
Raport Badawczy

Research Report

42/ 20Dh

RB/56/2006

On linear time algorithms
for the continuous quadratic

knapsack problem

K. C. Kiwiel

Instytut Badań Systemowych
Polska Akademia Nauk

Systems Research Institute
Polish Academy of Sciences

POLSKA AKADEMIA NAUK

Instytut Badań Systemowych

ul. Newelska 6

O 1-44 7 Warszawa

tel. : (+48) (22) 8373578

fax : (+48) (22) 8372772

Kierownik Pracowni zgłaszający pracę:
Prof dr hab. inż. Krzysztof C. Kiwiel

Warszawa 2006

TECHNICAL NOTE
On Linear Time Algorithms for the

Continuous Quadratic Knapsack Problem1

K. C. KIWIEL2

Communicated by J. P. Crouzeix

1The author thanks the Associate Editor and an anonymous referee for their helpful
comments.

2Professor, Systems Research Institute, Warsaw, Poland.

Abstract. We give a linear time algorithm for the continuous quadratic knap­
sack problem which is simpler than the existing methods and competitive in
practice. Encouraging computational results are presented for large-scale prob­
lems.

Key Words. Nonlinear programming, convex programming, quadratic pro­
gramming, separable programming, singly constrained quadratic program.

- 1 -

1 Introduction

The continuous quadmtic knapsack problem is defined by

P: min

s.t.

f(x) := ½xT Dx - aT x,

bTx = r,
l ~X~ u,

(la)

(lb)

(le)

where x is an n-vector of variables, a, b, l, u E llł", r E llł, D = diag(d) with d > O, so
that the objective f is strongly convex. Assuming P is feasible, !et x* denote its unique
solution.

Problem P has many applications; see e.g. Refs. 1-5 and references therein.
Specialized algorithms for P solve its dual problem by finding a Lagrange multiplier t.

that solves the equation g(t) = r, where gis a monotone piecewise linear function with
2n breakpoints (cf. Section 2). To this end, the O(n) algorithms of Refs. 1-4 use medians
of breakpoint subsets. However, they are quite complicated, and the analysis of Refs. 3-4
has some gaps that are not easy to fix (cf. Remark 2.l(iv)).

In this paper we introduce a simpler O(n) algorithm that is easier to analyze and
competitive in practice with those in Refs. 1-4.

The paper is organized as follows. In Section 2 we review some properties of P and
present our method. Additional constructions of Ref. 2 are discussed in Section 3. Finally,
computational results for large-scale problems are reported in Section 4.

2 Breakpoint Searching Algorithm

Viewing t E llł as a multiplier for the equality constraint of Pin (1), consider the Lagrangian
primal solution (the minimizer of f(x) + t(bT x - r) s.t. l ~ x ~ u)

x(t) := min { max [l, n-1 (a - tb)], u} (2)

(where the min and max are taken componentwise) and its constmint value

g(t) := bT x(t). (3)

Solving P amounts to solving g(t) = r. Indeed, invoking the Karush-Kuhn-Tucker condi­
tions for Pas in Ref. 2, Theorem 2.1 and Ref. 4, Theorem 2.1 gives the following result.

Fact 2.1. x* = x(t) iff g(t) = r. Further, the set T. := { t: g(t) = r} is nonempty.

As in Ref. 1, we assume for simplicity that b > O, because if b; = O, x; may be
eliminated:

x; = min { max [ł;, a;/d;], U;},

whereas if b; < O, we may replace {x;, a;, b;, l;, u;} by -{x;, a;, b;, u;, ł;} (in fact, this trans­
formation may be implicit).

- 2 -

By (2)-(3), the function g has the following breakpoints

t\ := (a; - l;d;)/b; and tf := (a; - u;d;)/b;, i= 1: n,

with ty::; t; (from I; ::::; U; and b; > O), and each x;(t) may be expressed as

{
U; if t '.'Ó tJ',

x;(t) = (a; - tb;)/d; if t;' '.'Ó t '.'Ó tł,
I; if t; ::; t.

Thus, g(t) is a continuous, piecewise linear and nonincreasing function of t.

(4)

To locate an optima! t. in T., the algorithm below generates a bracketing interval
[tL, tu) that contains T. by evaluating g at median breakpoints in (tL, tu) until (tL, tu)
contains no breakpoints; then gis linear on [tL, tul, and t. is found by interpolation.

Algorithm 2.1.
Step O. Initialization. Set N := {l: n}, T := { tl}iEN U { tl'}iEN, tL := -oo, tu := oo.
Step 1. Breakpoint selection. Set i:= median(T) (the median of the set T).
Step 2. Computing the constraint value g(i). Calculate g(i).
Step 3. Optimality check. If g(i) = r, stop with t. := i.
Step 4. Lower breakpoint removal. If g(i) > r, set tL := i, T := {t ET: i< t}.
Step 5. Upper breakpoint removal. If g(i) < r, set tu:= i, T := {t ET: t < i}.
Step 6. Stopping criterion. If T cf 0, go to Step l; otherwise, stop with

tu - tL
t.:=tL-[g(tL)-r] () ()"

9 tu - 9 tL

The following comments clarify the nature of the algorithm.

Remark 2.1.

(5)

(i) By the argument of Ref. 2 (p. 1438), Algorithm 2.1 requires only order n operations,
since ITI is originally 2n, i := median(T) can be obtained in order ITI operations (Ref. 6,
Section 5.3.3), the evaluation of g(i) requires order ITI operations (see below), and each
iteration reduces ITI at least by half at Steps 4 or 5.

(ii) To compute g(i) efficiently, we may partition the set N into the following sets

L := { i : tj '.'Ó tL } ,

M := {i: tL,tu E [tf,tj]},

U := { i : tu '.'Ó tf } ,

I := { i : t) E (tL, tu) or ą E (tL, tu) } ;

note that III ::::; ITI ::::; 2IIJ. Thus, by (3), (4) and (6),

g(t) = Lb;x;(t) + (p-tq) + s \/t E [tL,tu],
iE/

(6a)

(6b)

(6c)

(6d)

(7)

:

. ...

- 3 -

where
L b;xi(t) = L b;(a; - tb;)/d; + L b;l; + L b;ui,
iEl iEl:tE[tr,t)J iE/:ti < t

iEM iEM iEL iEU

Setting I := N , p, q, s := O at Step O, at Step 6 we may update I, p, q and s as follows:

for i EI do
iftl :S tL, set I:= I\ {i} , s := s+b;l;;
if tu :S ty, set I:= I\ {i}, s := s + b;u;;
if tL, tu E [t:', t;], set I:= I\ {i}, p := p + a;b;/d;, q := q + b;/d;.

This update and the calculation of g(i) require order III :S ITI operations.
(iii) Upon termination, x* = x(t.) is recovered via (2) in order n operations.
(iv) The algorithm of Ref. 4 is quite similar to ours, but it fails on simple examples

(e.g., for n= 2, d = b = (l, 1), a= O, r = -2, l = (-2, -2), u= (-l, O)) . The algorithm
of Ref. 3 is much more complicated, and may also fai! (e.g., on the example of Ref. 3, pp.
565- 566).

3 Breakpoint Removal of Calamai and More

The original version of Algorithm 2.3 in Ref. 2 corresponds to replacing Steps 4 and 5 by

Step 4'. Lower breakpoint removal. If g(i) > r, then find the right adjacent breakpoint

i := min { t E T : i < t} ;

if i < oo and g(l) > r , set tL := i , T := {t ET: i :St}, else set tL := i,
tu := min{tu, i} and stop with t. given by (5).

Step 5'. Upper breakpoint removal. If g(i) < r, then find the left adjacent breakpoint

i := max { t E T : t < i} ;

if i > -oo and g(l) < r, set tu := i, T := {t E T : t :S i}, else set
tL := max{tL , i}, tu:= i and stop with t. given by (5).

By (4) and (7) , because i and i are consecutive breakpoints, we may compute

with

g(l) = g(i) - (i - i) (ą +ii)

ij := L b;/d;
iEI:t.fE[tr,t:]

in order III operations. Yet this modification will typically remove only one more break­
point, and this may not be worth the additional effort in finding i and g(l).

- 4 -

4 N umerical Results

Algorithm 2.1 of this paper, the Calamai-More version of Section 3, and Brucker's method
of Ref. 1 were programmed in Fortran 77 and run on a notebook PC (Pentium M 755 2
GHz, 1.5 GB RAM) under MS Windows XP. We used the median finding routine of Ref.
7, which permutes the list T to place elements < i first, then elements = i, and finally
elements > i. Hence the updates of Steps 4 and 5 require only a change of one pointer.

Our test problems were randomly generated with n ranging between 50000 and 2000000.
As in Ref. 5 (Section 2), all parameters were distributed uniformly in the intervals of the
following three problem classes:

(i) uncorrelated: ai, bi, di E [10, 25];
(ii) weakly correlated: bi E [10, 25], ai, d; E [bi - 5, b; + 5];
(iii) strongly correlated: b; E [10, 25], a; = di = b; + 5;

further, ł; , ui E [l, 15], i E N, r E [brz, bT u]. For each problem size, 20 instances were
generated in each class.

Tables 1- 3 report the average, maximum and minimum run times over the 20 instances
for each of the listed problem sizes and classes, as well as overall statistics. The average run
times grow linearly with the problem size. The Calmai-More algorithm and the Brucker
algorithm one were slower than our method by about 21 % and 23%, respectively.

,.

,.

- 5 -

References

1. BRUCKER, P ., An O(n) Algorithm for Quadratic Knapsack Problems, Operations Re­
search Letters, Vol. 3, pp. 163- 166, 1984.

2. CALAMAI, P. H., and MORE, J. J., Quasi-Newton Updates with Bounds, SIAM Jour­
nal on Numerical Analysis, Vol. 24, pp. 1434- 1441, 1987.

3. MACULAN, N. , SANTIAGO, C . P ., MACAMBIRA, E . M., and JARDIM, M. H. c., An
O(n) Algorithm for Projecting a Vector on the Intersection of a Hyperplane and a Box
in Rn, Journal of Optimization Theory and Applications, Vol. 117, pp. 553- 574, 2003.

4. PARDALOS, P. M ., and KOVOOR, N ., An Algorithmfor a Singly Constrained Class of
Quadratic Programs Subject to Upper and Lower Bounds, Mathematical Programming,
Vol. 46, pp. 321- 328, 1990.

5. BRETTHAUER, K. M., SHETTY, B., and SYAM, S., A Branch and Bound Algorithm
for Integer Quadratic Knapsack Problems, ORSA Journal on Computing, Vol. 7, pp.
109- 116, 1995.

6. KNUTH, D. E. , The Art of Computer Programming. Volume III: Sorting and Searching,
2nd Edition, Addison-Wesley, Reading, Massachussets, 1998.

7. KIWIEL, K. C., On Floyd and Rivest's SELECT Algorithm, Theoretical Computer Sci­
ence, Vol. 347, pp. 214- 238, 2005.

- 6 -

List of Tables

Table 1. Run times of Algorithm 2.1 (sec).

Table 2. Run times of the Calamai- More algorithm (sec).

Table 3. Run tirnes of the Brucker algorithrn (sec).

- 7 -

Table 1: Run times of Algorithm 2.1 (sec).

U ncorrelated Weakly Correlated Strongly Correlated Overall
n avg max min avg max min avg max min avg max min

50000 0.02 O.OB 0.02 0.02 0.03 0.02 0.03 0.05 0.02 0.02 O.OB 0.02
100000 0.05 0.06 0.05 0.05 0.06 0.05 0.05 0.06 0.05 0.05 0.06 0.05
500000 0.27 0.28 0.25 0.27 0.28 0.26 0.27 0.28 0.26 0.27 0.28 0.25

1000000 0.53 0.55 0.51 0.54 0.55 0.51 0.54 0.55 0.52 0.54 0.55 0.51
1500000 O.BO 0.82 0.76 O.BO 0.82 0.77 O.BO 0.82 0.77 O.BO 0.82 0.76
2000000 1.08 1.09 1.02 1.08 1.10 1.02 1.08 1.09 1.03 1.08 1.10 1.02

- 8 -

Table 2: Run times of the Calamai-More algorithm (sec).

U ncorrelated Weakly Correlated Strongly Correlated Overall
n avg max min avg max min avg max min avg max min

50000 0.02 0.03 0.02 0.03 0.03 0.02 0.03 0.03 0.02 0.03 0.03 0.02
100000 0.06 0.07 0.05 0.06 0.07 0.06 0.06 0.07 0.06 0.06 0.07 0.05
500000 0.32 0.34 0.31 0.33 0.34 0.31 0.33 0.34 0.32 0.33 0.34 0.31

1000000 0.65 0.67 0.62 0.65 0.66 0.63 0.66 0.67 0.64 0.65 0.67 0.62
1500000 0.98 1.00 0.94 0.98 1.00 0.95 0.98 1.00 0.94 0.98 1.00 0.94
2000000 1.31 1.34 1.25 1.31 1.33 1.25 1.32 1.33 1.26 1.31 1.34 1.25

- 9 -

Table 3: Run times of the Brucker algorithm (sec).

Uncorrelated Weakly Correlated Strongly Correlated Overall
n avg max min avg max min avg max min avg max 1nin

50000 0.03 0.03 O.Ol 0,03 0.06 0.02 0.03 0.06 0.02 0.03 0.06 O.Ol
100000 0.06 0.07 0.05 0.06 0.07 0.05 0.07 0.07 0.06 0.06 0.07 0.05
500000 0.33 0.38 0.24 0.34 0.37 0.28 0.33 0.36 0.26 0.33 0.38 0.24

1000000 0.66 0.76 0.49 0.69 0.79 0.52 0.65 0.72 0.52 0.67 0.79 0.49
1500000 1.01 1.13 0.85 1.01 1.17 0.84 0.99 1.07 0.80 1.00 1.17 0.80
2000000 1.35 1.51 1.10 1.31 1.45 1.00 1.33 1.44 1.08 1.33 1.51 1.00

