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Unity-feedback system. The rules for constructing a root
woun wie Jsually given with reference to this structure, where K is
the varying parameter.

is the complete reot locus. The negative root locus is consid-
ered less frequently because, in most cases, K in (2) must
be positive to ensure stability of the closed-loop system.
Sometimes, however, stability is possible only with nega-
tive values of K. For example, this is the case for the unsta-
ble, nonminimum-phase loop transfer function
Lisy = K(s—~ 1}/(s - 2).

From (1), it follows that all points s of the positive locus
satisfy the odd phase condition

arg [d(s)] — arg [n(s)] = (2k + 1in, (3)

while all poinls s of the negative locus satisfy the even
phase condition

arg [d(s)] — arg [s)] = 2k, 4

where k is an integer. Relationships (3) and {4) are critical
for the development that follows.

The root locus (1) is usually constructed starting from
the roots of d(s) and 1(s). The roots of d(s) are called the
departure points because they coincide with the roots of (1}
for K = 0. For K # 0, the roots of (1) coincide with those of

Als)

X + n(s) =0, (5)

As K — doo, ¢t roots of (5) tend to the w4 roots of n(s),
which are called the arrival points, while the remaining
v —jt roots, if any, tend asymptotically to infinity. As
shown in the section “Asymptotes of the Complete Root
Locus,” the v — ¢ asymptoles approached by the roots of
(5) as K— +oo differ from the v—pu asymptotes
approached as K — —oc.

Most of the rules for plotting a root locus concern the
sets of departure and arrival points. Evans [1] showed that
(1) can be solved by plotting the locus of points s that have
a simple relationship with the departure and arrival
points. The dependence of the locus plot on the arrival
and departure points might suggest that changing these
points necessarily changes the locus shape. For example,
consider 0 =d(s) + Ku(s) =d(s) + Kpii(s) + (K — Kp)u(si =
d'(s) + K'nisy, d'(5) = d(s) + Kpn(s) and
K’ := K = Kp. In this case, the complete root locus remains
unchanged if the original departure points are replaced by
the roots of d'(s). This simple property is illuslrated in
Figure 2. The next section investigates more general sets
of departure and arrival points that lead to the same com-

where

plete root focus.
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JAoving the departure points along the root locus. When the departure points are moved from their original positions denotad by
s wiwesBS IN a) to the positions denoted by small squares in a} corresponding to an arbitrary nonzero value of the varying parameter K,
the complete root locus remains unchanged. Plot a) shows the root lacus for (s + 1)(s +4) + K(s + 5) = 0, whose departure points are —1
and —4.The positive locus is represented by a sclid line, and the negative locus by a dashed line. The roots corresponding to K = 5 are
Pi 2= -5+ ;2. Plotb) shows the locus for (s — Py)(s — P2} + K'(5 + 5), whose departure points are P, » instead of —1 and —4.
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nvariance of the complete root locus. Each loop transfer function whose numerater and denominator are linear combinations of
wis puynwnials des) and n(s) gives rise to the same complete root locus. a) The complete root locus constructed fram the poles of the all-
pole function Lis) = Knis)/dis), where nis) = 1 and dist = §° + 0.2° + 5 = s(s + 0.1 + ; 0.995)(s + 0.1 — ; 0.995). b) The same com-

plete root locus constructed from the poles and
(s - 0.6464 (s + 0.4232 + ; 1.1696) (S +0.4232 — ;1.1896),
0.6192 — ; 1.5485), and K" = (4 ~ K/1 + K
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Angles formed by the asymptates. The complete root
wueus o ohown for the strictly proper loop transfer function

Lts) = Kn(si/dis), where nis) = 1 and d(s) = (s — 1)(s2 + 1.44).

Each of the four negative—locus asymptotes, which overlap the four
coordinate semi—axes and are denoted by dashed lines, bisects the
angle of m/2 rad formed by two adjacent asymptotes, denoted by
dotted lines, of the positive root locus.

ROOT-LOCUS INVARIANCE
Consider a real variable K # —1 and the linear fractional
transformation

w4+ BK'

—_— 6
Tr K 6)

K= f(KY=
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zeros of
Pals)y=di{s)+4n(s)=(s+1.4383 j(ts - 0.6192 4+ ; 1.5485)(s —

L'(8) = K'pa(Si/pgtS}, where puis) = dis)— nis) =

where o. 8 are distinct real numbers. Substituting (6) for K
n (1) and rearranging, we obtain

[d(s) + e ntsy] + K {dis) + fags)] = 0. (7)

Since (6} defines a one-to-one mapping from the extended
real axis R := [-o0.00] onto itself [4, p. 26] the locus
described by the roots of (1) as K varies over E is exactly
the same as the locus described by the roots of (7) as K’
varies over K. In particular, if £ < v and « — 8 > 0, the
asymptotes approached by the roots of (1) as K — +ov and
K — —o0 coincide with the asymptotes approached by the
roots of (7) as K’ — —1 [rom the right and left, respectively.
The left and right limits as K" — ~1 are reversed if
a—f <0

Equation (7) can be regarded as the equation of the
locus describing the poles of the unity—feedback system
whose loop transfer function is

s Pnls)

. )]
Pals)

L'ts) = K

where

Pals) = d(s) + @ n(s), pu(s) = dis) + B uls). [C)]

The complete root locus for (2} is therefore equal to the
complete root locus for (8), whose branches depart for
K' =0 from the roots of p (s}, where K = «, and arrive for
K - koo at the roots of p,(s), where K = g. Depending
on the values of « and §, the zeros and poles of (8) can
belong to either the positive or negative locus for (2).
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Determining the asymptotes of the complete root locus. The positive root locus far an exactly proper loop transter function
oy — vin8)/d(5) has no asymptotes, whereas at least one branch of negative locus for L(s) goes to infinity. According to the invariance
property, to find the asymptotes of the complete root locus when p = v it suffices to consider a strictly proper loop transfer function £'¢s) that
gives rise to the same complete root locus as the exactly proper L(s). The simplest transfer function of this kind is
L'(s) = K'[dis) — ms))/dis). a) The complete root locus for L(s) = Kn(s)/dis), where n(s) =5 +s>+35+2 _ (s+0.7152)
(5+ 0.1424 + ; 1.6661 (5 + 0.1424 — ;1.6661) and dis) =&+ 2 +55+4 = (5+0.8239)(5+ 0.0880 + ;2.2016) (s + 0.0880 —

12.2016). b) The same complete root locus is generated by the strictly proper loop transfer function
L'is) = K'[d(s) — n(s)]/dis) = K'(25 + 2)/(s° + 52 + 55+ 4) with the same poles as L(s) and one zerc at —1.
. . R , Pul(s) , disy — ()
Figure 3 shows that the complete root locus for the loop L'(s) = K T = K e (10
Puts s

transfer function Lisy = Kn(s)/d(sj, where 1(s) =1 and
d(s) = 57+ 0.287 + 5, is equal to the complete root locus for
the loop transfer function L'(s) = K'p,{s)/p4(s), where p,(s)
and py(s) are given by (9) withw =4 and # = —1.

ASYMPTOTES OF THE COMPLETE ROOT LOCUS

If (2) is strictly proper with pole-zero excess
4= v — > 0, the number of asymplotes of the complete
root locus (1) is 24, where & asymptotes pertain to the posi-
tive rool locus and 4 to the negative root locus. If X = 2,
then all of the 2 asymploles interseet at a single real point,
called the center of the asymptotes and located at
=Y ;1 — 2 ;%l/k, where p; and z; are the poles and
zeros of L(s), respectively [5]. Each asymptote of the nega-
tive locus bisects the angle formed by two adjacent asymp-
totes of the positive locus, as shown in Figure 4.

If L(s) is exactly proper, that is, i = v, then no branch of
the positive locus approaches infinity. However, the entire
real axis necessarily belongs to the complete root locus
because to every real point s, there corresponds a real
value of K satisfying (1), that is, K = —d(s)/u(s) [3]. There-
fore, the complete root locus has at least two asymptotes.
To find the asymptotes of the complete root locus when
it = v, according to the invariance property, it suffices to
consider a strictly proper loop transfer function L'(s) that
gives rise to the same complete root locus as the exactly
proper L(s). The simplest L'(s) of this kind is

where pu(s) and py(s) are given by (9) with « =0 and
f=-1. The pole-zero excess of (10) is
A o=deg[py(9)] — deg [d(9)] > 0 and, consequently, the
complete root locus for both L'(s) and L(s) has 21" asymp-
totes. For instance, if n(s)=s 45 +354+2
d(s) = & + 5% +55--4, then Pals) = d(8) — n(s) = 25+ 2
and the pole-zero excess ' of L'(s) is lwo. 1t follows thal
two branches of the complete root locus for both L'(s) and
Lis) go to infinity and return from there, as shown in
Figure 5. To find the center t of the 24" asymptotes of the
complete root locus for L'(s) and thus for the exactly prop-
er L(s), we denote the numerator and denominator polyno-
mials n(s) and d(s) of the exactly proper Lis) by

and

nisy=s"+b, 5"+ £y,

1+--«+ag,

ds) = 8" a8
In addition, let 2" > 2 and assume

Dyp=a,_j. i=1,2 ...,
and

byoy # aon .

Since the sum of the poles of (10} is equal to -a,_) and the
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Sonfiguration of the root locus near the breakaway points. At a breakaway point of multiplicity ¢, the tangents to the branches of
wiz 1uuecus entering and leaving the breakaway point form 20 angles of equal measure, This configuration can be explained by viewing
the breakaway point as a multiple point of arrival for & complete root lacus of the same shape. Plot a) shows the complete root locus for
Lisy = Kn(si/disy, where nis) = 1 and d(s) = 515>+ 35 + 3) = s(s+ 1.5— ; 0.866)(s + 1.5 — ; 0.866). Plot b} shows the complete root

locus for L'(s) = K'ts + 1)%/d(s) with a zero at the triple point —1 of the focus for L(s1.

sum of its zeros is equal to

—{a, i~ by /(e — bu=y), the center of the
asymptotes is

In the example of Figure 5, the center is v = 0.

LOCUS CONFIGURATION AT THE
BREAKAWAY POINTS
I'he invariance property can be exploited to show how the
locus behaves at a breakateay point, that is, a point where
two or more locus branches intersect. The approach
involves making the breakaway point a multiple departure
or arrival point for a complete root locus of identical
shape.

Let us assume that a breakaway point B of multiplicity
g corresponds to the value Kg # 0 of the varying parame-
ter K in (1) so that

pets) s= d(s) + Kg u(s) = (s = B)” py(s). an

where fig(s) is a polynomial of degree v — o, The locus con-
figuration in the neighborhood of B can be analyzed by
considering the loop transfer {unction

pa(s)

12)
dts) {

Lyts) = K
whose zeros are the roots of (11). Therefore, the point B is

an arrival point of multiplicity o on the locus for {12).
Evaluating the odd phase condition (3) at a point arbi-
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trarily close 1o B on the positive root locus for (12), we
obtain

= arg [d(BY] — 7y — arg [pai D))
= (2k + L)m. {13)

arg [d(B)] — arg [pp(B)]

where ¢y is the angle of the tangent to a ‘ocus branch
approaching B along the positive locus. From (13), it fol-
lows that

b ©p. (14)

Qk + i
g = -
a

where

arg [d(B)] — arg [pp(B)]
¥ 1= ——m——————.
a
As is known [5], (14) provides o different angles (one for
each entering branch) obtainable by setting
k=0, ...,0 -1
Simitarly, evaluating the even phase condition {4) at a
point arbitrarily close to B on the negative root locus for
(12), the angles ¥y formed by the tangents to the ¢ locus
branches approaching 8 along Lhe negalive locus are given
by
2k
-0 Qg
2

Vg =
Therefore, as shown in Figure 6, each of the o branch-
es arriving at B bisects, at least locally, the angle of
27 /e rad formed by two adjacent branches departing
from B.




ROOT-LOCUS CHARACTERIZATION OF THE
ALL-PASS STABILIZATION PROCEDURE

[n this section, we use the root-locus invariance property
to characterize a stabilization procedure leading to a circle-
shaped Nyquist plot around the critical point -1+ ;0.
After motivating the stabilization procedure, we note that,
if the Nyquist diagram of the loop transfer function
L{s) 1= Ge()Gpls), where G(s) and Gu(s) are the controller
and plant transfer functions, travels along a circle centered
at the critical point, then E(s) := 1 + L(s) is all-pass. Next,
we point out that the complete root locus constructed from
the poles and zeros of L(s) is the same as the complete root
locus constructed from the poles and zeros of Ets). Finally,
an algorithm for synthesizing the stabilizing controller
Ge(s) is provided and then illustrated with the aid of two
examples.

Since open-left-half-planc (OLHP) zeros and poles can
safely be canceled, we assume that all of the zeros and
poles of Gp(s) are in the open right half-plane (ORHP). We
also assume, for convenience, that Gp(s) is exactly proper.
When the pole-zero excess & of Gu(s) is greater than zero,
the stabilization procedure can be applied to the fictitious
exactly proper plant transfer [unction

Gpts) = (—2) %5~ * Gyls), 15)
where 1 is chosen to be positive and sufficlently large so that
the zero at infinity of multiplicity A of Gp(s) is converted into
a large but finite ORHP zero of the same multiplicity. For
instance, if Gp(s) = (s - 2)/[ts = 13¢5 - 3)], the procedure can
be applied to

{5 — (s — 1000)

Culsy = — o2 T
P 000 - s - 3)

as shown at the end of this section.

Motivation
Gain and phase margins have traditionally been important
measures of stability robustness since if either is small, the
system is close to instability, However, the gain and phase
margins can be large and yet the Nyquist diagram of the
loop transfer function can pass close to the critical point
1+ ;0. A better measure of stability robustness is pro-
vided by the distance 8. from the critical point to the near-
est point on the Nyquist plot of the loop transfer function
L(s). This distance is given by [6]
_ 1

- sup,, |S(; @) ’

that is, the reciprocal of the infinity norm of the sensitivity
function S(s) = 1/[1 + L(s)].

When the plant G,(s) is unstable and nonminimum
phase, the maximum attainable stability margins can be
tiny (upper bounds on their values are given, for instance,
in {6]) and the robust stabilization problem is more

0.01

0.005

Imaginary Axis
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Sircle-shaped loop Nyquist diagram produced by the all-
pasa swullization procedure. When the plant transfer function
Gpt$) Is nonminimum phase, the maximum attainable stability mar-
gins can be very smali. The stabilization procedure ensures that all of
the points on the loop Nyguist diagram are at a uniform distance from
the criical point —1 + ; 0. This figure shows the Nyquist diagram of
Lis) = Gc(5)1Gpts), where Go(si = [is — 1)(s ~ B)]/[ts — 2)(s — 4)]
is the exactly proper plant transfer function and
Geisy = —1.012861s — 2.95619)/(s — 1.13746; is the controlier
transter function leading to the desired circle—shaped Nyquist dia-
gram. As required by the Nyquist criterion, this diagram encircles
the critical point three times in the counterclockwise direction. The
radius of the circle—shaped diagram is 8. = 0.01286, which is
equal to the reciprocal of the minimum infinity norm of the all-pass
sensitivity S(s).
delicate. Here we consider a stabilization procedure that
ensures an approximately circle-shaped Nvquist loop
around the critical point so that all of the points of L(; w)
are about the same distance 8. from 1+ ;0. Note, how-
ever, that §; may be small. The intent of this procedure is
consistent with the fact that minimizing the maximum of
|5(; @)| leads to an all-pass sensitivity transfer function
S(s) [7], that is, wilh |S(; @)} constant.

Nyquist Diagrams of L(s) and 1 + L(s}

If the Nyquist diagram of L{s) travels along a circle cen-
tered at -1+ ,0, then the Nyquist diagram of
E(sy = 1  Lis), whose poles are the same as those of Lis),
travels along a circle of the same radius centered at the ori-
gin. Therefore, £(s) is an all-pass function, that is, |E(; w}|
is constant, which implies that the zeros of E(s) are the
negatives of its poles.

Note, by the way, that the denominator of E(s) is the
product of the denominators dy(s) and d,,(s) of Gy(s) and
Gpts), respectively, because internal slability does not
permit cancelalions of ORHP poles and zeros [6]. This
fact is used in the subseclion dealing with the controller
synthesis.

Root Locus for Lisy and1 + L(s)

According to the root-locus invariance property, the zeros
of
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Root-locus characlerization of the stabilization technique. The
o suot locus tor the exactly proper loop transfer function L(S) is
synunetric with respect to the imaginary axis because its branches must pass
simultancously through the points, denoted by small diamords, that are
symmetric to the poles of L(S) with respect to the imaginary axis. The figure
shows the complete oot locus constructed from the poles and zeros of the
transfer function Lt8) = Ge(8)Gp(S), where Gp($) and Ge(S) are as in
Figure 7. The positive root locus consists of the segments (1, 1,137486), (2,
293619) and (3, 4. The gain —1.01286 of L(5} is the value taken by the
varying  parameler K in d($)+ Kn(s) = where
dis)=1(s -1.13746)(s - 2)is—4 and n(s)=(s— 295619
(s—1)is = 3), at the unegatives of the poles of L(S), that is,
—1.01286 — —di=2)/n(~2) = —di—4)/n(—-4) = ~d(—1.13746}

d(sy+ Knts)

16
d(s) 1o

E(s)y =1+ Lis) =

which lie on the complete root locus associated with Lis),
can be viewed as a new set of arrival points for the same
locus. To ensure that the zeros of (16} are the negatives of
the roots of d(s), the polynomials dis) + Kuisy and d(—s),
both of degree v, must coincide except for a constant pro-
portionality factor r, that is,
dis) + Kn(s) = rd(—s) (17)
Since the leading coefficients of d{s) + K ri(s) and d(—s) are,
respectively, 1+ K and (11", the proportionality factar r
is cqual to
r=(4+Kc D" (18)
Lquation (17} implies that the poles and zeros of the
desired controller transfer function G.(s) must be chosen
such that the complete root locus passes through the nega-
tives of the poles of L(s) = G.(5)Gp(s). The complete rool
locus for the desired loop transfer function can therefore
be plotted from two sets of departure and arrival poinls
that are symmetric about the imaginary axis and, conse-
quently, the complete root locus itself is symmetric about
this axis.
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Controlfer Synthesis
The polynomial identity (17) can be used Lo find the para-

meters of
. f1:(s)
G(sy =
= e
Ot b, P |
_ Ken b, Ty
1 a8 B ]

Letting vy denote the degree of both the numerator and the
denominator of the exactly proper plant transfer function

Hy(s)
Gpis) = Kp—,
ps) ’ ()

it follows from (17) and (18) that

de(s)dy () F Kpite(s)ny(s)

= (14 K K=" "o =8)dy(—5) (20

N At
v are necessarily

By equating the coefficients of &', /=0
on both sides of (20) (the coefficients of s
equal), we can form a set of ve + vy equations in the 2ve 1
parameters of (19). If we consider K as a fixed parameter,
these equations are linear in Lhe remaining 2v, coefflicients
of (19). For ve = vy — 1, s0 that vy, = ve k|, the idenlity (20)
yields a system of 2u. + 1 equations in lhe 2y, unknown
coefficients of G (s). This system admits a solution only if
K. is such that the determinant & of the
(2ue + 1) % (2u, 4+ 1) system matrix is zero. To determine

L
Vet

K., it is therefore necessary to solve the algebraic equation
A = 0. The remaining controller parameters are then found
by inserting the resulting value of K¢ into a set of 2v- equa-
tions obtained by deleting one equation from the overde-
termined system of 2u. + 1 equations. Further details can
be found in [8).

Exactly Proper Example
Consider the sccond-order plant transfer function

(35— s —3)

[ — 2
(s 24s 4 =

Gplsy =
Applying the above synthesis procedure to (21} with
ve=1p - 1=1,weflind K. = ~1.01286 and

5 —2.95619

Gets) = 101286 T

The circle-shaped Nyquist diagram of L(s) = G (s)Gu(s) is
shown in Figure 7. Ils radius and, therefore, the minimum
distance 4, from —~1 + ; 0 are equal to the absolute value of
rin {18), that is,

S = 17l = |1+ KKyl = 0.01286. 22)
which is equal to the reciprocal of the minimum infinity
norm of the all-pass sensitivity $(s) [6). The complete root




locus for Lis) = G¢(5)Gpts) is shown in Figure 8. This locus
is symmelric with respect to the imaginary axis because it
can be ploited from the zeros and poles of the all-pass
function E(s} = 1+ L(s}. As (17) indicates, the loop gain
K = KcKp is the value of the varying parameter corre-
sponding to the negatives of the poles of L(s) along the
locus constructed from the poles and zeros of Ls), that is,

. di—2) di—4) —d{—1.13746)
~ 101286 = o TR TR Y
K 101285 n—2) n(—4) 1(—1.13746)

Observe that the radius of the circle-shaped Nyquist
plots for both S(s) = 1/E(s) and T(s) = 1 — §(s) is 1/|1 + K.
However, these Nyquist diagrams travel v times in the
clockwise direction around their respective centers at (0, 0}
and (1, 0). This property implies, in particular, that Sts) is a
stable Blaschke product of order v. Obviously, the poles
and zeros of both S¢s) and T{s) can play the rofe of depar-
ture and arrival points for the same complete locus.

Strictly Proper Example
Finally, consider the strictly proper plant transfer function
s 2
Gpls) = .
[ TRy

According to (15), the controller can be designed with ref-
erence lo the ficlitious plant transfer [unction

(s — 2){s - 1000y

G = " s s - 3
leading to
s — 14993
el = 93377 5 0
Gl = 93377 e

The Nyquist diagram for Lis) = Gr(s)ép(s) is exactly circu-
lar, whereas the diagram for L(s) = G.(s1Gp(s), shown in
Figure 9, exhibits an almaost circular shape at the lower fre-
quencies and tends to the origin as @ — co. The minimum
distance of the Nyquist plot of L(s) from —T+ ;0 is
5. = 0.06.

CONCLUSIONS

The same complete root locus is generated by all loop trans-
fer functions whose numerator and denominator are linear
combinations of the polynomials 11(s) and d(s). Therefore, a
complete root locus can be constructed starting from differ-
ent sets of arrival and departure points. This property can
be used to find the asymptotes of the negative locus for an
exactly proper loop transfer function and to determine the
configuralion of the locus branches around the breakaway
points. The root-locus invariance property can also be
exploited to characterize a stabilization procedure leading to
an exactly proper loop transfer function whose Nyquist dia-
gram travels along a circle centered at -1 ;0.
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