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Abstract. We give a proximal bundle method for constrained convex optimization. It requires 
only evaluating the problem functions and their subgradients with an unknown accuracy €. Em
ploying a combination of the classic method of centers' improvement function with an exact penalty 
function, it does not need a feasible starting point. It asymptotically finds points with at least 
€-optima) objective values that are E"-feasible. When applied to the solution of linear programming 
problems via column generation, it allows for €-accurate solutions of column generation subproblems. 
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1. Introduction. We are concerned with the solution of the following convex 
programming problem: 

(11) f. := inf{ f(u): h(u) ś O, u EC}, 

where C is a "simple" closed convex set (typically a polyhedron) in the Euclidean 
space IRm with inner product (·, ·) and norm I · I, f and h are convex real-valued 
functions, and there exists a Stater point 

(1.2) u EC such that h(u) < O. 

Furt her, we assume that for fixed ( and possibly unknown) accuracy tolerances € /, €1, 2'. 
O, for each u E C we can find approximate values fu, hu and approximate subgradients 
g'j, gi; that produce the approximate linearizations of f and h: 

(1.3a) 

(1.3b) 

fu():= fu+ (g'j, · - u) Ś f(·) with fu(u) = fu 2'. f(u) - €/, 

hu(·):= hu+ (gn, · - u) Ś h(-) with hu(u) = hu 2'. h(u) - €h. 

Thus f„ E [f(u) - €/, f(u)) estimates f(u), and g'j E 8,,f(u); i.e., g1 is a member of 

8,J(u) := {g: f(·) 2'. f(u) - €/ + (g, · - u)}, 

the € 1-subdifferential off at u. Similar relations hold for f replaced by h. 
This paper modifies the phase 1-phase 2 method of centers of [Kiw85, section 5. 7) 

and extends it to approximate linearizations. We first discuss the exact case of 
€ 1 = €1< = O. For an infeasible starting point, in phase 1 this method reduces the 
constraint violation while keeping the objective increase as small as possible; this 
is reasonable especially if the starting point is close to a solution. Once a feasible 
point is found, in phase 2 the method reduces the objective while maintaining fea
sibility. Both phases employ the same improvement function, and each iterate solves 
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a subproblem with / and h approximated via accumulated linearizations, stabilized 
by a quadratic term centered at the best point found so far. For phase 1, the anal
ysis of [Kiw85, section 5. 7] established optimality of all cluster points of the iterates 
without discussing their existence. A nontrivial sufficient condition for their existence 
was recently given in [SaS05, Prop. 4.3(ii)] for a modified variant. We show that 
this condition may be expected to hold only if problem (1.1) has a Lagrange multi
plier fi ::; 1 (cf. Remark 3.13(ii)). We extend this condition to fi > 1 by replacing 
the current objective value in the improvement function with the value of an exact 
penalty function for penalty parameters c 2: fi - 1. In effect, our results ( cf. Theo
rems 3.8, 3.9, and 3.12) extend the main convergence results of [Kiw85, Thm. 5.7.4] 
and [SaS05, Thms. 4.4- 4.5]. It is crucial for large-scale implementations that our 
results hold for various aggregation schemes that control the size of each quadratic 
programming (QP) subproblem, including the schemes of [Kiw85, section 5.7] and 
[SaS05] (see Remark 4.1) . 

Our combination of improvement and penalty functions with suitable penalty 
parameter updates seems to be necessary for our extension to inexact evaluations 
(otherwise, the method could jam at phase 1 w hen the standard improvement function 
cannot be reduced by more than max{<1,<h} for the tolerances •1, <1, of (1.3); see 
Remark 3.5). Our method generates iterates in the set C, having /-values of at most 
f. + •1 and h-values of at most •h asymptotically (cf. Theorems 3.8- 3.10), without 
any additional boundedness assumptions (such as boundedness of the feasible set, or 
the sufficient conditions discussed above). In a sense, this is the strongest convergence 
result one could hope for. Our algorithmic constructions and analysis combine the 
inexact linearization framework of [Kiw06a] (in a simplified version that highlights its 
crucial ingredients; cf. [Kiw06b]) with fairly intricate properties of improvement and 
penalty functions which have not been used so far in bundle methods. 

As for other bundle methods, we note that the exact penalty function meth
ods of [Kiw87, Kiw91] require additionally that the set C be bounded and may 
converge slowly when their penalty parameter estimates are too high. The level 
methods of [LNN95] (also see [Kiw95, Fab00, BTN05]) need boundedness of the set 
C as well. Similar boundedness assumptions are employed in the filter methods of 
[FlL99, KRSS07]. Except for [Fab00], all these methods work with exact lineariza
tions. The eonie bundle variant of [KiL06] employs inexact linearizations and does 
not need artificial merit functions, but it requires the knowledge of a Slater point and 
/ being "simple" (e.g., linear or quadratic). We show elsewhere how to handle inexact 
linearizations in an exact penalty method [Kiw07b] and a filter method [Kiw07a], the 
latter being based on the present paper. 

Our work was partly motivated by possible applications in column generation ap
proaches to integer programming problems [LiiD05] , which lead to linear programming 
(LP) problems with huge numbers of columns. When the dual LP problems can be for
mulated as (1.1) (cf. [BLM+07, LiiD05, Sav97]), our approach allows for ,,.-accurate 
solutions of column generation subproblems as well as for recovering approximate 
solutions to the prima! problems. (See [Kiw05, KiL06] for related developments and 
numerical results.) 

The paper is organized as follows. In section 2, after reviewing basie properties of 
penalty and improvement functions, we present our bundle method. Its convergence 
is analyzed in section 3. Severa! modifications are given in section 4. Applications to 
column generation for LP problems are studied in section 5. 
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2. The proximal bundle method of centers. 

2. 1. Lagrange multipliers and exact penalties. We first recall some basie 
duality results for problem (1.1) (cf. IBer99, sections 5.1 and 5.31). 

Consider the Lagrangian L(,; µ) := /(·) + µh(·) with µ E IR, the dual Junction 
q(µ) := infc L(-; µ), and the dual problem q, := supR+ ą of (1.1). Under our assump
tions, /, = ą,. Jf /, > -oo, the dual optima/ set M := Arg maxR+ ą is nonempty and 
compact and consists of Lagrange multipliers µ 2:: Osuch that q(µ) = f,; if /, = -ao, 
M := 0. Thus, the quantity p, := infµEM µ is the minimal Lagrange multiplier if 
f, > -oo, p, = oo otherwise. 

For a penalty parameter c 2:: O, the exact pena/ty Junction 

(2.1) 1r(-; c) := f(,) + eh(-)+ with h(-)+ := max{h(•), O} 

satisfies infc rr(•; c) = /, > -oo ilf c 2:: P, (cf. 1Ber99, section 5.4.51). 

2.2. lmprovement functions. We associate with problem (1.1) the improve
ment functions defined for r E IR by 

(2.2) e(•;r) := max{f(·)-r,h(•)}, ec(•;r) := e(•;r)+ic(·), E(r) := infec(•;r), 

where ie is the indicator function of C (ic(u) = O if u E C, oo if u ft C). In our 
context , r will be an asymptotic estimate of/, generated by our method, and to prove 
that r '.', f,, we shall need the main property of the function E given in part (vi) of 
the lemma below. 

LEMMA 2.1. (i) The Junction E defined by (2.2) is nonincreasing and convex. 
(ii) ff E is improper, then E(·) = f, = -oo Jo,· f, given by (1.1). 

(iii) ff E is proper, then E is Lipschitzian with modulus l. 
(iv) ff E is proper and f, = -oo, then E(,) = infc h E (-oo, O). 
(v) ff f. > -oo, then E(r) > O for r < f„ E(f,) = O, and E(r) < O for 

/, < T. 

(vi) ff E(r) 2:: O for some r E IR, then r '.', f •. 
Proof (i) Monotonicity is obvious, and convexity follows from 1Roc70, Thm. 5.7]. 
(ii) Since domE = IR, we have E(·) = -oo by 1Roc70, Thm. 7.2], and then 

f, = -oo by (1.1). 
(iii) Eis finite on dom E = IR, and e(-; r') '.', e(·; r) + Ir - r'I for any rand r'. 
(iv) Since J. = -oo implies E(,) ś O, E( ·) is constant and finite by IRoc70, 

Cor. 8.6.2], i.e., E(,) = a E IR. Then, on the one hand, a, 2:: infc h by (2.2). On 
the other hand, for u E C and r 2:: /(u) - h(u), the fact that e(u; r) ś h(u) yields 
a ś infch <Oby (1.2). 

(v) We have E(f,) ś O by (1.1) , and E(f,) 2:: O (otherwise f(u) < f, and 
h(u) < O for some u E C would contradict (1.1)); thus E(f.) = O. By (1.2), for 
f := f(u) - h(u) > f(u) 2:: f„ e(u; f) = h(u) < o implies E(f) < O; SO by convexity 
(consider the secant line E(r) := E(f)(r-f,)/(f-f,)), we have E(r) > O for r < f., 
E(r) < O for r E (!., f], and E(r) < O for r > f by monotonicity. 

(vi) E is proper by (ii) , J. > - oo by (iv), and (v) yields the conclusion. O 
Let U := {u E C : h(u) ś O} and U, := Argminu f denote the feasible and 

optimal sets of problem (1.1). We shall need the following extension of IKiw85, Lem. 
1.2.16]. 

LEMMA 2.2. Let ii EC, c 2:: O, f := 1r(ii;c) (cf. (2.1)). Then the following are 
equivalent: 

(a) ii EU, (i.e., ii solves problem (1.1)); 
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{b) E(f) = ee(u; f} {i.e., u minimizes e(-; f} over C); 
(c) OE oee(u; t) (i.e., OE o,t,(u), where ,t,(·) := ee(·; f)). 
Proof First, (a) implies f = f(u) = f„ e(u; f) = O, E(f) =Oby Lemma 2.l(v), 

and hence (b). Since (b) means u E Argminee{-; f), (b) and (c) are equivalent. Next, 
note that 

(2.3) oee(u;t)=oie(u)+ co{of(u)Uoh(u)} if f(u)-t=h(u), { 
of(u) if f(u) - t > h(u), 

oh(u) if f(u) - t < h(u). 

Finally, (c) implies h(u) $ O (otherwise h(u) > O 2'. f(u) - f and O E oee(u; t) = 
oh(u) + oie(u) would give mine h = h(u) > O, contradicting (1.2)); so the facts that 
f = f(u) and E(f) = e(u; f} = O yield f = f. by Lemma 2.l(v), and hence {a). • 

Lemma 2.2 suggests the following algorithmic scheme: Given the current iterate 
·u EC and the target f := rr(u; c) for a penalty parameter c 2'. O, find an approximate 
minimizer u of ee(·; f), replace u by u, and repeat. Note that if ee(u; f) < ee{u; f), 
then u is better than u: either f(u) < f(u) and u E U if u E U, or h(u) < h(u) if 
u 'le U. To progress towards the optima! set U., it helps if ee(u; f) $ ee{u; f) for any 
optima! u E U.; the sufficient condition given below employs the minimal multiplier 
p. of section 2.1. 

LEMMA 2.3. Let u EU., u EC, c 2'. O, f := rr(u; c). Then e(u; f) = h(u)+, and 
e(u; f) $ e(u; f) iff f(u) $ rr(u; c+ 1). In particular, f(u) $ rr(u; c+ 1) if c 2'. p.-1. 

Proof First, f = f(u) and e(u; f) = O if h(u) $ O, e(u; f) = h{u) if h(u) > O. 
Next, 

e(u; f) - e(u; f) = max{f(u) - rr(u; c + 1), h(u) - h(u)+} 

is nonpositive iff f. = f(u) $ rr(u; c + 1); the latter holds if c + 1 2'. p. (see section 
2.1). O 

2.3. An overview of the rnethod. Our method generates a sequence of trial 
points {uk}~1 C C for evaluating the approximate values ft := fu•, ht := hu,, 
suhgradients gJ := g'J', gt := g;:', and linearizations fk := !,,, , hk := hu, off and h 
at uk, respectively, such that 

(2.4a) !k(·) = /!; + (gJ, · - uk) $ f(,) with fk(uk) = f,7 2'. f(uk) - EJ, 

(2.4h) hk(-) = h~ + (gt,. - uk) $ h(,) with hk(uk) = h~ 2'. h(uk) - , 1., 

as stipulated in (1.3). At iteration k, the polyhedral cutting-plane models off and h 

(2.5a) id·):= maxf1(,) $ f(,) with k E Jj C {l,. . ,k} , 
jEJ7 

{2.5h) hk(-) := maxh,(,) $ h(•) with k E J1~ C {1,. .. ,k}, 
jEJ17 

which stem from the accumulated linearizations, yield the relaxed version of problem 
(1.1) 

(2.6) i: := inf {A{u) : u E fh n C} with fh := {u: hk(u) $ O}, 
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in which fh is an outer approximation of H := {u : h(u) S O}. The current prox 
(or stability) center f,,k := uk(I) EC for some k(l) S k has the values J! = /~(I) and 
h~ = h~(l): 

(2.7) t! E [f(uk) - EJ,/(uk)] and h~ E [h(uk) - ,,., h(uk)]. 

As in (2.2) and Lemma 2.2, our improvement function for subproblem (2.6) is given 
by 

(2.8) ii.(·):= max{/.(-) - Tk, hk(·)} with Tk := J! + Ck[h~J+ 

for some penalty coefficient ck 2'. O and [·J+ := max{·, O}. We solve a proximal version 
of the relaxed improvement problem Ek := inf ii~ with ii~ := iik + ie by finding the 
trial point 

(2.9) u•+i := arg min { <Pk(·) :=ii.(·)+ ie(·)+ 2), I· -u•1 2 }, 

where tk > O is a stepsize that controls the size of lu•+ 1 - ukl- For deciding whether 
uk+I is bet ter than u", we use approximate values of the improvement function e(·; Tk)
Thus, e(u•;Tk) is approximated by [h!J+, and e(u\Tk) - ii.(u•+IJ by the predicted 
decrease 

(2.10) 

When fi < A(uk) or h! < hk(u•) due to inexact evaluations, Vk may be nonpositive; 
if necessary, we increase tk, as well as Ck in (2.8) if h~ > O, and recompute uk+I 
to decrease iik(u•+ 1) until Vk 2'. lu•+I - ukl2/2tk (as motivated below). Of course, 
e(uk+1; Tk) is approximated by max{/~+ 1 -Tk, 1it+1 }. A descent step to uk+ 1 := uk+I 
occurs if max{/~+! - Tk, h~+I} S [hiJ+ - 1wk for a fixed ,c E (O, 1). Otherwise, a 
null step u>+ 1 := uk improves the next models A+ 1, iik+I with the new linearizations 
!k+1 and hk+I (cf. (2.5)). 

2.4. Aggregate linearizations and an optimality estimate. Extending the 
approach of [Kiw06a), we now use optimality conditions for subproblem (2.9) to derive 
aggregate linearizations (i.e., affine minorants) of the problem functions at uk+I as 
well as an optimality estimate (see (2.22) below) related to Lemma 2.l(vi). 

LEMMA 2.4. (i) There exist subgradients p} , p7., p~ and a multiplier lik such 
that 

(2.11) 

(2.12) 

(2.13) 

P} E 8jk(uk+ 1), Pt E 8hk(uk+ 1), p~ E 8ie(uk+t), 

llkP} + (1- llk)P~ + p~ = -(uk+l - uk)/tk, 

lik E [O, li, llk[e.(u•+I) - J.tu•+1) + T.j = O, (1 - llk}[e.(uk+I) - iik(uk+I)j = O. 

(ii) These subgradients determine the following aggregate linearizations: 

(2.14) 

(2.15) 

(2.16) 

(2.17) 

f>(·) := A(uk+l) + (p}, · - uk+I) S Jk(-) S /(·), 

hk(·) := hk(uk+I) + (p7,, · - uk+l) $lik(-)$ h(•), 

iŹ;,(·) := ie(uk+I) + (p~, · - u•+ 1 ) S ie(·), 

e~(-) := llk[fd·) - Tk] + (1 - ll>)iik(-) + iŻ;,( · ) Se~(-) See(·; Tk)-
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(iii) For the aggregate subgradient and the aggregate linearization error given by 

(2.18) pk := llkP} + (1 - vk)p~ +Pt= (uk - uk+l)/tk and ck:= [h~J+ - et(uk) 

and the optimality measure 

(2.19) 

we have 

(2.20) et(·)= ek(uk+ 1 ) + (pk,. - uk+ 1 ), 

(2.21) [h~J+ - Ck+ (pk, · - uk) = et(·) :c; et(-) :C::: ee(-; rk), 

(2.22) ee(u;rk) :2: et(u) :2: [hzl+ - Vi(l + lul) for all u. 

Proof (i) Use the optimality condition OE 81/>k(uk+ 1) for (2.9) and the form (2.8) 
of ek. 

(ii) The first inequalities in (2.14)-(2.15) stem from (2.11) and the finał ones from 
(2.5). Similarly, (2.11) gives (2.16) with ie(uk+I) = O. Then (2.17) follows from the 
facts that II E [O, l] (cf. (2.13)) yields vk(fk - rk) + (1 - vk)lik :C::: ek by using fk :C::: fk 
and lik :C::: lik in (2.8) and that et:= ek + ie :C::: ee(·; rk) by using fe :C::: f and lik :C::: h 
in (2.2). 

(iii) For (2.20), use (2.12)-(2.13) and the definitions in (2.14)- (2.18); since et 
is affine, its expression in (2.21) follows from (2.18). Finally, since by the Cauchy
Schwarz inequality, 

-(pk' u) + Ck + (pk, uk) :c; IPkllul +Ck+ (pk, uk) :c; max{IPkl, Ck+ (pk, uk) }(l + lul) 

in (2.21), we obtain (2.22) from the definition of Vk in (2.19). O 
Observe that Vi is an optimality measure at phase 2: if Vk = O in (2.22), then 

E(rk) :2: O gives ff :c; rk :c; f. by Lemma 2.l(vi); similar relations hold asymptotically. 

2.5 . Ensuring sufficient predicted decrease. In view of the optimality esti
mate (2.22), we would like Vk to vanish asymptotically. Hence it is crucial to bound 
Vk via the predicted decrease vk, since normally bundling and descent steps drive Vk 
to O. The necessary bounds are given below. 

LEMMA 2.5. (i) In the notation of (2.18), the predicted decrease Vk of (2.10) 
satisfies 

(2.23) 

(ii) We have vk :2: -ck <=} tk1Pkl 2/2 :2: -<k <=} vk :2: tk1Pkl 2/2 = luk+I - ukl/2tk. 
(iii) For the max.imał evaluation error fmax := max{tJ,Eh}, we have 

(2.24) 

(iv) The optimality measure of (2.19) satisfies Vk :c; max{IPkl, <k}(l+lukl). More-
over1 
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Proof (i) We have (pk, uk+ 1 - uk) = -tk1Pkl 2 by (2.18), whereas by (2.20), 

ek(uk+I) = e~(uk+1) = e~(uk) + (p', uk+1 - uk); 

so Vk := [h~J+ - ek(uk+I) = Ek + tk1Pkl 2 by (2.18). Note that Vk 2'. 'k• 
(ii) This follows from (2.23) and the first part of (2.18). 

7 

(iii) By the definitions of e~ and Ek in (2.17)- (2.18), we may express -ek as 
follows: 

-fk = vk[fk(uk) - Tk] + (1 - vk)hk(uk) + ,~(uk) - [h~J+, 

where Vk E [O, l] by (2.13), fk(uk) S f(uk) S tk + ,,, hk(uk) S h(uk) S h~ +,,.,and 
,~(uk) S ic(uk) =Oby (2.14)-(2.16) and (2.7), and Tk 2'. tk by (2.8). Therefore, we 
have 

(iv) Since Vk S max{IPkl, ,k}(l + juki) by (2.19) and the Cauchy-Schwarz in
equality, the bounds follow from the equivalences in statement (ii), using Vk 2'. Ek and 
(2.24). O 

The bound (2.27) will imply that if Tk > f. (so that E(rk) <Oby Lemma 2.l(vi), 
and hence Vk cannot vanish in (2.22) as tk increases), then both Vk 2'. -,k and the 
bound (2.26) must hold for tk large enough. 

2.6. Linearization selection. For choosing the sets JJ+ 1 and J~+I, note that 
(2.4)- (2.5) and (2.11) yield the existence of multipliers aj for the pieces / 1 , j E Jj, 
and /3] for the pieces h1, j E 117, such that 

(2.28a) (p}, 1) = L aJ(v'/1 , 1) aJ 2'. O, aJ[ik(uk+I) -f1(uk+I)] = O, j E Jj, 
jEJj 

(2.28b) (ptl) = L /3J(v'h1,l) /3J 2'. O, /3J[iik(uk+l)-h1(uk+I)] = O, j E Jt. 
jEJ17 

Denote the indices of linearizations / 1 and h1 that are "strongly" active at uk+ 1 by 

(2.29) Jj := {j E Jj: aj f, O} and Jt := {j E 117: /3] f, O}. 

These linearizations embody all the information contained in the aggregates Jk and iik 
(which are actually their convex combinations; cf. (2.14)-(2.15) and (2.28)). To save 
storage and work per iteration, we may drop the remaining linearizations. (Alternative 
strategies based on aggregation instead of selection are discussed in section 4.2.) 

2.7. The method. We now have the necessary ingredients to state our method 
in detail. 

ALGORITHM 2.6. 
Step O (initialization). Select u1 EC, a descent parameter KE (O, 1), an infeasi

bility contraction bound K1, E (O, 1 j, a stepsize bound tm;n > O, a stepsize t1 2'. tmin, and 
a penalty coefficient CJ 2'. O. Set u1 := u1 , JJ := f! := fu•, g} := g'J', hi := h~ := hu,, 

9I := gn' (cf. (2.4)), J} := J,) := {1}, i/:= O, k := k(O) := 1, and ł := O (k(l) -1 will 
denote the iteration of the łth descent step). 
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Step 1 (trial point finding). For ek given by (2.8), find uk+1 (cf. (2.9)) and 
multipliers etj, f3j such that (2.28) holds. Set vk by (2.10), pk := (uk -uk+1)/tk, and 

fk := Vk - tk1Pkl 2 -

Step 2 (stopping criterion). If Vk = O (cf. (2.19)) and h~ '.SO, stop (ff{ '.S /.). 
Step 3 (phase 1 stepsize correction). If h~ '.S O or <max = O or Vk 2'. 1<1,hi, go to 

Step 4. Set tk := lOtk, i~ := k. If ck > O, set ck := 2ck; otherwise, pick ck > O. Go 
back to Step l. 

Step 4 (stepsize correction). If vk 2'. -<k, go to Step 5. Set tk := lOtk, i~ := k. 
If h! > O, set ck := 2ck if ck > O; otherwise, Ck > O pick Go back to Step 1. 

Step 5 (descent test). Evaluate h+1 and hk+I (cf. (2.4)). If the descent test 
holds, 

(2.30) 

set -uk+I := uk+1, Jf+I := j~+I, h~+I := 1it+1, i~+l := O, and k(l + l) := k + l 
and increase l by 1 (descent step)· else set -uk+I ·= uk f~+I ·= f~ h~+I ·= h~ and 
i}+1 := i} (null step). i • ' u . u, u . u, 

Step 6 (bundle selection). For the active sets jj and J,~ given by (2.29), choose 

(2.31) IJ+ 1 :) Jj U {k + l} and J~+I:) Jt U {k + l}. 

Step 7 (stepsize updating). If k(l) = k + l (i.e., after a descent step), select 
tk+I 2: tk and c1.:+1 2: O; otherwise, set c1.:+1 := c1,; and either set t1.:+1 := tk, or choose 
tk+I E [tm;n, tk) if i~+l = 0. 

Step 8 (loop). lncrease k by 1 and go to Step l. 
Severa! comments on the method are in order. 
Remark 2. 7. (i) When the set C is polyhedral, Step 1 may use the QP method 

of [Kiw94], which can efficiently salve sequences of related subproblems (2.9). 
(ii) Step 2 may also use the test inf il~ 2'. O and h~ '.S O (see Lemma 3.l(i) below). 
(iii) Step 3 is needed in phase 1 (for ht > O) when inaccuracies occur (<max > O); 

it increases tk and Tk (via ck) to obtain vk 2'. 1<1,ht, so that eventually a descent step 
(cf. (2.30)) will reduce the constraint violation significantly: h~+I '.S (1 - 1<1<1,)h~. 

(iv) In the case of exact evaluations (Emax = O), Step 4 is redundant, since Vk 2'. 
<k 2'. O (cf. (2.23)-(2.24)). When inexactness is discovered via Vk < -Ek, tk is increased 
to produce descent or confirm that -uk is almost optima!. Namely, when uk is bounded 
in (2.27), increasing tk drives Vk to O, so that Jf{ '.S Tk '.S f. asymptotically. Whenever 
tk is increased at Steps 3 or 4, the stepsize indicator i~ 'F O prevents Step 7 from 
decreasing tk after null steps until the next descent step occurs (cf. Step 5). Otherwise, 
decreasing tk at Step 7 aims at collecting more !ocal information about f and h at 
null steps. 

(v) When Emax :=max{,/,<,,} = O, our method employs the exact function values 

(cf. (2.7), (2.1), (2.8), and Lemma 2.3), and the aggregate inequality (2.21) means that 

(2 .33) 

Thus, if Vk = O in (2.19), then IPkl = <k = O implies that OE 8ec(-u\ Tk) and hence 
that t,k E U. by Lemma 2.2; in particular, in this case we have ht = h(uk) '.S O. 
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(vi) At Step 5, we have Vk > O (using (2.26) and Vk > O at Step 2 if h~ ś O; 
otherwise Vk ::O: Khh~ > O by Step 3 if €max > O, Vk > O by item (v) if •max = O). 
When a descent step occurs, the descent test (2.30) with the target Tk given by (2.8) 
implies that 

(2.34a) 

(2.34b) 

if h~ > O, 

Thus at phase 1 (i.e., when h~ > O), we have reduction in the constraint violation, 
whereas at phase 2 the objective value is decreased while preserving (approximate) 
feasibility. In the exact case (cf. (2.32)), the descent test (2.30) becomes 

max {f(uk+I) - f(il) - ckh(u•)+, h(u•+ 1 )} ś h(u•J+ - KVk, 

coinciding with the tests used in [Kiw85, section 5.7] and [KRSS07, SaS05] with Ck= O. 
(vii) An active-set method for solving (2.9) (cf. [Kiw94]) will produce lijl+litl ś 

m + 1 (cf. (2.29)). Hence Step 6 can keep 11;+11 + 11,7+11 ś m for any given bound 
1h ::O: m + 3. 

(viii) Step 7 may use the techniques of [Kiw90, LeS97] for updating tk (or the 
proximity weight 1/tk) with obvious modifications. For updates of Ck, see section 4.4. 

3. Convergence. Our analysis splits into severa! cases. 

3.1. The case of an infinite cycle due to oracle errors. We first show that, 
in phase 2, the loop between Steps 1 and 4 is infinite iff Oś inf il;'; < ilk(uk), in which 
case uk is approximately optima/: f(uk) ś f. + Ef and h(uk) ś Eh. 

LEMMA 3.1. Assuming that h~ ś O, recall that Ek := infe~ with il~:= ilk + ie. 
Then we have the following statements: 

(i) ff Ek c". o, then f(uk) - ff ś fi ś f. and h(uk) ś '" 
(ii) Step 2 terminates, i.e., Vk := max{IPkl,•k + (pk,uk)} = O, iff Oś Ek = 

ilk(uk). 
(iii) ff the loop between Steps 1 and 4 is infinite, then Ek ::O: O and Vk -4 O. 
(iv) ff Ek ::O: O at Step 1 and Step 2 does not terminate (i.e., Ek < ilk(uk); cf 

(ii)), then an infinite loop between Steps 4 and 1 occurs. 
Proof (i) We have E(-rk) ::O: Ek and Tk = fi (cf. (2.2), (2.8), (2.14)-(2.15)); so 

fiś f. by Lemma 2.l(vi), whereas f(uk) ś fi+ Ef and h(uk) ś h~ + 'h by (2.7). 
(ii) "•": Since IPkl = O ::0: fk, (2.18) and (2.21) yield uk+I = uk, e;';(uk) ś il;';(·) 

and O ś e~(uk), whereas by (2.20), eHuk) = ilk(uk+ 1 ) = ilk(uk). "{=": Since 
il~(uk) = min il~, using cf,k(uk) = min il~ ś cf,k(uk+I) ś cpk(uk) in (2.9) gives uk+ 1 = 
uk; thus e~(uk) = il~(uk) by (2.20), and (2.18) yields pk = o and 'k = -il~(uk) ś o. 

(iii) At Step 4 during the loop the facts that vk < (2Emax/tk) 112 (1 + łuki) (cf. 
(2.27)) and tk t oo as the loop continues give Vk -4 O; so il~(-) ::O: O by (2.22). 

(iv) We have ilk(uk+ 1) ::O: inf il~ ::O: O. Thus vk = -ilk(uk+ 1) ś O (cf. (2.10)) 
and Vk = tk1Pkl 2 + Ek (cf. (2.23)) yield fk ś -tk1Pkl 2 at Step 4 with pk i= O (since 
max{IPkl ,<k + (pk,uk)} =: Vk > O at Step 2). Hence <k < -½'IP•l 2 ; so vk <-,kand 
Step 4 loops back to Step 1, after which Step 2 cannot terminate due to (ii). O 

In view of Lemma 3.1, from now on we assume (unless stated otherwise) that the 
algorithm neither terminates nor cycles infinitely between Steps 1 and 4 at phase 2 
(otherwise uk is approximately optima!). For phase 1, our analysis will imply that any 
loop between Steps 1 and 3 or 4 is finite. We shall show that the algorithm generates 
points that are approximately optima! asymptotically by establishing upper bounds 
on the values fi and h~. 
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3.2. Bounding the objective values. We first bound ff: via Vk, 

LEMMA 3.2. Let I( C N satisfy Vi _!i_,, O. Then limkEK ff: :S limkEK Tk :S / •. 

Proof Pick !(' C I( such that rk ~ f := limkEK Tk, Since ff: :S rk by (2.8), 
we need only show that f :S /. when f > -oo. Note that f < oo, since otherwise for 
Tk 2 /(il) - h(il), the fact that e(il; Tk) = h(il) < O (cf. (2.2), (1.2)) and the bound 
(2.22) would yield the following contradiction: 

O> h(il) = ec(il; rk) 2 -Vk(I + łill) ~ O. 

Thus fis finite. Since ec(u; •) is continuous, letting k ~ oo in (2.22) gives ee(·; f) 2 
O. Therefore, we have E(f) 2 O, and hence f :S /. by Lemma 2.l(vi). O 

The upper bound of Lemma 3.2 is complemented below with a !ower bound (which 
is highly useful for the "dual" applications in sections 4.3 and 5). 

LEMMA 3.3. ff limk h~ :S O, then for the minimal multiplier jl := infµEM µ of 
problem (1.1) (cf. section 2.1}, we have 

(3.1) limk ff:+ ff 2 limk /(ii) 2 /, - P,f1, and limk h(il) :S f1,. 

Proof For all k, uk E C and (cf. section 2.1) L(u"; µ) := f(uk) + µh(uk) 2 /., 
with O :S jl < oo if /, > - oo, jl = oo otherwise. Moreover, f(uk) :S ff;+ ff, and 
h(uk) :S h~ + f1, by (2.7). The conclusion follows. O 

3.3. The case of finitely many descent steps. We now consider the case 
where only finitely many descent steps occur. After the last descent step, only null 
steps occur and { td becomes eventually monotone, since once Steps 3 or 4 increase 
tk, Step 7 cannot decrease tk; thus the limit ł00 := limk tk exists. After showing that 
t00 = oo may occur only at phase 2 in Lemma 3.4, we deal with the cases of ł00 = oo 
in Lemma 3.6 and t00 < oo in Lemma 3.7. 

LEMMA 3.4. Suppose there exists k such that hi > O and only null steps occur 
for all k 2 k. Then Steps 3 and 4 can increase tk only a finite number of limes. 

Proof For contradiction, suppose that tk --+ oo. Since Tk --+ oo (because ck --+ oo; 
cf. Steps 3 and 4 and (2.8)), we may assume that Tk 2 f := /(il)- h(il) for the Slater 
point u of (1.2) and for all k 2 k; then, using the minorants Jk :S f and hk :S h (cf. 
(2.4)) in the definitions (2.8) and (2.2) yields 

(3.2) ek(u) :S max{]k(u) - f, hk(u)} :S e(u; f) = h(u) < O with u EC. 

At Step 1, (2.9) gives the proximal projection property for the level set of e~ := ek+ic: 

(3.3) uk+i = argmin{½lu-ukl 2 : e~(u) :S e~(uk+ 1 )}, 

whereas before Step 3 increases tk, Vk < 1<1,h~ yields ek(uk+l) > (1 - 1<,.)h~ 2 O by 
(2.10); SO for k 2 k, (3.2) and (3.3) with uk = uk give /uk+l - ukl :Sr := /u - ukl, 
and hence /pk/ :S r/tk by (2.18). Therefore, if Step 3 increases tk at infinitely many 

iterations, indexed by I{, say, then tk--+ oo yields pk _!i_,, O; thus, from (2.21), (2.20), 
the fact that luk+l - ilkl :Sr, and the Cauchy- Schwarz inequality, we get 

0 > h(u) 2 e~(,,) 2 e~(u) = ek(uk+l) + (p\u- uk+l) 2 (P",u- uk+l) _!i_,, 0, 

a contradiction. Similarly, if Step 4 is entered with Vk < -fk for infinitely many 

iterations indexed by I<, say, then tk --+ oo and (2.27) give Vk _!i_,, O, and we obtain 

o > h(u) 2 e~(,,) 2 -Vk(1 + /ul) _!i_,, o 
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from (3.2) and (2.22), another contradiction. The conclusion follows. • 
Remark 3.5. To illustrate the need for increasing Ck at Steps 3 and 4, suppose 

momentarily that Ck = O for all k. Consider the following example. Let m = 1, 
f(u) := u, h(u) := 1 - u, C := R. Suppose that u 1 := O, / 1 := f, h1 := h - 0.5; 
so that hI = 0.5 for,,. = 0.5. For k = 1, Vk S 1/4; so if "" E (1/2, 1), then a loop 
between Steps 3 and 1 occurs. Next, for"" E (O, 1/2), suppose fk+1 = f and hk+ 1 = h 
at Step 5; then a null step occurs, and at Step 1 for k = 2, ek = max{!, h} is exact, 
minek = 1/2 = h~, and Vk SO, so that a loop between Steps 3 and 1 occurs. Even if 
Step 3 were omitted, a loop between Steps 4 and 1 would occur. 

The case where the stepsize tk keeps growing at a fixed prox center is qui te sim ple. 
LEMMA 3.6. Suppose there exists k such that only null steps occur for all k 2". k, 

and t= := limk tk = oo. Let I(:= {k 2". k: tk+I > tk}. Then Vi _!i_,, O, and h~ SO. 
Proof We have hi S O ( otherwise Lemma 3.4 would imply t= < oo, a contradic

tion). For k E K, before tk is increased at Step 4 on the last loop to Step l, we have 

Vi < (2Emax/tk) 112 (1 + J1iJ) by (2.27); SO tk--) 00 gives Vk _!i_,, 0. • 
The case where the stepsize tk does not grow at a fixed prox center is analyzed 

as in [I<iw06aJ. After showing that the optima! value ,fJk(uk+I) of subproblem {2.9) is 
nondecreasing and bounded above, uk+I is bounded, and uk+2 - uk+I -+ O, we invoke 
the descent test {2.30) to get vk-+ O; the rest follows from the bounds (2.25)-(2.26). 

LEMMA 3. 7. Suppose that there e:,,-ists k such that Jor all k 2". k, only null steps 
occur, and Steps 3 and 4 do not increase tk- Then Vk • O, and ht SO. 

Proof Fix k 2". k. We show that the aggregate e~ minorizes the next model e~+i, 

{3.4) 

Consider the selected model fk := max,Ei' f1 of A := maxjEJ' fJ; then fk S ik-
t I 

Using {2.29) in the expression {2.28a) of p} gives ]k(uk+I) = jk(uk+I) and p} E 

D]k(uk+I) (cf. [HUL93, Ex. Vl.3.4]). Thus A S Jk by (2.14); so the choice of jj c 
17+1 implies that A S fk S A+1- Similarly, for hk := maxjEi' hj, {2.28b) yields 

T,k S hk S hk+I· Then using the definition (2.17) of e~ with vk 1
~ [O, 1) (cf. (2.13)), 

the minorization ,t S ie of (2.16), and the fact that Tk+i = Tk (by (2.8) and Steps 3 
and 4) gives the required bound 

e~ S vk!fk+1 - rk) + (1 - vk)hk+1 + ie S max{ik+1 - Tk+1, hk+i} +ie= i!~+I. 

(Note that this bound needs only the minorizations A S Jk+ 1 +ie and lik S hk+I +ie; 
this will be important when selection is replaced by aggregation in section 4.2.) 

Next, consider the following partia! linearization of the objective <Pk of (2.9): 

(3.5) 

We have e~(uk+I) = ek(uk+ 1) by (2.20) and 'v<;ók(uk+I) = O from 've~ = pk = 
(·u• - uk+l)/tk (cf. (2.20), (2.18)); hence <;ók(uk+l) = <Pk(uk+l) by (2.9), and by 
Taylor 's expansion 

(3.6) 

To bound <;ók(-u•) from above, notice that {3.5), (2.18), and (2.24) imply that 

,;ók(-uk) = e~(ii) = [h~J+ - Ek S [h~J+ + <max· 
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Then by (3.6), 

(3.7) 
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Now using the facts that ,:;k+I = uk and tk+I S tk and the model minorization 
property (3.4) in the definitions (3.5) of 4'k and (2.9) of <Pk+i gives 4'k $ <Pk+1- Hence 
by (3.6), 

(3.8) ,f>k(uk+ł) + 2), [uk+2 - uk+112 = <f,k(uk+2) S 'Pk+1(uk+2). 

Thus the nondecreasing sequence {q,k(uk+l)h >k, being bounded above by (3.7) with 

•ii,k = t/- for k ~ k, must have a limit, say </>~:::; [h~J+ + Emax· Moreove1\ since the 
stepsizes satisfy tk Str. for k ::O: k, we deduce from the bounds (3.7)- (3.8) that 

(3.9) 

and the sequence {-uk+ 1} is bounded. Then the sequence {gJ+I} is bounded as well, 

since gj E a,J(-uk) by (2.4), whereas the mapping a,J is locally bounded [HUL93, 

section XI.4.1]; similarly, the sequence {9~+1} is bounded, since gf. E {),,. h(uk) by 
(2.4). 

For Vk := [htJ+ - ek(uk+!) and the following linearization of e{-; Tk) at uk+l, 

(3.10) €k+1(·) := . { 
fk+1(·)-Tk if f~+I - Tk ::0: ht+l, 

hk+ 1 ( ·) otherw1se, 

the descent test {2.30) reads ek+ 1(uk+ 1) $ [h~J+ - l<Vk or equivalently 

(3.11) 

We now show that this approximation error Ek -----) O. First, note that the linearization 
gradients g:+I := Vek+l are bounded, since fg:+1[ $ max{fgJ+ 1[, [9~+ 11} by (2.4). 

Further, the minorizations fk+ 1 $ f.+1 and hk+l $ hk+l due tok+ 1 E 1J+1 n 1,~+l 
(cf. (2.5)) yield ek+ 1 $ ek+ 1 by (2.8), since Tk+J = Tk, Using the linearity of ek+I, 
the bound ek+ 1 S ek+l, the Cauchy- Schwarz inequality, and (2.9) with uk = ,:;k for 
k ::O: k, we estimate 

(3.12) 

h := ek+ 1(·uk+I) - ek(uk+') 

= ek+1(·uk+2) - h(uk+I) + (9;+1, uk+' - uk+2) 

S ek+1(uk+2) - ek(uk+1) + [g;+'[luk+1 - uk+21 

= <i>k+1(uk+2) - q,k(uk+l) + !::,.k + fg:+111uk+1 - uk+21, 

where l::,.k := [uk+I - ·il"[2/2tk - juk+2 - uk[ 2/2tk+I· We have l::,.k -----) O, since tmin $ 
tk+ł $ tk (cf. Step 7), [uk+l - ,:;i<l2 is bounded, uk+2 - uk+l -----) O by (3.9), and 

[uk+2 _ ,:;i<j2 =luk+!_ u"[2 + 2(,/+2 _ uk+I, uk+ł _,:;i<)+ [uk+2 _ uk+1[2. 

Hence, using (3.9) and the boundedness of {g:+I} in (3.12) yields łimk Ek $ O. On 
the other hand, for k ::O: k, the descent test written as (3.11) fails: (1 - ,;;)vk < h, 
where " < 1 and Vk > O; it follows that Ek -----) O and Vk -----) O. 
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Since Vk • O, tk ? tmin, and i,,k = ii for k? k, we have Vk • Oby (2.26), tk • O, 
and IPkl • Oby (2.25). It remains to prove that h~ $ O. If tmax > O, but h~ > O, then 
the facts that Vk • O with vk ? "hhŻ (cf. Step 3), "">O, and hź = h~ for k? k give 
in the limit hi $ O, a contradiction. Finally, for 'm•x = O, recalling Remark 2.7(v) 
and using tk, IPkl • O in (2.21) yields ec(ii; r;J $ ee(-; r;J. In other words, we have 
OE aecC,l; r;J; so il' EU. by Lemma 2.2, and thus h~ = h(ii) $ O. • 

We may now finish the case of infinitely many consecutive null steps. 
THEOREM 3.8. Suppose there exists k such that only null steps occur for all 

k ? k. Let I(:= {k? k: tk+I > tk} if tk • oo, I(:= {k: k? k} otherwise. Then 

Vi ~ O, ff $ f. and hi $ O. Moreover, the bounds of (3.l) hold. 
Proof Steps 3, 4, 5, and 7 ensure that {tk} is monotone for large k (see above 

Lemma 3.4). We have Vk ~ O and h~ $ O from either Lemma 3.6 if t00 = oo or 

Lemma 3.7 if t00 < oo. Then ff$ f. by Lemma 3.2 (since Tk =ff.= ff for k? k). 
The finał assertion stems from Lemma 3.3. O 

It may be interesting to observe that uk • ii' if t00 < oo (since luk+' -ukl = tklPkl 
by (2.18), and pk • O in the proof of Lemma 3.7). In contrast, we may have t00 = oo 
and l·ukl • oo (consider m = 1, f(u) := e", h(u) = - 1, C := IR, u 1 := O, f~ := -1, 
g} = 1, and exact evaluations for k? 2). 

3.4. The case of infinitely many descent steps. We first analyze the case 
of infinitely many descent steps in phase 2. 

THEOREM 3.9. Suppose infinitely many descent steps occur, and h~ $ O for same 
k. Let ff' := limk ft and I(:= {k? k: ft+' < ft}. Then either ff'= f. = -oo, 
or -oo < f,'f' $ f. and limkEK Vi = O. Moreover, the bounds of (3.1) hold. In 

pa1ticular, if {uk} is bounded, then ff'> -oo and Vk ~ O. 
Proof For k? k, we have h~ $ O, Tk = ff. (cf. (2.8)), and /,~+I $ ft, since by 

(2.34b), a descent step yields h~+I $ O and tt+' - f,t $ -11:vk < O, so that IKI = oo. 
First, suppose that f't' > -oo. 

We have O < l<Vk $ fi - tt+' if k E K, /,~+I = ft otherwise; so LkeK 11:vk $ 

f,f-f,'f' < oogivesvk ~ Oandhence,k,tk1Pkl2 ~ Oby (2.25), aswellas IPkl ~ O, 
using tk ? Imin- Now, for the descent iterations k E K, we have uk+I - ,:;k = -tkpk 
by (2 .18) and therefore 

1nk+112 - 1nk12 = tk { tdll2 - 2(p\ ,i)}. 

Sum up and use the facts that ,:;k+I = ,:;k if k 1/c I( and LkeK tk ? LkeK Imin = oo 
to get 

(since otherwise lukl 2 • -oo, which is impossible). Combining this with tdpkl 2 ~ O 

gives limkeK(pk,uk) $O.Since also ,k,IPkl ~ O, we have limkEK Vk = Oby (2.19). 
Then using limkEK Vk = O and Tk • ff' in Lemma 3.2 shows that /I[' $ f • . 
For the case of ff'= -oo and the assertion on (3.1), invoke Lemma 3.3. 
For the finał assertion, if {uk} c Cis bounded, then infk f(uk) > -oo (I is closed 

on C) implies that ff' > -oo by (3.1); so we have ,k, IPkl ~ O as above. Hence the 

fact that Vk $ max{IPkl, ,k}(l + łuki) by Lemma 2.5(iv) gives Vi ~ O. • 
We now deal with the case of infinitely many descent steps at phase l for 'max > O . 
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THEOREM 3.10. Suppose infinitely many descent steps occur, hi> O Jor all k , 
and fmax > O. Let I(:= {k: h~+I < hi}. Then we have the following statements: 

(i) hi .J. O (this relies upon the property that Vk ~ 1<1,hi at Step 5). 
(ii) limkEK Vi = O; also LkeK Vk < oo, and limkEK max{,k, IPkl} = O. 

(iii) Let f(' C 1\1 be such that Vk ~ O. Then limkEI<' fi $ limkeK' Tk $ J •. 
(iv) ff {uk} is bounded, then limkeK Vk = O, and we may take I('= I( in (iii). 
(v) The bounds of (3.1) hold, and łimk Tk ~ J. - EJ - µ,,.. 

(vi) Assertions (ii)- (iv) above hold also if Emnx = O. 
Proof We have h~+I - hi $ -l<Vk < O at descent steps by (2.34a); thus /Kl = oo. 
(i) We have O < l<Vk $ hi - h~+I if k E K, h~+ł = hi otherwise; so LkeI< l<Vk $ 

hi gives limkeK vk = O. Hence the fact that Vk ~ 1<,.hi (cf. Step 3) yields hi .j. O. 

(ii) Use LkeK Vk < oo, and then Vk .ł5... O (from the proof of (i)) as in the proof 
of Theorem 3.9 to get limkEK Vk = O, limkEK 'k = O, and limkeK IPkl = O. 

(iii) This fellows from Lemma 3.2. 
(iv) Invoke Lemma 2.5(iv) and the fact that limkEK max{,k, IPkl} =Oby (ii). 
(v) This fellows from (i) , Lemma 3.3, and the fact that Tk ~ fi for all k. 
(vi) This statement is immediate from the preceding arguments and the rules of 

Step 3. D 
lt is instructive to examine the assumptions of the preceding results. 
Remark 3.11. (i) Inspection of the preceding proofs reveals that Theorems 3.8-

3.10 require only convexity and finiteness of/ and h on C and /ocal boundedness of 
the approximate subgradient mappings g'j of/ and gn of h on C. In particular, it 
suffices to assume that / and h are finite convex on a neighborhood of C. 

(ii) Using the evaluation errors ,J := J(uk)- f! and,~ := h(u•)-ht , our results 

are sharpened as fellows; cf. [Kiw06b, section 4.2]. In generał, J(uk) =fi+ f~(I) and 

h(uk) = hi+ ,7.(l>, where k(l) - I denotes the iteration number of the 1th descent 
step. Hence ,, and,,. in the bounds of (3.1) for Theorems 3.8- 3.10 may be replaced 

by the asymptotic errors ,1 and ef." , where ,1 equals the fina! ,r'l if only finitely 

many descent steps occur, lim1 ,~(Il otherwise, and ,f." is defined analogously. 

(iii) Concerning Theorem 3.lO(iv) , note that the sequence {uk} is bounded if the 
feasible set U is bounded. lndeed, h(uk) $hi+,,. (cf. (2.7)) with hi$ h)c, implies 
that {'i.tk} lies in the set {u EC: h(u) $ hi+,,.} , which is bounded, since such is U. 

Finally, we analyze infinitely many descent steps in the exact case of fmnx = O. 
THEOREM 3.12. Suppose that infinitely many descent steps occur and Emax = O. 

Let I(:= {k(l) - 1}~1 index the descent iterations (cf Step 5), and let k := inf{k: 
h(uk) $ O} (so that phase 2 starts at iteration k = k iff k < oo). Then we have the 
Jollowing statements: 

(i) ff k < oo, then f(uk)--+ f„ Tk--+ /., h(uk)+--+ O, and each cluster point of 
(u•} (i/ any) lies in the optima/ set U.; moreover, limkEK Vk = O i//.> -oo. 

(ii) ff infk f(uk) > -oo ork= oo, then LkeK Vk < oo, '• .ł5... O, and p• .ł5... O. 
(iii) ff the sequence { uk} is bounded, then all its cluster points lie in the optima/ 

set U„ and we have J(uk)--+ J. > -oo, Tk--+ f„ h(uk)+--+ O, and Vk ..!5... O. 
(iv) ff {uk} has a cluster point u, then u E U„ h(ii.k)+ --+ O, and łimk Tk ~ 

limk J(uk) ~ f. > - oo; moreover, if f(' CI( is such that uk ~ u, then V. ~ O. 
(v) The sequence { uk} has a cluster point if the set U. is nonempty and bounded. 

(vi) The sequence (uk} is bounded if such is the set U:= {u EC: h(u) $ O}. 
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(vii) Suppose that u E U. and there exists an iteration index k' such that 

(3.13) f(u) $ 11'(u\ck + 1) for all k 2 k',k E K. 

In particular, (3.13) holds if ;,k' E U for same k', or Ck 2 µ-1 for all k 2 k', k E K. 
Further, suppose limkEI< tk < oo. Then the sequence {uk} converges to a point in U •. 

(viii) Suppose that {uk} is bounded, but we have only LkEI<tk = oo instead of 

infkEK tk 2 tm;,,. Then {uk} has a cluster point in U •. Moreover, assertion (vii) stili 
holds. 

Proof First, recalling the "exact" relations (2.32)-(2.33), note that fk 2 O and 

(3.14) ee(-; Tk) 2 ec(u\ rk) + (pk, · - uk) - fk with ec(u\ rk) = h(ukl+• 

By Remark 2.7(vi), the descent test (2.30) ensures that O< h(uk+ 1 ) $ h(uk) for all 
k if k = oo, f. :,; f(uk+I) $ f(uk), and h(uk) $ o for all k 2 k otherwise. 

(i) Use /Z°= limk f(uk) = limk Tk in Theorem 3.9 and the closedness of C, f, h. 
(ii) Use the proof of Theorem 3.9 if k < oo or Theorem 3.lO(vi) otherwise. 
(iii) First, suppose that k = oo; i.e ., consider phase 1 with h(uk) > O for all k. 
Let u be a cluster point of {uk}. Then u EC, since {uk} c C and Cis closed. 

Pick W c I< such that ;,k ~ u. Then f(uk) ~ f(u), h(uk) ~ h(u) 2 O (!, h 

are continuous on C). Since fk, IPkl ~ O by (ii), Lemma 2.5(iv) yields Vi ~ O. 

Let f beany cluster point of {rdkEI<'· Pick I<" CI<' such that Tk .!!.::_. f. We have 
f 2 /(u) (rk 2 f(uk)) and f < oo; otherwise for large k E K", Tk 2 f(u) - h(u) 

would give e(u; rk) = h(u) <Oby (2.2) and (1.2), and by (3.14) with <k, IPkl ~ O, 

o> h(u) = ee(u; rk) 2 h(uk)+ + (p\ u - uk) - ,k .!!.::_. h(u)+ 2 o, 

a contradiction. Since ee is continuous on C x IR, letting k .!!:., oo in (3.14) gives 
ee(-; f) 2 ee(u; f), i.e., OE 8ee(u; f). Since h(u) 2 O and f 2 /(u), OE 8ee(u; r) in 
(2.3) implies f = f(u) and h(u) = O (otherwise for he := h + ie, OE 8he(u) would 
give mine h 2 O, contradicting (1.2)). Hence, u EU. by Lemma 2.2 (using f = 11'(u; c) 
for any c 2 O) and /(u)=/ •. Since h(u) = O and {h(uk)} is nonincreasing, we obtain 
that h(uk) -; O. 

By considering any convergent subsequences, we deduce that Vi ~ O and that 
f. is the unique cluster point of {rdkEI< and {f(uk)}kEI<· Hence, lim, rq,J-I = 
lim, f({ik(l)-I) = f •. Since f(i,k(l)) $ Tk :S: Tq1+1)-l for k(l) :S: k < k(l + 1) by 
Steps 3, 4, and 7, we obtain limk f(uk) = limk Tk = f •. 

Finally, for the remaining case of k < oo, use the monotonicity of {rk = f(uk)h>k 
and the relations f = /(u), h(u) $ O in the second to last paragraph to get 0-E 
8ee(u; f) and u EU. from Lemma 2.2; the rest follows as before. 

(iv) Use the proof of (iii), getting limk f(uk) 2 /. from Lemma 3.3. 
(v) If k < oo, the set {u EC: f(u) $ f(uk),h(u) $ O} is bounded (such is 

U.) and contains {ukh>f· Suppose that k = oo. By Theorem 3.lO(vi), there is 
J(' C J( such that limkE;' f(uk) $ f •. Hence, for infinitely many k, ·uk lies in the set 
{u EC: f(u) :S: /. + l,h(u) $ h(u 1)+}, which is bounded (such is U.). Therefore, 
{ ;,k} has a cluster point. 

(vi) The set {u EC: h(u) $ h(u 1)+} is bounded (such is U) and contains {uk}. 
(vii) If k < oo, then for k 2 k, ;,k EU implies f(u) = f. :S: f(uk) = 11'(uk; ck+ l); 

together with Lemma 2.3, this validates our claim below (3.13). Let k E K, k 2 k'. 
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Since (3.13) impliesec(u;rk) $ ec(uk;rk) by Lemma 2.3, (3.14) yields (pk,u-uk):; 

'k· Then, using the facts that uk+ 1 - uk = -tkpk by (2.18) and Vk = tk1Pkl 2 + Ek by 
(2.23), we get 

luk+1 - ul2 = luk - ul2 + 2(uk+i - uk, uk - u) + luk+' - ukl2 

:; luk - ul 2 + 2tk,k + 2lilrkl2 = luk - fil 2 + 2tkvk. 

Therefore, since limkEK tk < oo, LkEE< vk < oo by (ii), and luk+! - ul 2 = luk - ul 2 

if k <le K, we deduce from [Pol83, Lem. 2.2.2) that the sequence {luk - ul} converges. 
Thus the sequence ( uk} is bounded, and using (iii) we may choose u E U. as a cluster 
point of (uk}, in which case the sequence {luk - ul} must converge to zero, i.e., 
t.l---+ U. 

(viii) Argue as for (ii) to get LkEF< Vk < oo. Since Vk = tk1Pkl 2 + Ek (cf. (2.23)) 
and Ek 2'. O, we have limkEF< lrkl 2 = O (using LkEI< tk = oo) and limkEF< Ek = O. Thus, 

there is R: C [( such that Ek, Irki ~ O. Let u be a cluster point of (ukhek· To see 
that u E U., replace [( by R: in the proof of (iii). Hence, this point u may be used in 
the finał part of the proof of (vii). • 

Remark 3.13. (i) The condition Emax = O in Theorem 3.12 means that the 
linearizations are exact and Step 3 is inactive. If we drop this condition in Step 3, 
so that Step 3 ensures vk 2'. Khht when ht > O in the exact case as well, then for 
Emnx = O, both Theorems 3.12 and 3.10 hold with Ef= f1, = O in the bounds of (3.1). 

(ii) Condition (3.13) was used in [SaS05, Prop. 4.3(ii)) with Ck= O. Since in this 
case, f. = infc 1r(•, Ck+ 1) iff fl $ 1 (cf. section 2.1) , we conclude that at phase 1 
(k = oo) condition (3.13) with ck= O may be expected to hold only if fl $ I. (Also 
see section 4.4.) 

4. Modifications. In this section we consider severa! useful modifications. 

4.1. Alternative descent tests. As in [Kiw06a, section 4.3), at Steps 4 and 5 
we may replace the predicted decrease Vk = tk IPk 12 + fk ( cf. (2.23)) by the smaller 
quantity Wk := tk1Pkl 2/2 + 'k· Then Lemma 2.5(ii) is replaced by the fact that 

Wk 2'. -Ek = tk1Pkl 2/4 2'. -fk = Wk 2'. tk1Pkl 2/4. 

Hence, Wk 2'. -Ek at Step 5 implies Wk $ Vk $ 3wk and Vk 2'. -fk for the bounds 
(2.25)-(2.26), whereas for Step 4, the bound (2.27) is replaced by the fact that 

vk < (4Emax/tk) 112(1 + łuki) if Wk < -fk-

The preceding results extend easily (in the proof of Lemma 3.7, ek+l (uk+l) > [htJ+ -
KWk implies ek+i(uk+l) > [h~J+ - KVk, whereas in the proofs of Theorems 3.9 and 
3.lO(i), we have LkeF< Vk $ 3 LkeF< wk < oo). We add that [SaS05, Alg. 3.1) uses 
Wk instead of Vk. 

As in [Kiw85, p. 227), we may replace the descent test (2.30) by the two-part test 

(4.la) 

(4.lb) 

if h~ > O, 

Since (2.30) implies (4.1), the latter test may produce faster convergence. In par
ticular, at phase 2 (/,i $ O) the additional requirement ht+' $ -KVk of (2.30) may 
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hinder the progress of { uk} towards the boundary of the feasible set. The preceding 
convergence results are not affected (since if ( 4.1) fails at a null step, then so does 
(2.30), whereas the requirements of (4.1) suffice for descent steps). 

In connection with (4.lb), we add that if hi $ O, i.e., the starting point is ap
proximately feasible, then the objective linearizations need not be defined at infeasible 
points. Specifically, if h~+I > O in (4.lb), then a null step must occur; so we may skip 
evaluating Jt+1 and choose JJ+I ::i Jj at Step 6 (without requiring 17+1 3 k + 1). 

In the proof of Lemma 3.7, using vk = -ek(uk+I) (cf. (2 .10)) and replacing (3 .10) by 

(4.2) ek+d·) := k+l u u - , { 
f. (·)-/~ ifhk+l<O 
hk+ 1 ( ·) otherwise, 

we see that (4.lb) can be expressed as ek+ 1(uk+l) $ -,wk or equivalently by (3.11); 
this suffices for the proof. Similarly, if ht+1 $ O, then we may skip finding the 
subgradient g~+I and choose 11:+1 :) Jf. at Step 6 (omitting hk in (2.8) if 11: = 0). 

4.2. Linearization aggregation. To trade off storage and work per iteration 
for speed of convergence, one may replace selection with aggregation, so that only 
·m 2'. 4 subgradients are stored. To this end, we note that the preceding results 
remain valid if, for each k, Jk+l and hk+I are closed convex functions such that 
OE óq,k(uk+I) implies (2.11)- (2.13) for k increased by 1, and 

(4.3a) max{A(u),f.+1(u)} $ fk+1(·u) $ f(u) for all u EC, 

(4.3b) max{iik(u),hk+l(u)} $ hk+ 1(u) $ h(u) for all u EC. 

(This extends some ideas of [CoL93).) The max terms above are needed only after 
null steps in the proof of Lemma 3.7, Jk is not needed if Vk = O, and lik is not needed 
if Vk = 1. The aggregate linearizations may be treated like the oracle linearizations. 
Inde~d, let_ting /-; := ];, h_; := /il for j = 1, ... , k, to ensure that A $ A+1 
and hk $ hk+l, we may work with 1/1, 11:+1 C {-k, -k + 1, ... , k + l} in (2.31), 

replacing the set JJ or J,: by (-k} w hen Jj or J,: is "too large." 
To illustrate, consider the following scheme with minimal aggregation. First, 

suppose lljl + II,:I = m. If lljl + 11,:1 $ m - 2, remove from JJ or 11: two indices 

in Jj \ Jj or 11~ \ J,: If lljl + 11,:1 = m - 1, set Jj := JJ, 11: := Jf.; if Ilf.I 2'. 2, 

remove two indices from Jf. and set Jf. := 11~ U { - k }; otherwise, remove two indices 
from Jj and set Jj := Jj U { - k}. If lljl +Ilf.I= m, remove four indices from Jj or 

Jf, and set Jj := Jju{-k}, 11: := J,:u{-k}. Next, suppose lljl+II,:1 =m-1. If 

lljl + 111~1 = iii-1, proceed as in the second case above. If 11JI + 1J1:1 $ m-2, remove 

from JJ or Jf. one index in JJ \ JJ or Jf. \ J,~ - At this stage, lljl +Ilf.I$ m - 2; so 
set IJ+' := JJ U {k + l}, J~+l := Jf. U {k + l}. This scheme employs aggregation 
only where needed; form 2'. m + 3, it reduces to selection (cf. Remark 2.7(vii)). 

In practice, without storing the points -ui for j 2'. 1, we may use the representations 

since after a descent step, we can update the linearization values 

(4.4a) 

(4.4b) 

J;(uk+I) = !;(uk) +(''il!;, ,,k+l - uk) for j E 1;+1, 

h; (uk+l) = h1 (uk) + ("ilh1 ,uk+l - [/) for j E J~+I_ 
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Let us now consider total aggregation, in which only n, 2 2 linearizations need be 
stored. Define e1 by (3.10) with k = O and ro:= r1. Let lf := {l}. For k 2 1, having 
linearizations e;(·) :Se(·; rk) for j E 1;, replace ek in (2.8) by the "overall" model 

(4.5) 

of e(·; n); thus we stili have ek(-) :S e(-; Tk) without maintaining separate models 
of J and h. Then the optimality condition OE D,/>k(uk+ 1 ) yields the existence of a 
subgradient P! E Dek(uk+l) such that P! replaces VkP} + (1 - vk)p~ in (2.12) and 
(2.18). Consequently, using the aggregate linearization 

(4.6) ek(-) := ek(uk+l) + (p~ , · - uk+l) :Sek(·) :Se(-; Tk) 

and replacing the definition (2.17) of the linearization ei; and its expression (2.20) by 

(4.7) 

yields (2.21) - (2.22) and Lemma 2.5 as before. With ek+l given by (3.10), for lin
earization selection we may use multipliers -rJ of the pieces e;, j E 1;, such that 

(4.8) (p~, 1) = L -rJ('ve;, 1), ,,; 2 O, -y;(ek(uk+ 1) - e;(uk+l)] = O, j E 1;, 
jEJ; 

to choose the set 1;+1 ::) J; U {k + l} with J; := {j El;: -yj # O}. For aggregation 
( cf. ( 4.3)), after a null step the n ext model ek+l should satisfy 

(4.9) max{ek(u),e•+i(u)} :S ek+J(u) :S e(u;rk) for all u EC, 

and it suffices to choose 1;+1 :::J { - k, k + l} with e_k := "•· Note that (4.6) and 
the minorization ek+i(·) :S e(·;rk) (cf. (3.10)) yield ek+1(·) :S e(·;rk)- To ensure that 
e(-; rk) is stili minorized by each e;(·) = e;(iik) + ('ve;, • - u•) after a descent step , 
since e(·; Tk+d 2 e(-; Tk) - (rk+l - Tk)+ (cf. (2.2)), we may update 

(4.10) 

Similarly, when rk increases tor{, say, at Steps 3 or 4, the update e;(u•) := e;(u•) -
rfc + Tk provides the minorization e;(·) :Se(-; rl). 

Although tata] aggregation needs only 1h 2 2 linearizations, whereas separate ag
gregation described below (4.3) needs n, 2 4, in practice this difference is immaterial, 
since larger values of ,,, are required for faster convergence anyway. On the other 
hand, tata! aggregation has a serious drawback: its update (4.10), being based on a 
crude pessimistic estimate, tends to make the linearizations e; !ower than necessary 
when Tk+J # Tk. In contrast, separate aggregation is not sensitive to changes of Tk-

Similar techniques can be applied to the composite model 

(4.11) e•(·) := max { max/;(·) - Tk, maxh;(·), maxe;(·)}-
JEJi jEJ1~ JEJ; 

For instance, (4.9) holds if lJ+! 3 k + l, l~+l 3 k + l, 1;+1 3 -k, but many other 
choices are possible. 

Remark 4.1. We add that [SaS05, Alg. 3.1] employs the model (4.11) with 

(4.12) 
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for an additional "oracle" set lk C {l, ... , k }; then lk and 1: are reduced if necessary 
so that 2llkl + 11:I $ m - 3 for a given m 2: 3, and 1k+I := lk u {k + l}, 1:+ 1 := 

1: U { -k}. First, this scheme is qui te unusual: although llk I "original" linearizations 
off and h are maintained (2llkl in total), only half of them are selected via (4.12) 
for the model (4.11), thus reducing the QP size from 2/Jkl + Il:/ to /Jk/ + /1:/. (This 
selection is unnecessary in the sense that even for lj = 11~ = lk, the model ( 4.11) stil! 
satisfies ek(•) :,:; e(-, Tk).) Second, its storage requirement of m 2: 3 places it between 
total aggregation and separate aggregation. Third, this scheme employs the update 
of (4.10) for j E 1:. 

4.3. Estimating Lagrange multipliers. Suppose that f. > -oo, so that the 
dual optima! set M := Arg maxa+ q is nonempty (cf. section 2.1). For, 2: O, the set 
of l-optimal dual solutions is defined by 

(4.13) M, := { µ E IR+ : ą(µ) 2: f. - ,}. 

We now develop conditions under which the Lagrange multiplier estimates 

(4.14) 

converge to the set M, for a suitable, 2: O, where vk is the multiplier of (2.12)- (2.13). 
Since 1/k E [O, 1) by (2.13), (2.14)-(2.19) yield the sharper version of (2.22): 

(4.15) vk[f(u) - Tk] + (1 - vk)h(u) 2: [h~]+ - Vk(l + /u/) for all u EC. 

If 1/k > O (e.g., vk < -h(u)/(1 + lu!)), then (4.14) with µk E IR+ and (4.15) give 

(4.16) f(u) +µkh(u) 2: Tk -Vi(l + lul)/vk for all u EC. 

LEMMA 4.2. (i) Suppose that f. > -oo. Let I(' c N be such that Vi ~ O and 

(4.17) Jim Tk 2: f. - Ef - jiE/1> 
kEK 1 

where fi := infµEM µ (cf section 2.1). Then limkEK' µk < oo and Vk/vk ~ O. 
Moreover, the sequence {µk}kEK' converges to the set !VI, given by (4.13) for l := 

EJ+ fi.t1,. 

(ii) ff f. > - oo, then a set I(' satisfying the requirements of (i) exists under the 
assumptions of Theorems 3.8, 3.9, or 3.10 or those of Theorem 3.12 if additionally 
either inf{k: h(uk) $ O} < oo or luk/ ft oo (e.g., the optima/ set U, is nonempty 
and bounded). 

Proof (i) By (4.17), Too := limkEI<' Tk 2: f. - ,. If we had limkEK' 1/k = o, 
for u = u, (4.15) would yield in the limit O > h(u) 2: O, a contradiction. Hence, 

limkel<' lik > O, so that Vk/vk ~ O and limkEK' µk < oo by (4.14). Let µ00 beany 
cluster point of (µdkew; then µ 00 E IR+· Passing to the limit in (4.16) bounds the 
Lagrangian values as follows: 

L(u; µ00 ) := f(u) + µ 00 h(u) 2: T00 for all u EC. 

Hence, ą(µ00 ) 2: T00 2: f. - l implies µ00 EM, by (4.13). Since µ00 was an arbitrary 
cluster point of {µk}keK' CIR+ U_{oo} and limkEK' µk < oo, the conclusion follows. 

(ii) In Theorem 3.8, Tk = fi for all k 2: k (and we may take J(' = K). In 
Theorem 3.9, Tk -, ft' E [!. - 'I - µ,,., f.) and limkEI< Vi = O. For the rest, 
see Theorems 3.IO(ii,v) and 3.12(i,iv,v), noting that /uk/ ft oo iff {uk} has a cluster 
point. O 
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4.4. U pdating the penalty coefficient in the exact case. We first show 
how to choose the penalty coefficient Ck by using the Lagrange multiplier estimate µk 

of (4.14) to ensure the "convergence" condition (3.13) of Theorem 3.12(vii). 
LEMMA 4.3. Under the assumptions of Theorem 3.12, suppose that [u•[ -f, oo. 

M oreover, suppose that for all large k, after a des cent step, Step 7 chooses Ck+i 2:: 
max{µk,ck} if µk < oo, Ck+! 2:: Ck otherwise. Then there exists k' such that condition 
(3.13) holds for· any u E U •. 

Proof By Theorem 3.12(iv), the assumptions of Lemma 4.2(i) hold for some I<' c 
f(, Ef = ,,. =•=O; thus, {µk}.EK' converges to Mo = M, and limkEK' µk 2:: P, := 
inf,,EM µ implies µk 2:: p,- 1 for all large k E K'. Hence, since {ck} is nondecreasing 
for large k, we have Ck 2:: P, - 1 for all large k, and the conclusion follows from 
Theorem 3.12(vii). O 

Remark 4.4. Variations on the strategy of Lemma 4.3 are possible. For instance, 
if {-ii.'} is bounded (e.g., U is bounded), Step 7 may choose ck+l 2:: µk after each 
descent step when µk < oo; this suflices for the proof of Lemma 4.3 with J(' = J( by 
Theorem 3.12(iii). 

We shall exploit the following basie property of the exact penalty function (2.1). 
LEMMA 4.5. ff c 2:: µ, then rr(u; c) 2:: J. + (c - µ)h(u)+ for all u EC. 
Proof By (2.1), rr(u; c) = L(u; µ)+ (c-µ)h(u)+ +µ[h(u)+ -h(u)] for each u EC, 

where L(u;µ) 2:: q(µ) = f. (cf. section 2.1), p, 2:: O, and h(uJ+ 2:: h(u). O 
For pha.se 1 in the exact ca.se (when Step 3 is inactive), the main difficulty lies 

in ensuring h(uk) .). O. Complementing Theorem 3.12, we now show that it suffices 
if the penalty parameter Ck majorizes strictly the minimal Lagrange multiplier p, 
a.symptotically, and we give a specific update of Ck, ba.sed on a simple idea: increa.se 
the penalty coefficient if the constraint violation is large relative to the optimality 
mea.sure (cf. [Kiw91]). 

LEMMA 4.6. Under the assumptions of Theorem 3.12, suppose that h(u•) > O 
for all k. Then we have the following statements: 

(i) There is J(' C J( such that Vk ~ O and limkEI<' f(u•) S limkEK' rk S f •. 
(ii) ff C 00 := limk Ck > jl, then h(uk).). 0. 

(iii) Suppose that for all large k, after a descent step, Step 7 chooses Ck+t 2:: 2ck 
if h(u•+ 1 ) > Vk , Ck+i 2:: ck otherwise, Ck+i > O when h(uk+l) > O. ff J. > -oo, 
then h(uk) .). o. 

(iv) ff h(uk).). O, then limk r• 2:: limk f(uk) 2:: f., and f(u•) ~ J. in (i) above. 
Proof (i) This follows from Theorem 3.l0(vi). 
(ii) By (i) and Lemma 4.5, f. 2:: limk Tk 2:: f. + (c00 - p,) limk h(uk)+ with c00 > p, 

yields limk h(u•J+ = O. Hence, h(uk).). O, using O< h(uk+t) S h(uk) by (2.34a). 
(iii) lf c00 := limk Ck < oo, then h(uk+l) S Vk for all large k E J(; so by (i), 

Vk ~ O yields h(u•).). O. Otherwise, c00 = oo > p, (from f. > -oo), and (ii) applies. 
(iv) lnvoke Lemma 3.3 with 't =,,.=O, and use the fact that rk 2:: f(u•). O 

5. Column generation for LP problems. In this section we consider the 
following primal-dual pair of LP problems: 

(5.1) 

(5.2) 

min cA s.t. A>- 2:: b, A 2:: O, 

max ub s.t. uA S c, u 2:: O, 

where c E IR", A E IR"'"", b E JR=. We a.ssume that c > O. Let A, denote column i 
of A for i Ef:= {1: n}. When the number of columns is huge, problems (5.1)- (5.2) 
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may be solved by column generation, provided that for each u 2'. O, one can salve 
the column generation subproblem of finding iu E Arg max;Ef ( uA; - c;). We show 
that this subproblem may be solved inexactly when aur method is applied to the 
dual problem (5.2) formulated as (1.1) and that approximate solutions to (5.1) can 
be recovered at no extra cost. 

To ease subsequent notation, let us rewrite the LP problems (5.1)-(5.2) as follows: 

(5.3) max ,t,0(>.) := -c>. s.t. ,t,(>.) := A>. - b 2'. O, >. E IR'~, 

(5.4) min /(u) := -ub s.t. uA Sc, u E IR';'. 

We regard the dual problem (5.4) as (1.1) with C := IR';' and the constraint function 

(5.5) h(•) := ']1:f((A;, ·) - c;). 

Since c > O, ·u := O may serve as the Slater point. For aur method applied to (1.1), we 
assume that / is evaluated exactly (i.e., , 1 = O and fk = !), whereas the approximate 
linearization condition (2.4b) boils down to finding an index ik E J such that 

(5.6) 

By duality, /. is the common optima] value of (5.3) and (5.4). In view of Lemma 4.2, 
K' 

we assume that /, > -oo and Jet K' C N be the set such that Vk ---+ O and (4 .17) 
holds; then lik > O and µk := (1 - llk)/llk < oo for large k E K'. We shall show 
that the corresponding subsequence of the multipliers {µkf3j} jEJ,'. of (2.28b) solves 
the primal problem (5.3) approximately; thus, below we consider only k E K' such 
that lik > O. 

The multipliers {µkf3f },u,'. define an appro1;imate prima/ solution Ak E IR';. via 

A~ := µk L /3J for each i E J. 
jEJtij=i 

Let l := (1, ... , 1) E IRn. In this notation, using the form (5.6) of the linearizations h1 
in (2.28b) and the fact that µkhk(uk+I) = µkek(uk+ 1 ) (cf. (2.13)) yields the relations 

We first derive useful expressions for the prima] funct ion values ·,jJ0(Ak) and ,t,(Ak). 
LEMMA 5.1. ,f,o(Ak) = Tk + ([h~J+ - '• - (p•,-tl))/llk, ,f,(Ak) = (pk - P'b)/llk 2'. 

pk/llk. 
Proof Since p} = V f = -b (cf. (2.11), (5.4)), µ•P7. = AAk by (5.7), and llkµk = 

1 - lik by (4 .14), the definitions of ,t,(>.) in (5.3) and of p• in (2.18) give 

llk,f,(Ak) = llk(AAk - b) = llkP} + (1 - llk}p7, = pk -p'b, 

where P'b E 8iR:;• (uk+l) implies P'b SO and (p'b, uk+ 1) = O. N ext, by (5.7) and (2.18), 

llkcAk + (1 - llk}ek(,/+ 1) = (llkµkPt uk+l) 

= ((l - llk)p7, +P'b,,/+ 1) = (pk -llkP},uk+I), 
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where vk(P},uk+I) = vdk(uk+I) = vkek(uk+ 1) + VkTk by (2.13). Hence, 

-vkc.\k - llkTk = ek(uk+I) - (i,uk+I) = e~(O) = [h~]+ - (p\11.k) - fk, 

where we have used (2.20)- (2.21). Dividing by llk gives the required expression of 
,j,0 (.Xk) := -c.\k; for ,f,(.Xk), see the first displayed equality above. O 

In terms of the optimality measure Vk of (2.19), the bounds of Lemma 5.1 imply 

(5.8) _\k 2'. O with V'o(.Xk) 2: Tk - V./vk, ,j,,(.\k) 2'. -Vk/vk, i= 1: m. 

We now show that {.XkhEI<' converges to the set of l-optimal prima/ solutions 

(5.9) A,:= {AE IR~: V'o(),,) 2: f. -l,,j,(J,,) 2'. O}, 

where l := µ<1,, with µ being the minimal Lagrange multiplier of (1.1); in our context, 
we may as well take (a possibly larger) µ := 1-' for any prima! solution ,\ of (5.3). 

I<' 
THEOREM 5.2. Suppose that f. > -oo. Let [(' C J\I be such that Vk ----+ O and 

(4.17) holds (see Lemma 4.2(ii) for sufficient conditions). Then we have the following 
statements: 

(i) The sequence { .\ k hE I<' is bounded and all its cluster points lie in IR';.. 
(ii) Let .\00 be a cluster point of (.XkhEI<'· Then .\00 EA,. 

(iii) dA,(_\k) := inf~EA, j_\k - ),,j ~ 0. 

Proof By Lemma 4.2, limkEI<' µk < oo and Vk/vk ~ O. Since limkEI<' rk 2'. f.-l 
by (4 .17), (5.8) yields limkEI<' ,f,o(.Xk) 2'. f. - land limkEI<' min;~, ,f,,(.Xk) 2'. O. 

(i) This follows from limkEI<' l.Xk = limkEI<' µk < oo (cf. (5.7)) and _\k 2'. O. 
(ii) We have .\00 ;::: O, ,j,0 (.X00 ) ;::: f. -l, and ,f,(.X00 ) 2: O by continuity of ,j,0 and ,f,. 
(iii) Use (i), (ii), and the continuity of the distance function dA,· O 
Remark 5.3. (i) By Remark 3.ll(ii), we may use l := µ<'j';' for Theorem 5.2. 
(ii) By Lemma 3.l(iii) and the proof of Theorem 5.2, if an infinite loop between 

Steps 1 and 4 occurs, then Vi--> O yields dA,(.Xk)--> O. Similarly, if Step 2 terminates 
with Vi = O, then _\k EA,. In both cases, we may take l := p,,7.<1l by Remark 3.ll(ii). 

(iii) Given two tolerances <F, <toi > O, the method may stop if hi ~ <F , 

V'o(.Xk) 2: f(uk) - <toi and ,f,;(Ak) 2: -<toi , i= 1: m. 

Then V'o(.Xk) :::: f. - µ(€1, + EF) - €toi from f(uk) 2'. f. - µ(€1, + EF); SO _5,k is an 
approximate solution of (5.3). This stopping criterion will be met when Vk/llk ~ <toi• 

We add that our numerical experiments (to be reported elsewhere) on the test 
problems of [Kiw05, KiL06, SaS05] indicate that our method is quite sensitive to 
constraint scaling; yet, with proper scaling, it can perfonn quite well. 

Acknowledgments, I would like to thank the Associate Editor, the two anony
mous referees, and Claude Lemarechal for helpful comments. 
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