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Abstract. We give a linear time algorithm for the continuous quadratic knap­
sack problem which is simpler than the existing methods and competitive in 
practice. Encouraging computational results are presented for large-scale prob­
lems. 

Key Words. Nonlinear programming, convex programming, quadratic pro­
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1 Introduction 

The continuous quadmtic knapsack problem is defined by 

P: min 

s.t. 

f(x) := ½xT Dx - aT x, 

bTx = r, 
l ~X~ u, 

(la) 

(lb) 

(le) 

where x is an n-vector of variables, a, b, l, u E llł", r E llł, D = diag(d) with d > O, so 
that the objective f is strongly convex. Assuming P is feasible, !et x* denote its unique 
solution. 

Problem P has many applications; see e.g. Refs. 1-5 and references therein. 
Specialized algorithms for P solve its dual problem by finding a Lagrange multiplier t. 

that solves the equation g(t) = r, where gis a monotone piecewise linear function with 
2n breakpoints (cf. Section 2). To this end, the O(n) algorithms of Refs. 1-4 use medians 
of breakpoint subsets. However, they are quite complicated, and the analysis of Refs. 3-4 
has some gaps that are not easy to fix (cf. Remark 2.l(iv)). 

In this paper we introduce a simpler O(n) algorithm that is easier to analyze and 
competitive in practice with those in Refs. 1-4. 

The paper is organized as follows. In Section 2 we review some properties of P and 
present our method. Additional constructions of Ref. 2 are discussed in Section 3. Finally, 
computational results for large-scale problems are reported in Section 4. 

2 Breakpoint Searching Algorithm 

Viewing t E llł as a multiplier for the equality constraint of Pin (1), consider the Lagrangian 
primal solution (the minimizer of f(x) + t(bT x - r) s.t. l ~ x ~ u) 

x(t) := min { max [ l, n-1 (a - tb)], u} (2) 

(where the min and max are taken componentwise) and its constmint value 

g(t) := bT x(t). (3) 

Solving P amounts to solving g(t) = r. Indeed, invoking the Karush-Kuhn-Tucker condi­
tions for Pas in Ref. 2, Theorem 2.1 and Ref. 4, Theorem 2.1 gives the following result. 

Fact 2.1. x* = x(t) iff g(t) = r. Further, the set T. := { t: g(t) = r} is nonempty. 

As in Ref. 1, we assume for simplicity that b > O, because if b; = O, x; may be 
eliminated: 

x; = min { max [ł;, a;/d;], U;}, 

whereas if b; < O, we may replace {x;, a;, b;, l;, u;} by -{x;, a;, b;, u;, ł;} (in fact, this trans­
formation may be implicit). 
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By (2)-(3), the function g has the following breakpoints 

t\ := (a; - l;d;)/b; and tf := (a; - u;d;)/b;, i= 1: n, 

with ty::; t; (from I; ::::; U; and b; > O), and each x;(t) may be expressed as 

{ 
U; if t '.'Ó tJ', 

x;(t) = (a; - tb;)/d; if t;' '.'Ó t '.'Ó tł, 
I; if t; ::; t. 

Thus, g(t) is a continuous, piecewise linear and nonincreasing function of t. 

(4) 

To locate an optima! t. in T., the algorithm below generates a bracketing interval 
[tL, tu) that contains T. by evaluating g at median breakpoints in (tL, tu) until (tL, tu) 
contains no breakpoints; then gis linear on [tL, tul, and t. is found by interpolation. 

Algorithm 2.1. 
Step O. Initialization. Set N := {l: n}, T := { tl}iEN U { tl'}iEN, tL := -oo, tu := oo. 
Step 1. Breakpoint selection. Set i:= median(T) (the median of the set T). 
Step 2. Computing the constraint value g(i). Calculate g(i). 
Step 3. Optimality check. If g(i) = r, stop with t. := i. 
Step 4. Lower breakpoint removal. If g(i) > r, set tL := i, T := {t ET: i< t}. 
Step 5. Upper breakpoint removal. If g(i) < r, set tu:= i, T := {t ET: t < i}. 
Step 6. Stopping criterion. If T cf 0, go to Step l; otherwise, stop with 

tu - tL 
t.:=tL-[g(tL)-r] () ( )" 

9 tu - 9 tL 

The following comments clarify the nature of the algorithm. 

Remark 2.1. 

(5) 

(i) By the argument of Ref. 2 (p. 1438), Algorithm 2.1 requires only order n operations, 
since ITI is originally 2n, i := median(T) can be obtained in order ITI operations (Ref. 6, 
Section 5.3.3), the evaluation of g(i) requires order ITI operations (see below), and each 
iteration reduces ITI at least by half at Steps 4 or 5. 

(ii) To compute g(i) efficiently, we may partition the set N into the following sets 

L := { i : tj '.'Ó tL } , 

M := {i: tL,tu E [tf,tj]}, 

U := { i : tu '.'Ó tf } , 

I := { i : t) E (tL, tu) or ą E (tL, tu) } ; 

note that III ::::; ITI ::::; 2IIJ. Thus, by (3), (4) and (6), 

g(t) = Lb;x;(t) + (p-tq) + s \/t E [tL,tu], 
iE/ 

(6a) 

(6b) 

(6c) 

(6d) 

(7) 
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where 
L b;xi(t) = L b;(a; - tb;)/d; + L b;l; + L b;ui, 
iEl iEl:tE[tr,t)J iE/:ti < t 

iEM iEM iEL iEU 

Setting I := N , p, q, s := O at Step O, at Step 6 we may update I, p, q and s as follows: 

for i EI do 
iftl :S tL, set I:= I\ {i} , s := s+b;l;; 
if tu :S ty, set I:= I\ {i}, s := s + b;u;; 
if tL, tu E [t:', t;], set I:= I\ {i}, p := p + a;b;/d;, q := q + b;/d;. 

This update and the calculation of g(i) require order III :S ITI operations. 
(iii) Upon termination, x* = x(t.) is recovered via (2) in order n operations. 
(iv) The algorithm of Ref. 4 is quite similar to ours, but it fails on simple examples 

(e.g., for n= 2, d = b = (l, 1), a= O, r = -2, l = (-2, -2), u= (-l, O)) . The algorithm 
of Ref. 3 is much more complicated, and may also fai! ( e.g., on the example of Ref. 3, pp. 
565- 566). 

3 Breakpoint Removal of Calamai and More 

The original version of Algorithm 2.3 in Ref. 2 corresponds to replacing Steps 4 and 5 by 

Step 4'. Lower breakpoint removal. If g(i) > r, then find the right adjacent breakpoint 

i := min { t E T : i < t} ; 

if i < oo and g(l) > r , set tL := i , T := {t ET: i :St}, else set tL := i, 
tu := min{tu, i} and stop with t. given by (5). 

Step 5'. Upper breakpoint removal. If g(i) < r, then find the left adjacent breakpoint 

i := max { t E T : t < i} ; 

if i > -oo and g(l) < r, set tu := i, T := {t E T : t :S i}, else set 
tL := max{tL , i}, tu:= i and stop with t. given by (5). 

By ( 4) and (7) , because i and i are consecutive breakpoints, we may compute 

with 

g(l) = g(i) - (i - i) ( ą +ii) 

ij := L b;/d; 
iEI:t.fE[tr,t:] 

in order III operations. Yet this modification will typically remove only one more break­
point, and this may not be worth the additional effort in finding i and g(l). 
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4 N umerical Results 

Algorithm 2.1 of this paper, the Calamai-More version of Section 3, and Brucker's method 
of Ref. 1 were programmed in Fortran 77 and run on a notebook PC (Pentium M 755 2 
GHz, 1.5 GB RAM) under MS Windows XP. We used the median finding routine of Ref. 
7, which permutes the list T to place elements < i first, then elements = i, and finally 
elements > i. Hence the updates of Steps 4 and 5 require only a change of one pointer. 

Our test problems were randomly generated with n ranging between 50000 and 2000000. 
As in Ref. 5 (Section 2), all parameters were distributed uniformly in the intervals of the 
following three problem classes: 

(i) uncorrelated: ai, bi, di E [10, 25]; 
(ii) weakly correlated: bi E [10, 25], ai, d; E [bi - 5, b; + 5]; 
(iii) strongly correlated: b; E [10, 25], a; = di = b; + 5; 

further, ł; , ui E [l, 15], i E N, r E [brz, bT u]. For each problem size, 20 instances were 
generated in each class. 

Tables 1- 3 report the average, maximum and minimum run times over the 20 instances 
for each of the listed problem sizes and classes, as well as overall statistics. The average run 
times grow linearly with the problem size. The Calmai-More algorithm and the Brucker 
algorithm one were slower than our method by about 21 % and 23%, respectively. 

,. 

,. 
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Table 1: Run times of Algorithm 2.1 (sec). 

U ncorrelated Weakly Correlated Strongly Correlated Overall 
n avg max min avg max min avg max min avg max min 

50000 0.02 O.OB 0.02 0.02 0.03 0.02 0.03 0.05 0.02 0.02 O.OB 0.02 
100000 0.05 0.06 0.05 0.05 0.06 0.05 0.05 0.06 0.05 0.05 0.06 0.05 
500000 0.27 0.28 0.25 0.27 0.28 0.26 0.27 0.28 0.26 0.27 0.28 0.25 

1000000 0.53 0.55 0.51 0.54 0.55 0.51 0.54 0.55 0.52 0.54 0.55 0.51 
1500000 O.BO 0.82 0.76 O.BO 0.82 0.77 O.BO 0.82 0.77 O.BO 0.82 0.76 
2000000 1.08 1.09 1.02 1.08 1.10 1.02 1.08 1.09 1.03 1.08 1.10 1.02 
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Table 2: Run times of the Calamai-More algorithm (sec). 

U ncorrelated Weakly Correlated Strongly Correlated Overall 
n avg max min avg max min avg max min avg max min 

50000 0.02 0.03 0.02 0.03 0.03 0.02 0.03 0.03 0.02 0.03 0.03 0.02 
100000 0.06 0.07 0.05 0.06 0.07 0.06 0.06 0.07 0.06 0.06 0.07 0.05 
500000 0.32 0.34 0.31 0.33 0.34 0.31 0.33 0.34 0.32 0.33 0.34 0.31 

1000000 0.65 0.67 0.62 0.65 0.66 0.63 0.66 0.67 0.64 0.65 0.67 0.62 
1500000 0.98 1.00 0.94 0.98 1.00 0.95 0.98 1.00 0.94 0.98 1.00 0.94 
2000000 1.31 1.34 1.25 1.31 1.33 1.25 1.32 1.33 1.26 1.31 1.34 1.25 
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Table 3: Run times of the Brucker algorithm (sec). 

Uncorrelated Weakly Correlated Strongly Correlated Overall 
n avg max min avg max min avg max min avg max 1nin 

50000 0.03 0.03 O.Ol 0,03 0.06 0.02 0.03 0.06 0.02 0.03 0.06 O.Ol 
100000 0.06 0.07 0.05 0.06 0.07 0.05 0.07 0.07 0.06 0.06 0.07 0.05 
500000 0.33 0.38 0.24 0.34 0.37 0.28 0.33 0.36 0.26 0.33 0.38 0.24 

1000000 0.66 0.76 0.49 0.69 0.79 0.52 0.65 0.72 0.52 0.67 0.79 0.49 
1500000 1.01 1.13 0.85 1.01 1.17 0.84 0.99 1.07 0.80 1.00 1.17 0.80 
2000000 1.35 1.51 1.10 1.31 1.45 1.00 1.33 1.44 1.08 1.33 1.51 1.00 








