h(u+) (depending on the noise in the 
aracie), a small 1,+ implies thai u+ is approximately feasible, and therefore approxi
mately optima! for (I.I}. 

This observation indicates that the noise can disturb our bundle algorithm only via 
the stabilizing term in ( 1.8). In fact, the new stability center ,;+ is consOl1cted so as 
10 be feasible in the currelll problem ( 1.8) (see Fig. I). Nevertheless, h (,i+) may be 
positive and the property ( 1.6) need not guarantee 11+ to stay feasible in all subsequent 
problems ( I .8). When the stability center is not feasible, the predicted decrease may be 
negative: the algorithm is so much fooled that it seeks points worse chan the stability 
center. 

Our previous remark immediately suggests the cure, already proposed in [26]: just 
increase t in (1.8) in order to lessen the influence of the stabilizing term; do this until 

• either u gives a safe descent test, 
• or I is deemed large enough so thai the whole algorithm can stop, just as the pure 

cutting-plane method would do. 

Remark 2.2 We will see (end of Sects. 4 and 5.4) that more accurate answers from 
the oracle are required only at descent steps: large errors h(ui) - hi at null steps do 
not deteriorate the finał answer of the algorithm. o 

To give a safe descent test, u should be "substantially" positive. Technically, it is 
convenient to require a decrease of the whole objective function in ( 1.8) from ,i to u+ : 

descent is tested only when 

J(,i) - f(u+) - f,111+ - 1il2 ;;, O, i.e., u ;;, f,111+ - ,it2; (2.2) 

otherwise I is simply increased and ( 1.8) is solved again, with the same ,i and/;(-) . 

3 When , = + oo, ( 1.8) may have no solution; we skip this difficulty here. 
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Remark 2.3 (Bounding the objective) Let us men lion here thai no feasible u need ever 
be produced when the aracie is noisy; il may not be straightforward to bound from 
above the opli mal value J* of ( 1.1 ). 

lt is known thai f(u) + 1C max {O, h(u)) ? J* for any u EC if rr is large enough 
(larger than an optima) multiplier µ,' ). Yet, such bounds assume same information 
about µ,•-and are corrupted by noise anyway. 

However, assume that the aracie is also able Io answer upper bounds, say i,1 ? 
h(ul). They can be inse11ed in the above exact penalty function, but betler bounds can 
be obtained. In fact, introduce analogously Io (2.1) the upper i11te1polated point 

ii := 11° + iJ(11+ - u0 ) with iJ := { 
1 

_;;o 

i,+ - i,O 

ifii+,::;o , 

otherwise 

and assume ,;o < O. Then iJ E [O, I] and h(ii) ,::; O by convexity, as in Lemma 2.1. 
This construction can be u se ful in applications, see Remark 3 .5 be low. D 

Our algorithmic constructions and analysis of inaccuracies in the aracie extend to 
the constrained case the inexact linearization framework of [26,27]; for earlier related 
developments, see (13, 17,22,33,37]. 

2.3 Managing the constrainl model: the aggregate linearization 

The management of /1 O should guarantee convergence in spite of possible non 
smoothness of h(·). To this aim the standard idea, which is used in the pure cutting
plane algorithm, is to accumulate information coming from the oracle (the "bundling" 
process): with the new lineaiization i,+(11) := 1,+ + (11 - 11+)a+ -recall notation 
(1.5)--one sets 1;+0 := max (/1(-), i,+(-)j, i.e., J+ := J U{+). This results in 
storing all the (yl, al) in (1.10), which may become inconvenient orimpossible when 
the iteration index k grows; the question is therefore: Which lineaiizations should /,+ O 
be made from? To answer il, (l.7) should be kept in mind. 

Naturally, the new couple (!,+, a+) musi appear in the new model: J+ :J {+). As 
for information accumulation, it uses the set 

(2.3) 

of active linearizations at u+. From standard convex analysis (see [ 14, Sect. VI.4.4 or 
Example VI.3.4] for example), the subdifferential of /1(-) at 11+ is the convex hull of 
the corresponding slopes: 

a/1(11+) = { ~ o,J al : 

JeJ 

al ? O, ~ al = l} . 
jeJ 

(2.4) 
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By thedefinition ofsubgradient, the function f(11) := h(u+) + (11 - 11+)a satisfies 
f(-) ,,; h(·) if a E a/;(u+). With reference to (1.9), this f(•) can be put in the form 
f(u) = ua - y and its constant term y is easy to compute: 

Lemma 2.4 With a E ah(u+). the abovefunction eo has 

(ay)-- "'.~i (ay11·· ) "' . L.," for some ex ;;, O with L., ex1 = l . 

jeJ jei 

(2.5) 

Proof Because u+ai - yi = h(u+) = f(u+) = u+a - y for all j E J. we obtain 
for any set ex of convex multipliers 

11 + (~ exi al) _ ~ exi yi = /;(,,+) = f(u+) = 11 + a - y. 

i EJ i EJ 

This holds in particular for the ex making up a-see (2.4). D 

Then the bundling process distinguishes three cases: 

(I) A descent step is made. Then the descent propeny is strong enough to imply 
convergence, even if 1+ is reduced to the singleton{+). 

(2) The constraint is not active in ( 1.8); more precisely, µ, = O. Again. we may set 
1+ = {+) without impairing convergence. 

(3) A null step is made andµ, > O. Then Lemma 1.2 reveals the aggregate lineariza
tion 

which satisfies ,~-o,,; h(-). Indeed, ii-o somehow gathers the whole informa
tion contained in the current bundle, entailing the memorization effect crucial for 
convergence; this is explained in [6, Sect. 4) for example. 
Altogether we have max {h -(11), fi+(u)) ,,; h(u) for all 11, which reveals a pie
cewise linear function satisfying ( 1. 7): it is a valid candidate for the next model 
,;+o. Taking this candidate as,;+(-) corresponds to the "minimal" set{-,+) 
for 1+. A "maximal" 1 + would be {I, ... , k + l), as in the pure cutting-plane 
algorithm. We therefore see that the new index set just has to satisfy 

{-k,k+ I} C lk+I C {-k,k+ l)Ulk. (2.7) 

No matter how 1 + is chosen as above, the result is a new model function satisfying
recall the notation (2.6), ( 1.5): 

max{ii - k(u). 1?+1(11)) ,,; f/+I (11),,; /,(11), for all II EC. (2.8) 

We conclude this section with a few remarks: 

~ Springer 
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• A consequence of (2.5) is that the {-)-linearization is useless if 1+ already contains 
the whole of J. When 111 is not too large, a reasonable choi ce is 1 + = J U { + J. 
An even more sensible choice reduces J to the set of those j such thai 1,_J > O in 
Lemma 1.2; this is linearizatioll selection, in which each lk can be forced to have 
at most 111 + I elements; see (18,27]. 

• In case (3), the software solving ( 1.10) usually provides the multiplier vector ),_ of 
(1.12), so a is readily available: just take al := 1,_J /µ in (2.5). 

• Reducing 1+ to{+) in cases ([), (2) is not recommended: the next iteration will be 
(close to) steepest descent, well known for its numerical inefficiency. Even when 
l,(11+) < O (in which caseµ= 0), bundling is probably worthwhile. 

• This latter point suggests that aggregation might be desirable even if µ = O. For this, 
we can take any linearization of the form (2.6), where a is any convex combination 
of active ai 's at u+ . 

2.4 Convergence analysis 

For later use, we return in this section to the full k-notation. We start with 
elementary relations: the properties 1/ E aJ(uk+ 1), ak E ah(uk+ 1), vk E Nc(i/+ 1) 

in Lemma 1.2, and ( 1.7) give for all u E C 

f(u);?. f(i/+I) + (u - ,/+1)bk, 

h(u) ;?. /;(u);?. J;(,,k+ 1) + (u - ,/+1),i, 
O ;?. (u - ,/+I )vk_ 

(2.9) 

(2.10) 

(2.11) 

Multiply (2. 10) by µk ;?. O, use complementarity slackness and sum up to obtain 

In a bundle method, convergence of the "natural iterates" u+ is not a relevant 
prope1ty: the actual candidates to solving ( 1.1) are rather the stability centers. This is 
why the optimality conditions of ( 1.8) or (I.IO) are traditionally translated to ,1: 

Theorem 2.5 With the notation of lemma 1.2, set 

Thell 

€k := /(i]k) _ /(uk+I) _(tik_ 1,k+l)gk, 

Jk := §k +iif/ 

Besides,for all ufeasib/e in (1.8) {(e.g.,feasib/e in (I I)]: 

f(u);?. f(,i) - ik + (u - ,i)i, 

(2.13) 

(2. 14) 

(2. 15) 

~ Springer 



K. C. Kiwiel. C. Lem,uechal 

or equivalently 

(2.16) 

Proof We use (2.12). First take u = tt and arrange terms to obtain i ~ -µ,h(tt) ~ 
-µ,h(tt). Then take II feasible in (1.8): h(u) ,:; O and /(11) ~ f(u+) + (u - u+)g. 
Straightforward manipulations then give (2.15) and (2. I 6). Note that the feasible set 
of ( 1.8) contains the feasible set of (I.I) thanks to ( 1.7). o 

Note that i may be negative if ,1 is not feasible in ( 1.8). In connection with Sects. 2.1 
and 2.2, use ( I. l I) and (2.13): the predicted decrease is 

(2.17) 

As explained in Sect. 2.2, it is "substantially" positive when (2.2) holds, which has 
severa! equivalent expressions obtained by sui table manipulations based on (2.17): 

Vk >- --'--1,/+I - til2 
7 2tk ' 

(2. 18) 

When this holds, the descent test is 

(2.19) 

with ,,k given by (2.1) and KE ]O, I[. 
Traditional convergence analyses of bundle methods consist in showing that O is a 

cluster point of the sequence {i*, g') CIR x IR"'; then (2.15) implies thai f(,,k) is 
"asymptotically good". Here we use a slightly different argument, namely: 

The sequence {(Sk, gk)) has a cluster point (8, 0), with 8,:; O, (2.20) 

i.e., lim infk -+oo max {8k . Icki}= o. 

Remark 2.6 This argument goes back to [26] and has an interesting background in 
convex analysis. Call ą,(-) the actual objective function of (I.I) (ą,(11) = f(u) if u 
is feasible, +oo otherwise) and admit that every ,,* is feasible. Then write (2. 16) as 
ugk - ą,(11) ,:; ,5k - ą,(ttk) for all u E IR"' and take the supremum over 11: ą,*(gk) ,:; 

3k - ą,(,i) where </>*O is the convex conjugate of ą,(-). Finally take a subsequence 
stipulated by (2.20): knowing that ą,'(-) is lower semicontinuous and that ą,(11') has 
a limit (ą,(,1k) = f(,,k) is monotone). 

ą,'(0),:; lim inf ą,'(g'),:; limsupą,'(g') ,:; 8-limą,(,i),:; -limą,(,,k). 

Remembering that -4>'(0) is the infimum of ą,(-), this establishes chat ,,k is a mini
mizing sequence for ( 1.1 ). 

With che traditional approach, the term ,1* i/ in (2.15) btings trouble if 11* is 
unbounded. o 
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Thus, f-values of the stability centers are assessed by (2.15) or (2.16). Their 
/t-values are assessed by Lemma 2.1. Supposing that the )atest descent step occur
red at iteration K (i.e., after the K + lst oracle's call), feasibility of,, depends on ,,K, 
i.e., on ryo and,/ +I; for example, h(u) ~ ,,K + 1 if 1,K+I ~ O. 

3 Motivation: column generation 

Consider the following primal-dual pair of LP problems (c is an 11-row, b is an 
m-column) 

min cJ.., AJ..+ b ;;,. 0, AE IR';_, 

max -ub, uA ~ c, u E IR~. 

(3.1) 

(3.2) 

where II is a huge number: then column generation is a method of choice. For i E 

{I , ... , 11), lei A; denote column i of A. Setting C := IR';', J(u) := ub and 

h(u) := max (uA; - c;) 
i=l. ... ,11 

clearly puls (3.2) in the form ( 1.1 ). 

(3.3) 

The possibility of an inaccurate oracle is useful in this framework. In fact (keeping 
Remark2.2 in mind), the oracle in charge of solving (3.3) is allowed to compute an 
arbitrary i = ij: 

Proposition 3.1 For given ul E IR"' and ;i E {I, ... , n), set hi:= ul A; ; - c;; and 
aj := A;i • Then 

Proof The property 171 ;;,. O is obvious from the definition (3.3) of h(ui). Nowconsider 
the definition of a~;h(ui) in (1.4): for all u 

the last term isjust uA; ; - C;;, which is not larger than h(u). o 

As for the availability of a Slater point, it is application dependent; note thai we 
may take u0 = O in ( 1.2) if c > O. A particularly interesting situation will be seen in 
Sec!. 3.2 below. 

In this section, we explain how our bundle method for the dual problem (3.2) can 
solve the prima) problem (3.1). Again we drop the index k whenever possible. 

3. I Prima I recovery 

We proceed to show thai the multiplier vector A of Lemma 1.2 provides a good 
candidate for solving (3.1), once properly embedded in IR". In fact, the (yi, al)'s 
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in ( 1.9) or ( I I O) connote the (c;, A; )'s in (3.3) or (3.2). The J) 'sof ( 1.12) define µo 
as well as 

µy == I>j).j; (3.4) 
)E J 

then µ(ji, ii) connotes (cJ., AJ.) in (3.1). 
A primal-dual optima! pair for (3.1), (3.2) is a (A, 11) E IR'j. x IR'\' satisfying 

11A <;;c, AA+b;;,O, ci+11b<;;O, (3.5) 

where the last <;;-s ign could just be replaced by= (weak duality). In the construction 
of an optima! pair by our bundle method (remember from Sect. 2.4 that the candidate 
to dual optimality is the stability center 11), the next result deals with the second and 
third inequalities: 

Lemma 3.2 Wirh (3.4), (2. I 3) and The nowrion of Lemma 1.2, rhere ho/ds 

µy + tib = 8, 
µa+b;;,g. 

(3.6) 

(3.7) 

Proof By the definition of normal cone, v in (I.I I) is in complementarity with u+: 
O,;; 11+ J_ (-v);;, O, hence 

b+;,ii-g;;,O and u+(b+µa-g)=O, 

which gives (3.7) and u+(µo) = u+g - u+b. Besides, complementarity slackness 
in (1.10) guarantees that u+aj = yj if ).j > O, hence u+(µii) = µy; this gives 
µy = u+g - u+b. Since 8 = (11 - u+)b + u+g by (2.13), (3.6) follows. O 

The role of the converience property (2.20) for primal recovery is now elear: toge
ther with the constraint h(u) ,;; O, it aims at satisfying the three inequalities in (3.5). 
Assume for the momentthat J c (I, ... , n). Extending the J.j 's by zero gives i E IR", 
which satisfies approximately the optimality conditions when the algorithm is close 
to convergence. Actually, J can be slightly more generał: 

Theorem 3.3 Assume i11 (1.9) rhar rhe (yj, aj) 's are linear co111bi11ario11s of rhe 
(c;, A;) 's i11 (3.1): 

( yj) "j(C;) 
al = ~a; A; 

t=I 

Jor each j E J . (3.8) 

Wirh A of Lemma 1.2, define i E IR" by 

A;:= L_J.jaf fori E (l, ... ,n}. (3.9) 
)EJ 
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The11 there ho/ds 

c.i.+,,b =8, A.I. +b;;, g. 

Proof Using successively the definition (3.9) of .i., (3.8) and the definitions (1.12), 
(3.4) of (9, a) , we have 

(c.i.)-" ·_(c')- i" J(C')- J(YJ)- (9) A.i. - 2), A; - 2) L °', A, - L'" al - µ, a · 
1=1 JEJ 1=1 JEJ 

The result is then just Lemma 3.2. o 

Naturally, a should be nonnegative to guarantee .i. ;;, O. In our framework. the 
a 's actually form com•ex multipliers, coming into play when aggregating: in (2.7), 
a E aii(u+) is a convex combination of the ai·s making up h(·)-see (2.4). The 
above result is therefore useful to deal with a bundle with negative indices. This will 
be seen more precisely in Sect. 6. 

3.2 The positively homogeneous case 

The main innovative feature of our method is the interpolation technique outlined in 
Sect. 2.1; arguably, its efficiency relies heavily on the choi ce of the Slater point: for 
example, would it not be a good idea to improve u0 whenever a strictly better feasible 
point is found? Our technique, however, seems convenient in the particular instances 
of (3.1 ), (3.2) where c is the vector of all ones in R". Then the constraint in ( 1.1) has 
the form 

h(u) = a(u) - I, 

Here come a few key observations: 

wherea(u) := max uA;. 
;=l, ... ,n 

(3.10) 

(I) The above a(•) is a positively homogeneous function of u: a({Ju) = {Ja(u) for 
all f3 ;;, O. 

(2) An obvious Slater point is u0 = O, for which i,O := h(u0) = - I is readily 
available. 

(3) Assume i,+ = h(u+) ;;, O in (2.1) and use positive homogeneity (11° = 17+ = O 
and h(·) is affine with respect to f3 in Fig. I, a(·) is linear): 

Thus, in the noiseless case, the candidate ,, for the next stability center lies on the 
boundary of the feasible domain in (3.2). 

(4) Of course, it is a(·) which is computed by the oracle, and this computation can 
be inaccurate, as in the generał case. 
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Propeny (3) above is very convenient and assesses the choice of 11° = O as the 
interpolation center: first, optimal solutions of (3.2) should be sought on the boundary 
of its feasible domain; second, the stability centers are feasible (if the aracie is exact), 
so each -11b is a lower bound for the primal optimal value. These two features are a 
definite advantage of our approach, which can thus be called a "eonie" variant. 

Remark 3.4 Note an interesting consequence of positive homogeneity: suppose the 
aracie is called at a point f3u 1, with /J > O. Then chances are that the aracie will find 

the same index i J (see Proposition 3.1 J thai would be obtained at 111: calling (ufe, at) 
its answer, we will have 

uJ = {Ju 1 and at = a1. 

Setting a(-)= h(·) + I for h given in (1.5) and using u 1 = 111a1 gives 

aj (11) = ufi + (tt - fJ11i)a; = {JuJ + (11 - fJul)ai 

= uJ + {Jul + (u - 11 ) )al - {Jttl aJ 

= al(tt) + {Jul - {Jui = al(u). 

In other words: assuming that the aracie is reasonably deterministic, its answer at 11+ 

or ,i of (2.1) produces the same linearization ( 1.5). o 

3.3 Combinatorial applications 

Linear programs with a constant cost row may not be so frequent. However, (3.1) 
may come from the Dantzig-Wolfe fonnulation of various combinatorial problems; 
J,. is then an integer veclOr, and the constraint J,. E N" is relaxed IO J,. ;;, O; see (42, 
Sect. 11.2). The case c; = I occurs in the classical approach [ 12] of Gilmore and 
Gomory to the cutting-stock problem; Sect. 7 below gives an illustration. Then (3.1 O) 
is a knapsack problem, for which the possibility of an inexact aracie is panicularly 
welcome. The same situation occurs in some relaxations of the graph-coloring problem 
(3 I], in which the aracie computes a maximum stable set. See also [4]. 

When cis a generał positive veclOr, positive homogeneity can of course be recovered 
by modeling the constraint u A ,;; c as 

l,(11) := max ("A; - c;) = max ("A;)- I,;; O; 
i=l, ... ,11 Cj i=l. .. . ,11 C; 

(3.11) 

see (3, 36]. This, however, implies that the aracie maximizing II A; accommodates 
scaled columns of A. 

Remark 3.5 Dual feasible points are useful IO produce pd mal !ower bounds. From this 
point of view, the ,i's from (2.1) are useful if the aracie is exact; actually, f (11) = -,ib 
is just Farley's bound of [8], see also [I, 7 ,30,39,40] (to reali ze this, compare (3.11) 
with the equation preceding the theorem in (81). 
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If a branch and bound algorithm is used to approximate h (u) in (3.1 I), upper bounds 
/~ are available and convenient Farley-type bounds f(u) = -iib can stili be produced, 
via the interpolation mechanism mentioned in Remark 2.3. O 

More generally, Dantzig-Wolfe formulations of combinatorial problems are 

min CA+ det, AA+ Bet+ b;;, O, /..EN", et E {O, 1) 1' 

(see [401). Their associate auxiliary problems (to maximize the Lagrangian, see [281) 
are 

min (c - uA)A + min (d - uB)a - bu. 
>..~O O~a~I 

They result in a dual problem of the form ( 1.1 ), but where the objective function 

f(u) = ub - min (d - uB)et 
O~a~I 

is given through an oracle, just as the constraint h(•). Theo (I.I) becomes a fully 
nonsmooth constrained optimization problem, for which there are a number of possi
bilities: 

• lt can be solved by standard versions of constrained bundle methods, as reviewed 
in Sect. 2.1. 

• An additional varia ble can be introduced, say v, and (I.I) can be formulated as 
minimizing v, subject to the constraint max {J(u) - v, h(u)) ,;;; O. 

• Our present variant can be tailored to this situation. 

4 The inexact eonie proximal bundle method 

We now specify the algorithm outlined in Sect. 2. In our description, the model il 
of ( 1.7) is abstract. It may have the particular fom1 f,k (-) = max }el* /~i(-), Jk being 
managed as described in Sect. 2.3; but this level of detail is not necessary in our 
description. The management of the stepsize rk is also left vague. However we do 
describe the management of the stability center ,i, as specified in Sect. 2. I . 

The algorithm uses the Slater point u0 of ( 1.2), a descent parameter x E JO, I [ 
and a lower bound 101;n > O for the stepsize; K (-) will mark descent iterations (at 
iteration k, the last descent iteration was the K(k)th one) and the flag N A will secure 
the noise-attenuation mechanism of Sect. 2.2 (during which a decrease of the stepsize 
is untimely). 

Algorithm 4.1 An initial point u I E C and an initial stepsize t 1 ;;, t01 ;n are given. 

Step O (/11itiatio11). Call the oracle at u I to obtain h I and a I of ( 1.3). Choose a function 
,; 1(-) satisfying (1.7). Compute „o by (2.1) and set u1 = ,, 0. Set NA= O, 
K(l) = O,k = I. 
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Step I (Trial poim Jmdi11g). Find u*+ 1, ak, µ.k, g* as described by Lemma 1.2. 
Compute v' of (2.17), i' and 8' of (2.13). 

Substep I' (Stopping criterio11). If g' = O and &' ,;; O, stop. 
Substep I" (No ise attenL1atio11). If (2.18) does not hold, set 1k = I Otk, N A = 

I and loop back to Step I. 
Step 2 (Oracle call). Call the oracle at ,/+I to obtain 1,k+I and a*+1. Compute ,,k 

of (2. I). 
Step 3 (Step disrriblltion). Perform the following operations, depending on the des

cent test (2. I 9). 

Descent-step: If (2.19) holds, 
set ijk+I = tl; 

sec K (k + I) = k, N A = O. 

Select rk+ 1 ~ Imin. 

Nllll-step: If (2.19) does not hold, 
set tik+ I = tik; 

set K(k + I)= K(k). 
IfNA = l ,seuk+1 =l. 
If N A = 0, select 1k+I E [Tmin, r']. 

Step 4 (Model L1pdaring). Choose a function 1?+ 1 O sacisfying (2.8). 
Step 5 (Loop). Increase k by I and go to Step I. 

A few comments on the method are in order. 

(I) The initial u I may be the Slater point itself; in this case, " 1 = ,,o = LI 1 = ,.o. 

o 

(2) The simplest initial model is h1(,) = h1(·). However, the algorichm may be hot
started, with a nonempty initial bundle: J I in ( 1.9) will contain more than one 
index. Being higher, the model 1; 1 (,) will thus be more accurate. 

(3) Similarly, multiple cllts may be used at each iteration: the oracle may answer 
severa! values for h and a at a given u, each of which providing its linearization 
I,(,) satisfying (1.6). The main change in the algorithm is notational; we will not 
elaborate on this technique here. 

(4) Step I may use the QP method of [21] or [IO], which can solve efficiently 
sequences of subproblems ( l. IO) when C and f are polyhedral. The same method 
can also handle a quadratic f. 

(5) Section 5 below will establish that either J(,,k) • -oo or the convergence pro
perty (2.20) holds. An additional stopping criterion could accordingly be inserted 
in Substep I': stop if f (Dk) is deemed small enough. 
Along the same lines, tolerances may be inserted in Substep I ': one can stop when 
li'I ,;; f'_ and Jk ,;; K, with f'_ > O and K > O. Admitting that f(uk) is bounded 

from below, (2.20) will guarantee chat the algorithm stops anyway. Note thai K is 
homogeneous to J-values; as for p, (3.7) shows that it is a constraint residual in 
O.I~ -

(6) Subscep I" may of course use extrapolation formulae more sophisticated thanjust 
multiplying 1k by I O. The only important thing is to drive 1k to +oo in case of an 
infinite loop within Step I. 
Step 3 may likewise use sophisticated updating formulae. Note that the stepsize 
may not increase after a null step. 

(7) As mentioned in Sect. 2.3, the property 1?+10 ;:. 1, -k(,) in Step 4 is (always 
recommended but) only necessary when a null step is made and µ.k > O . 
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lt should be elear that (2.20) is the desirable convergence property. With relation to 
our comment (5) above, !et the tolerances J and p stop the algorithm at some iteration 
ł, the last descent step having been performed-at iteration .K := K (l_). Then (see 
Lemma 2.1) ,,li„ is feasible within ijK <;; max{17°, ryK..+ 1). As for objective values, 
assume that (I.I) has an optima! solution at finite distance, say lu*I ,;; R. Using the 
Cauchy-Schwarz inequality in (2.16), /(11!..) <;; J(u*) + J + Re_. 

5 Convergence 

Convergence of a bundle method is usually split into two cases: either there are infi
nitely many descent steps, or the stability center stops. Here, the latter case splits in 
turn into severa! subcases, due to possible loops within Step I. 

We first establish relations coming from the noise in the oracle. 

Lemma 5.1 Let k be such thai (2.18) does not hold. The11, 11° being the Slater point 
(I.'.!), 

- ,.h,(110),;; /(110) - J(,i) + 2:k 1110 - ,i 12, 

k k 

-1.lh(,i),;; Ek < -i1t12 and l.tl2 <;; 2h(,1*) ~k . 

Proof Set 11 = 11° in (2.12) and use "not ('.!.18)": 

µkh(110);;, µkf,k(110);;, /(1/+') + (110 - ,/+'lik - /(110) 
= f(11k) - Ek + (uo - ,i)gk - /(110) 

(5.1) 

(5.2) 

;;, f(,,k) + ; 18112 + (llo _ 11k)gk _ /(llo). 

This gives~ 

which is (5.1 ). The first inequality in (5.2) comes easily from (2.14) and "not (2.18)"; 
the second inequality is a consequence. • 

5.1 lnfinite loop within Step I 

This section considers the case where k stops: the algorithm solves ( 1.8) repeatedly, 
without visiting Steps 2-5. Then the model h = i? and the stability center 11 = ,,t are 
fixed, only t = 1k varies (increasingly). We therefore drop the misleading superscript 
kand use more appropriate notation µ 1, fj,, U(, etc. It is convenient to introduce the 

-ł Just develop lhe square J.Jrg + (u0 - 1i)/.Jil2 ) O 
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pure cutting-plane problem 

min f(u), u e C, /;(u) ,;; O. (5.3) 

lndeed, (1.8) amounts to computing the Moreau-Yosida regularization at ii ([14, 
Sect. XV.4. l]) of the actual objective function in (5.3) (equal to f(u) if u feasible, 
+oo otherwise). 

Proposition 5.2 Suppose the loop withi11 Step I is i11finite at same iteratio11 k-so that 
t -> +ao; call f• the optima/ vallle of the pure c11rti11g-pla11e p,vb/em (5.3). The11 

(I) lim sup 3, ,;; O a11d g, -> O; 
(2) f• > -00, h(,,) > o a11d f(u),;; /*: 
(3) f(u() -> f•; a11d if (5.3) has a no11empty set of optima/ so/utio11s, the11 U( 

te11ds to the p,vjectio11 of u anto that set. 

P,vof With the present notation, (5.1) reads 

which is bounded from above since t increases. 
Then write (5.2): -µ, 1h(11) :,::; e1 < -Hg,1 2 and 1§,1 2 ,;; 2/t(u)~; this implies 

e, < O and g1 --+ O. li follows that 3, :,::; e1 + Iii 11.§rl [see (2.13)] cannot have a positive 
cluster point; (l) is proved. 

If ,i were feasible in ( l .8), we could set li = ,i in (2.15), entailing the contradiction 
e, ;;, O. Next, (2.16) shows wilh ( l) thai f (1i) :,::; f (li) for all u feasible in ( 1.8), hence 
in (5.3); in particular, (5.3) has a finite optima! value: this proves (2). 

Finally, fix u feasible in (5.3), hence in ( 1.8): 

f(ll() + ~lu( - ti1 2 ,;; f(ll) + ~lll - 111 2 
2t 2t 

(5.4) 

and pass to the limit: (u1'} is a minimizing sequence for (5.3). Besides, set u. in (5.4) 
to an optima! solution of (5.3): li is feasible in ( 1.8), f(u() ;;, f(u) and we can write 

~lu+ - ,,12,;:: ~lu - ,,12· 
2, ' ---:: 2t ' 

this completes the proof of (3). o 

li is known thai the sequences (f(u()) and (1111' - ul} are actually monotone; see 
for example [23]. Because j• is not larger than the optima! value of ( l. I), (2) shows 
thai II has a very good f-value-but a blatantly bad h-value, although the latter is 
assessed by Lemma 2.1. During a loop within Step I, trial points li( rely upon the 
deceiving point 11; they may be driven toward uninteresting regions of C, without even 
consulting the aracie to check. If f and C (and h) are polyhedral, "i solves (5.3) 
fort large enough: see [14, Proposition XV.4.2.5]. This case may be discovered by a 

'fl Springer 



An inexact bundle variant suiled 10 colunm generation 

paramecric QP method such as [23), which is thus useful to shorten such potentially 
fruitless loops. 

5.2 Finitely many descent steps 

This section is devoted to the case where the stability center stops, say at iteration k; 
accordingly, we denote by ,1 the stability center(s) ,1k = a* for k ;;, k. 

First of all, a rather sim ple situation, similar to that of the previous section, is when 
there are infinitely many loops within Step I. Then N A = I forever, and tk is never 
decreased in Step 3; in fact, tk • +oo. 

Proposition 5.3 Suppose the re are only null steps after iteratio11 k. Denote by K, the 
set of k ;;, k for which at least one loop within Step 1 occurs. Jf K, is an infinite set, 

then (2.20) ho/ds: indeed limkEX: i/ = O and lim supkEX: 5k .,; 0. 

Proof This is essentially Proposition 5.2(1): write (5.1), (5.2) for k E K, and let tk 

tend to +oo for k E K. o 

The other situation is when (2.18) holds for all k large enough. From then on, tk 
may only decrease (or stay fixed forever). Besides, (2.17) implies fk .,; vk; so we 
clearly have 

(5.5) 

lntroduce the Lagrangian associated with ( 1.8) 

(5.6) 

We stact with properties link.ing successive null steps, which are crucial forestablishing 
convergence of bundle-type methods. They explain the importance of the aggregate 
linearization (2.6). 

Lemma 5.4 After a 1111ll step issuedfrom ,,, the Lagrangian (5.6) satisfies 

(I) Lk(1/+I)+ fii-Ji/+1 _ 11 12.,; Lk(,,). 

(2) Lk(,/+1) + fi,Juk+ 2 - ,/+1J2 .,; Lk+ic,/+2); this relies upon the properties 

tik+! = tł and 1k+I ~ tk. 

Proof Linearize the non-quadratic part of L k to obtain the quadratic function 

In view of (2.12), we do have Lk .,; L k over C. 
Developing the square Ju - ,,k+J + ,,Hl - 11J 2, direct calculations using ( 1.11) give 
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so that 

and (l) follows by setting u = ,i. 
Now we claim thai 

f(u);;, f(1/+ 1)+(u -,/+1)i/ for all u such that/l+ 1(u) ,;; O. (5.9) 

If µ,k = O, this is elear from (2.12), so assume µ,k > O: !hen li(,/+ 1) = O 
(complementarity slackness). The definitions (2.8) and (2.6) of fik+ 1(-) and,; - (-) 
then give 

Multiply by µ,k > O, sum up with (2.9). (2.1 l) and use (1. 11 ): our claim is proved. 
Plug (5.9) into (5.7): for all u EC such that 1?+ 1(u),;; O, 

-k l , 2 I , 2 
L (u),;; f(u) + -rl" - ul ,;; J(u) +---;;-+Ilu - ul , 

2t 2t 

because l+ 1 ,;; rk_ Take in particular u = ,/+2: because ,,k+I = ,i and because 
of complementarity slackness, the righthand side is L k+I (,/+2), which is therefore 

bigger than L\uk+2 ): (2) then follows from the expression (5.8) ofL\,/+2). o 

We remark thai the above result is really due to the strong convexity of Lk(·), which 
is minimized over C at uk+ 1; see [ 14, Theorem Vl.6.1.2]. We now tum to the situation 
where trouble due to a noisy oracle eventually ceases. 

Proposition 5.5 Suppose that, aftersome iteration, 011/y 11u/l steps occurand ck never 
increases (no loop within Step l occurs). Suppose also thai the aracie inaccuracies 
,,k are botmded from above. 

Then Jk, i/ tend to O, as well as vk; and ,/ tends to ,,. 

Proof First we bound µ,k. Fix b0 E of(u0 ) and plug !he subgradient inequality into 
(2.12) with u= u0 : 

Single out ii and use ( I. 11 ): 

o;;, µ,kh(uo);;, (110 - 11 - rkbO)i/ + 1k1i/12 + (ii - uo)bo 

;;, 2gkwk +lminl§k/ 2 -M, 

where we have set wk := (u 0 - 11 - rkb0)/2 and Mis a constant. This implies (see 
footnote 4, page 17) -µ,kh(u 0),;; lwkl2/1min + M; because rk does not increase, wk 
is bounded and so is µ,k; say µ,k ,;; µ.. 
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Then Lemma 5.4(1) and (1.7) give 

L k(,/+ 1) ( L k(,1) ( f(11) + µ, max(h(,1), 0). 

Because Lemma 5.4(2) implies that the sequence (Lk(,/+ 1)) is increasing, we see 
from Lemma 5.4(1) that 1,/+1 - ,,1 is bounded: ,/ is bounded; and ~k is also bounded 
by assumption. Knowing that the ~-subdifferential of (1.3) is locally bounded ([14, 
Prop.Xl.4.1.2]), 

the sequence I J) is bounded . (5.10) 

Besides, L k (,/+ 1) has a fin i te limit, hence 

the sequence (lr/+2 - ,/+11) tends to O. (5.11) 

Now consider the linearization /~k+I O of ( 1.5). Note that 1/+I > O: otherwise ,,k 
of (2.1) would be equal to ,/+I and the descent test (2. I 9) would be passed, just by 
the definition (2.17) of vk. Note also chat 1?+ 1(uk+2) ( O, hence i/+ 1(,/+2) ( O 
from (2.8). Then we have by the Cauchy-Schwarz inequality 

0 < hk+I = /~k+t(1/+I) = i/+ t(1/+2) +(,/+I_ 11k+2)0 k+I 
( 1,/+I -,/+211c/+l1, 

SO that 1/+1 --,. O from (5. JO), (5.11 ). In (2.1), iJk --,. I SO iJk ;;, K for k large enough. 
Stan from "not (2.19)": -Kvk < f(,,k) - f(,1k) and write 

(I - K)vk < f(,i) - f(r/+ 1) 

( (I -iJk)[f(u0 ) - f(r/+ 1)] 

= (I - iJk)[f(uo) - f(11) + vk]. 

[add v = /(u) - /(u+)] 

fconvexily off betwecn 11° and 11+] 

f(u 0) - f(ii) 
Take k so large thai iJk - K > O and obtain vk ( "k ( I - iJk); hen ce 

/J . - K 

vk--,. O. 
To finish the proof, observe from (5.5) chat i/ • O because rk ;;, Imin, and also 

i/ • O. So from (2.13), Jk = gk + u§k • O. Finally observe from (2.18) that 
1,/+ 1 - ii I tends to O just as vk, since 1k does not increase. o 

5.3 Case of infinitely many descent steps 

The last situation is when the algorithm "looks like" an ordinary optimization 
algorithm, consisting of a series of descent iterations. 
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Proposition 5.6 Suppose that the set K, c 1\1 of descent iterations is infi11ite. Either 
f(iJk) • -oo or the convergence property (2.20) ho/ds in the sense that 

lim g' = O and lim inf 1/ s; O. 
ke/C ke/C 

Proof Assuming that the monotonie sequence {f(1i)} has a finite limit, letk1 and k2 
be two successive indices in K. 

Because of (5.5), uk ;;, O for k E K,; besides. ,,k, = ,,k,+ 1 and the descent test (2.19) 
gives Kuk' s; f((;ki+I) - f((;k,+I ). Summing up: Lke/C uk < +oo; the subsequence 
{ uk }/C therefore tends to O; and remembering tk ;;, tm;n: 

lim tkll1 2 = O, 
ke/C 

lim g' = O, lim e< = O. 
ke/C ke/C 

(5.12) 

At the descent iteration k = k2, u*+ 1 = ,,k of (2.1), with ii/ - u0 i s; 1,/+I - u01; 
using ( 1.11 ), we then write 

1,1*+ 1 - u0 12 - li/ - u012 s; luk - tkf/ - u 012 - 1,i - u 012 

= tk(rkg' + 2(u0 - iik))gk. 

Using again the fact that ,Jk 
obtain 

,/2 = i,k,+I , we sum these inequalities over K, to 

-oo < ~ tk(l g' + 2(u 0 - ,i))g'. 
ke/C 

lf there existed, > Osuch thai (lk gk + 2(u 0 - ,i))gk s; -, for all k E K,, then we 
would have LIC tk < +oo, which is impossible. Therefore, using (5.12), 

Os; limsup[tklg'i 2 + 2u0g' -2i/g'] = limsup[-2,ig'J. 
h/C h/C 

Then plug (5.12) into (2.13): lim infke/C 8k s; O and the proof is complete. o 

5.4 Synthesis 

The above study of the various possible cases clarifies the convergence properties 
of the algorithm. The present section summarizes these properties; it also studies 
boundedness of the multiplier µ,, which is important in the primal-dual framework of 
Sect. 3. 

Recall from the rules of the algorithm that K (k) indexes the last descent iteration 
prior tok; and an important number for feasibility is the asymptotic aracie inaccuracy 

17 00 := lim sup ,,Ktk). (5.13) 
k-oo 
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First we fix the case of bounded objective values. This does not depend much on the 
actual construction of [,,kJ but rather on the properties of (I.I) itself. 

Proposition 5.7 Let the optima/ objective vallle f* oj ( 1.1) be finite. Then: 

(I) the re exist,· µ• ;:, Osuch thai inf„ec f(u) + µ'h(11) = f*; 
(2) with the notation (5. 13), lim inf J(11k) ;:, J*-µ'ij 00 , so thai (J(,1')) is bounded 

Jrom be/ow if ij 00 < +oo. 

Proof Statement (I) is just (34, Cor. 28.2. I). To obtain (2), use Lemma 2.1 and write 
J*,;; f(,,k) + µ'h(11*) ,;; f(,i) + µ•ijK(k) for all k; then pass IO the limit. o 

Then convergence of the algorithm is as follows: 

Theorem 5.8 Suppose thai Algorithm 4.1 neither terminates nor loops infi11i1e/y in 
Step 1 (so thai k - oo), and the aracie inaccuracies ,/ are bounded. Call J' the 
optima/ value of (I.I) and J 00 the limit of j(,1'). Then: 

(I) The convergence property (2.20) ho/ds if f* > -oo. 
(2) In this case, /et K. be an index set such thai limke/C max[J*, Icki}= O. The11 the 

corresponding Sllbseq11ence [µ*) is bollnded: 

. k f(110)-foo 
hm sup µ ,;; 0 . 

ke/C -h(ll ) 

(3) In any case, J 00 ,,; f* and lim sup h(i/) ,,; ij 00 of (5.13). 

Proof Propositions 5.3, 5.5 and 5.6 guarantee (I). 
Now the first relation below is obtained by setting li = u0 in (2.12); the second is 

direct from (2.13): 

j(ll0) - f(ll+) - ll 0g + 11+g ;:, -µh(u 0) 

j(11+) - u+g = f(11) - J. 

Sum up, divide by -h (11°) > O and pass to the limit to prove (2). 
The second statement in (3) follows directly from Lemma 2.1. For the first, assume 

f°" > -oo (otherwise the proof is finished); write (2.16) with an arbitrary li feasible 
in (I.I) and pass to the limit to obtain f* ;:, f 00 . o 

6 Convergence in the prima! 

When the algorithm is used in the framework of Sect. 3, attention must be paid to 
the primal candidate ~ introduced in Sect. 3.1. The model ,; has the piecewise linear 
form ( 1.9) and several strategies are possible for the management of the bundle. To be 
specific, we will assume that Step 4 of Algorithm 4.1 

• arbitrarily destroys indices from Jk, 
• appends if necessary the aggregate column defined by (2.6), 
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• !hen appends the new column coming from ,,!+1, 

so that the resulting Jk+ 1 satisfies (2. 7). 

K. C. Kiwiel. C. Lemarćchul 

Lemma 6.1 With this strategy, the colwnns ( :~), j E Jk are convex combinations 

of the co/1111111s (:ii) in (3.1). 

Pmof Two sorts of columns make up the bund le at a given iteration: 

• The "natura) " columns, which have yj = cii, aj = a ii with j > O, computed at 
the jth call of the aracie by a (possibly inaccurate) resolution of (3.3) for u = uj. 

• Theaggregate columns, with negative indices; considerthe aggregatecolumn -k<O, 
constructed at the kth iteration: 
• from (2.4), a - k = i'i of Proposition 1.2 is a convex combination of the aj's in 

Jk, 

• from Lemma 2.4, y-k = uk+lak - ,;k(,,k+I) is the same convex combination of 
the yj 's. 

Thus, the very first aggregation during the algorithm introduces a convex combination 
of natura! columns. The subsequent aggregations imroduce further convex combina
tions. Now taking convex combinations is a transitive operation, so these are again 
convex combinations of the original columns. • 

To construct ,i, k of (3.9) from A of ( 1.12) is then a matter of computer programming, 

using appropriately the history of the successive aggregations. In (3.8), we have af ;;, O 

and L~'= 1 a{ = 1 for each j; hence 

j_k;;, O and L)7 = L Aj L"f = L Aj= 1/. (6.1) 
i=I 

while Theorem 3.3 gives 

dk + ,ib = Jk, 
AF +b;;, i-

jEJk 

(6.2) 

(6.3) 

With these premises, the convergence properties of ,i, k follow naturally from 
Theorem 5.8: 

Theorem 6.2 Let the prima/ problem (3. I) have a feasib/e poilll, so thai (3.1) and 
(3.2) have afinite common optima/ value i' and (3.2) has a multiplier µ•, as stated 
in P,vposition 5.7. 

Suppose that the algorithm neither terminates nor /oops infinitely in Step I (so 
thai k --> oo), and the aracie inaccuracies l are bounded. Define the asymptotic 
prima) error ,• := µ '1}''0 fivm (5. 13) and /et IC C N be an index set as described in 
Theorem 5.8(2). Then: 

~ Springer 



An inexact bundle variant suited 10 column generation 

(!) Each cluster point .i.00 of the bounded sequence {Fhex: lies in the ••-optima) 
prima! solution set 

/1.,, := {), E IR'.;_ : c/.. ,;; z*+,•, AJ..+ b ~ O). (6.4) 

(2) The distance d(.i.*) := min,eA,, I.i.* - /..lfrom F to the ,•-optima/ set satisjies 

lim;eK d(.i.*) = O. 

Proof When both (3.1) and (3.'.!) are feasible, their respective optima) solution sets 
are nonempty and there is no duali ty gap. Comparing (3.2) with (I.I), their common 
optima! value z• is - J* of Theorem 5.8. 

Use Proposition 5.7(2) and Theorem 5.8(3): -z• ~ J 00 ~ -z• - ,•. Besides, 
Theorem 5.8(2) gives lim supkeK J.l < oo: from (6.1), {FheK is bounded. 

Let .i.00 be a cluster point of {.i.*}keK· Write (6.2) as c.i.* = J* - ,i*b and pass to 
the limit: 

c.i.00 ,;; limsupJk - f 00 ,;; 0- J* +,•=z*+ e•. 
keK 

Pass likewise to the limit in (6.3): A.i. 00 + b ~ O. This proves (I); then (2) follows 
from the continuity of the distance function d(,). • 

7 Numerical illustrations 

We conclude this paper with a brief account of our eonie variant in practice, on 
the application that really motivated it: cutting-stock problems in the formulation 
of Gilmore-Gomory [12); see also [30). 

7. I The cutting-stock problem 

Recall that the problem is to minimize the number of stock pieces of width W, used 
to meet demands d 1, ••• , d 111 , form items to be cut at their widths w 1, ••• , w 111 • 

Hereafter, w E IR"' denotes the vector of widths. Let x; denote the number of units 
of item i cut in a given roll. This makes up a vector x E IR"' which characterizes a 
cut patiem, and which is feasible if wx ,;; W; Jet n be the (huge) number of feasible 
cut patterns. Then Jet/..; be the number of rolls cut according to pattern i; relaxing the 
integrality constraint on /.., we obtain the formulation 

li 

min LA;, 
i=l 

li 

L .l..;x; ~ d E IR111 , A~ O. 
i=I 

This is (3.1 ), where c E IR" is the vector of all ones and the feasible cut patterns make 
up the columns of A. The dual is to maximize ud over IR';', subject to the constraint 
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a(u) := max;'=I ux; ,;; I and the aracie computing a has to solve the knapsack 
problem 

max ux, wx ~ W, x E N 111• (7.1) 

7.2 Data sets 

To save space, we give results only for the following randomly generated instances 
employed in (25]: the4,000 instances ofWascher and Gau (41 J and the 3,360 instances 
of Degraeve and Peeters [7]. 

The instances of [ 4 I] are conslruc_ted by the CUTGEN I generator of [ I I] , using 
the following parameter values: 

• Number of items 111 = I O, 20, 30, 40, 50. 
• Width of the wide rolls W = I 0,000. 
• Interval fraction c = 0.25, 0.5, 0.75, I; the widlhs w; are uniformly distributed 

integers between I and c W. 
• Average demand d = IO, 50; with m uniform random numbers R1, ... , R111 E 

(O, I) , the demands are d; := L Rt:::~iR111 J for i < m, and dm := md - L; <m d; 
(in fact slightly more complicated formulas are used by [ 11 ]). 

Duplicate widths are aggregated by summing their demands. Combining the different 
values for 111, c and J results in 40 classes; in each class, I 00 random instances are 
generated for a total of 4,000. 

The s111all-ite111-size instances of [7] are generated similarly for 111 = I O, 20, 30, 40, 
50, 75 , 100, c = 0.25, 0.5 , 0.75, I and d = 10, 50, 100, except that R1 , ... , Rm E 

(O. I , 0.9) for the demand distribution. In the medium-item-size instances of [7], only 
J = 50 is used and the widths are uniformly distributed on [ Wm;n, c W] , where Wm;n = 
500, I ,OOO, 1,500. Both cases have 84 dala classes, and 20 random instances are 
generated in each class for a total of 2 x 1,680. 

7.3 Implementation 

Our Jesling environment uses a notebook PC (Pentium M 755 2 GHz, 1.5 GB RAM) 
und er MS Windows XP, and Fortran 77. 

In order to emphasize the primal-dual aspect of the algorithm, we repo11 on the 
simultaneous generation of feasible prima) solutions, along with the dual iterates ,,k. 
These solutions are obtained by various heuristics, as described in (25]. 

We use the QP solver of (2 I J for (I . 10). Forthe dual algorithm and prima) heurislics, 
the knapsack problems (7. l) are solved by Martello- Toth's procedure MTIR. with an 
early termination test inserted (see (25, Sect. 2.21): the branch and bound procedure 
is tenninated when it obtains a feasible knapsack which is optima) within 11,. = I 0- 5 

of relative accuracy. 
A relative accuracy of f = 10- 9 is required from the eonie algorithm. More 

precisely, Algorithm 4.1 is stopped when either v* from (2.17) or lgk I + e* from 
(l. 11), (2. 13) is smaller than f(i + ,id), with (2.18) holding in the former case. 
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Table I Small-item-size 
kav kmx lav lmx instances of Degraeve and "' 

Peeters (240 instances per row) IO 14.92 32 O.OD O.Ol l08 o 
20 32.66 61 O.Ol 0.04 110 o 
30 53.05 97 0.06 I0.63 115 

40 71.61 140 0.04 0.32 124 

50 93.20 171 0.09 0.68 139 o 
75 145.80 259 0.26 1.89 140 I 

100 192.05 338 0.46 4.07 147 o 

Table 2 Medium-item-size 
kav kmx 

instances of Degrueve and 
!av lmx ,,, ,,, 

Peelers (240 instance.s per row) IO 17.33 27 0.00 O.Ol 54 

20 34.92 58 O.Ol 0.08 63 o 
30 53.43 86 0.02 0.14 83 

40 70.73 123 0.04 0.61 68 o 
50 90.10 164 0.07 0.89 69 

75 139.22 236 0.36 8.28 80 

IOO 191.29 300 1.46 59.67 78 o 

Table 3 CSP instances of 
kav kmx 

Wiischer and Gau (800 instances 
lav lmx ,,, "• 

per row) IO 14.24 31 0.00 0.02 425 o 
20 31.10 63 O.D2 13.13 461 o 
30 48.95 IIO O.Ol 0.15 475 o 
40 66.34 139 0.04 0.33 513 

50 86.68 171 O.Q7 0.58 530 

Besides, "early" termination occurs if the heuristic discovers a primal-optimal solu
tion (this implies that the dual problem is solved as well, but the algorithm need not 
know it yet). 

7.4 Results 

Tables I, 2, and 3 give the statistics for the three series of problems in Sect. 7.2; in 
these tables, 

• kav and kmx are respectively the average and maximum numbers of iterations for 
the corresponding series of experiments; 

• lav and 111\X are Iikewise running times in wall-clock seconds; 
• ne is the number of "early" terminations due to the discovery of an optima) prima! 

solution; 
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Table 4 Number of oracle calls small-size medium-size 
compared with standard column 
generation on small- and m k„ 11 SP k„ 11 SP 
medium-size instances 

IO 15 16 17 18 

20 33 42 35 50 

30 53 63 53 96 

40 72 100 71 128 

50 93 138 90 174 

75 146 232 139 332 

100 192 318 191 551 

• 11g is 1he numberof instances wi1h a nonzero finał gap between the incumbent primal 
value and the dual bound rounded up to the next integer; we stress that this gap, 
which is O most of the time, never exceeds one unit. 

These results demonstrate 1he validity of the method. Actually, they are qui te similar 
to those repo11ed in [25]. The latter concerns a highly elaborate bundle implementation 
to solve (3.2) by exact penalty, with a very smart choice of the penalty parameter via 
the FFD heuristic. By contrast, our implemented eonie variant is quite simple. At 
present, its heuristics perform slightly worse on the instances of [7] (on 3 360 runs, 4 
nonzero gaps instead of 3); their improvement is left for future work. 

A real assessment of our method should involve comparisons with standard column 
generation. To be fair, however, such comparisons are not easy to perform: two (very) 
different and rather sophisticated pieces of software must be run by the same person, 
on the same computer, and under the same computing environment. Interested readers 
might want to consult [ 4, 7, 25,39-41]. Here we briefly mention some points not related 
to CPU time. 

• It is commonly admitted that convergence of standard column generation is often 
hard to obtain. This moli vates for example the hybrid mechanism of [7], with per
ioclic switches to subgradient steps. By contras!, Algorithm 4.1 is "homogeneous", 
as it consistently uses the single cutting-plane paradigm. 

• A comparison can be sketched concerning the number k,v of oracle calls, which 
is reported in [7] for small- and medium-size instances. Table 4 reproduces side
by-side column k,v of Tables I and 2 and column ns p of Tables 2, 3, and 4 from 
[7 J (lin es all); numbers have been rounded. 
Beware that this comparison is not entirely meaningful since kav refers to one single 
solution of (I.I )-or rather (3.2)-while 11s p includes several such solutions, at 
severa! nodes of the branch-and-bound tree. 

• Although it is not directly related with solving ( 1. 1 ), let us recall the striking fact 
that a proven optima! integer solution is found at the ,vot node, in quasi all of our 
tests; by c011u·ast, the branching strategy is an important ingredient in [7]. 

• At this point, observe that the number 11 , of early terminations is fairly big. However, 
the influence of these early tenninations is marginal: roughly speaking, kav and kmx 
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increase by some 10% if optima) prima) solutions are just ignored by the dual 
optimization algorithm. 

Acknowledgments We are indeb1ed 10 an anonymous referee. whose lucid comments helped us 10 improve 
an earlier version of this paper. 
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