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Root-Locuslnva~ance 
EXPLOITING ALTERNATIVE ARRIVAL AND DEPARTURE POINTS 

WIESLAW KRAJEWSKI and UMBERTO VIARO 

ince its introduction by Walter 1-1. Evans in the 
l950s [ I J, the root- locus met hod ha:,; continued Io 
be of interesl to control engi.neers [2J, [3J. lndeed, 
lhis grap hic tao\ is invaluable for developing s­
plane intuition with respect to both analysis and 

syn th esis problcms. Consequently, the root locus stili 
forms an in tegral part of most undergraduate con trol 
courses, with rules fo r its construction given in all intro­
ductory textbooks on feedback sys tem s. Herc we focus 
a ttent ion on an invariance property of root-locus dic1-
grams. Specifically, we show th<1t the same root locus can 
be described by d ifferent equations, and that the rules for 
cons lructing a root locus can be expressed in terms of each 
of these representations. This property is exploited to find 
the locus asymptotes when the usu<1l rule for their deter· 
mination canno t be applied and to show how the locus 
behaves at points whcre two or merc locus branches inter· 
sect. The in va rian ce property is then used to provide 
insight into a s tabili za ti o n procedure leadin g to a 
circle-shaped loop Nyquist diag ra m around the critical 
point - 1 + JO . 
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Let d(sJ and 11(s) be coprime real monie polynom ials 
with /t :: degi11(s)J,:::: 1i := deg [rlts)l, and conside r the 
roots of the equation 

rlts) + K1J(S) = O. (1 ) 

where the real parameter K, ca lled the varyi11::; parm,wtcr, 
varics from - oo to oo. The roots of (1) coincide with the 
poles of the closed•loop transfer functi on 

Tts) = Y(s) = ~_K_,_,(_s_J -
R(s) d(s) + K /J(S) 

o f the unity•feedback sys tem shown in Figure I whose 
loop transfer function is 

n(s) 
L(s)= K-. 

d(sl 
(2) 

lt is customa ry to distinguish between the part of the 
locus corresponding to positive va lues of K, ca lled the posi· 
tivt: root locus, and the part corrcsponding to negative va!• 
ues of K, called the nt:gativc root locus. The union of the two 
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R(s) + n (s) 
L(s)=Kd(s) >---~---

Y (s) 

FIGURĘ 1 Unity-feedback system. The rules for constructing a root 
locus are usually given with reference to !his structure, where K is 
the varying parameter. 

is the complete root locus. The negative roo t locus is consid­
ered less frequent ly because, in most cases, K in (2) must 
be positive to ensure stab ility of the closed-loop system. 
Sometimes, however, stability is possible only w ith nega­
tive values of K. For example, this is the case for the unsta­
ble, nonminimum-phase loop transfer function 
L(s) = K (s - 1)/ (s - 2) . 

From (1), it fellows that aU points sof the positive locus 
sa tisfy the odd phase condition 

arg [d(s)] - arg [11(s)] = (2k + l)rr. (3) 

while all points sof the negative locus sa tisfy the even 
phase condition 

arg [d(s)j - arg [n(s)j = 2krr, (4) 

where k is an integer. Re la tionships (3) and (4) are critical 
for the development that follows . 
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The root locus (1) is usually const ructed starting from 
the roots of d(s) and n(s) . The roots of d(s) are called the 
departure points because they coincide with the roots of (1) 
for K = O. For K i- O, the roots of (1) coincide with those of 

d(s) K +n(s) =0. (5) 

As K ~ ± oo, µ roo ts of (5) tend to the µ roots of 11(s), 
which are called the arrival points, while the remaining 
v - ~t roo ts, if any, tend asymptotically to infinity. As 
shown in the section "Asymptotes of the Complete Root 
Locus," the v - µ asymplotes approached by the roots of 
(5) as K ~ +oo differ from the v - µ asymptotes 
approached as K - - oo. 

Most of the rules for plotting a root locus concern the 
sets of departure and arrival points. Evans [1] showed that 
(1) can be solved by plotting the locus of points s that have 
a s im ple relationship w ith the departure and arrival 
points. The dependence of the locus plot on the arrival 
and departure points might suggest that changing these 
points necessarily changes the locus shape. For example, 
consider O =d(s) + Kn(s) =d( s) + Kpn(s) + (K - Kp)ll(S) = 
d '(s) + K' n(s), where d'(s) := d(s) + Kpn(s) and 
K' := K - Kp. [n this case, the complete root locus remains 
unchanged if the original departu re points are replaced by 
the roots of d'(s). This simple property is ill ustrated in 
Figure 2. The next sect ion investigates mare generał sets 
of departure and arrival points that lead to the same com­
plete root locus. 

Real Axis 

(b) 

FIGURE 2 Moving the departure points along the root locus. When the departure points are moved tram their orig!nal positions denoted by 
small crosses in a) to the positions denoted by small squares in a) corresponding to an arbitrary nonzero value of the varying parameter K, 
the complete root locus remains unchanged. Plot a) shows the root locus for (S + 1)(s + 4) + K(s + 5) = O, whose departure points are -1 
and -4. The positive locus is represented by a solid line, and the negative locus by a dashed line. The rools corresponding to K = 5 are 
P1.2 = -5 ± 1 2. Plot b) shows the locus for (s - P1)(s - P2 ) + K '(s + 5), whose departure points are P,. 2 instead of -1 and - 4. 
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FIGURE 3 lnvariance of the complete root locus. Each loop transfer lunclion whose numerator and denominator are linear combinations of 
the polynomials d{sJ and n{SJ gives rise to the same complete root locus. a) The complete root locus constructed lrom the poles of the all­
pole function L(sJ = KnlsJ/d(s), where n(s) = 1 and d(s) = s3 + 0.2s2 + s = s(s + 0.1 + J 0.995)(s + 0.1 - J 0.995). b) The same com­
plete root locus constructed from the poi es and ze ros of L'(sJ = K'pn(SJ/Pd(5), where Pn(S) = d(s) - n(s) = 
(S - 0.6464 )(S + 0.4232 + J 1.1696) (s+ 0.4232- 11,1696), Pd (S) = d(S) + 4n (s) = (S + 1.4383 )(5 - 0.6192 + J 1.5485 J(s-
0.6192 - 1 1.5485), and K' - (4- K/1 + KJ. 
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FIGURE 4 Angles formed by the asymptotes. The compłete root 
locus is shown for the strictly proper loop transfer function 
L(S) = Kn(SJ/d(S), where n(S) = 1 and d(SJ = (s2 - 1J(s2 + 1.44). 
Each of the four negative-locus asymptotes, which overlap the four 
coordinate semi-axes and are denoted by dashed lines, bisects the 
angle of 1t /2 rad formed by two adjacent asymplotes, denoted by 
dotted lines, of the positive root locus. 

ROOT-LOCUS INVARIANCE 
Consider a real variable K' =I -1 and the linear fractional 
transformation 

K =f(K') = a +{JK' 
1 + K' ' 
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(6) 

where a, fJ are distinct real numbers. Substituting (6) for K 
in (1) and rearranging, we obtain 

[d(s) + a 11(s)] + K' [d(s) + fJ 11(sJ] = O. (7) 

Since (6) defines a one-to-one mapping from the extended 
rea l axis JR:= [- 00,00] anto itself [4, p. 26] the locus 
described by the roots of (1) as K varies over iR is exactly 
the same as the locus described by the roots of (7) as K1 

varies over iR. Ln particular, if µ < v and a - fi> O, the 
asymptotes approached by the rools of CI) as K ---+ +oo and 
K ---+ -oo coincide with the asyrnplotes approached by the 
roots of (7) as K'---+ -1 from the right and left, respective ly. 
The left and right limits as K'---+ -1 are reversed if 
a -{J < O. 

Equation (7) can be regarded as the eq uation of the 
locus describing the poles of the unity-feedback system 
whose loop transfer function is 

where 

L'(s) = K'pu(S), 
PJ(S) 

(8) 

Prl(s) := d(s) + a 11(s), p,,(s) := d(s) + fJ n(s). (9) 

The comp lete root locus for (2) is therefore equal to the 
complete root locus for (8), whose branches d epart for 
K' = O from the roots of p,1 (s), w here K = a, and arrive for 
K' • -t-oo at the roots of p,,(s), where K = {J. Depending 
on the values of a and /J, the zeros and poles of (8) can 
belong to either the positive or negative locus for (2). 
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FIGURE 5 Determining the asymptotes of the complete root locus. The positive root locus lor an exactly proper loop transfer function 
L(SJ = Kn(s)/d(s) has no asymptotes, whereas at least one branch of negative locus for l(sJ goes to infinity. According to the invariance 
property, to find the asymptotes of the complele root locus when µ = v it suffices to consider a striclly proper loop transfer function l ' (sJ thai 
gives rise to the same compłete root locus as the exact ly proper L(sJ. The simplest trans fer tunction of this kind is 
L'( SJ = K' [d(SJ - n(sJ]/d(S). a) The complete roo t locus for l(s) = Kn(sJ/d(sJ, where n (s > = s3 + s2 + 3s + 2 = (s + 0.7152) 
(s+ 0.1424 + J 1.6661 )(s+0. 1424- 11.6661) and d(sJ = s3 + s2 +ss+ 4 = (s+0.8239J(s+ 0.0880 +, 2.2016J (s+0.0880 -
12.2016). b) The same complete root locus is generated by the strictly proper loop transfer function 
L'( sJ = K ' [d(sJ - n(s)]/d(S) = K'(2s + 2) / (s3 + s2 + 5s + 4) with the same po!es as L(sJ and one zero at -1. 

Figure 3 shows that the complete root locus fo r the loop 
transfer function L(s) = Kn(s)/d(s), where 11(s) = l and 
d(s) = s3 + 0.2s2 + s, is equal to the complete root locus for 
the loop transfer function L'(s) = K 1p11 (s)/p,1(s), where Pu(s) 

and p,1(s) are given by (9) with" = 4 and fJ = - 1. 

ASYMPTOTES OF THE COMPLETE ROOT LOCUS 
If (2) is s tri ctly proper with pole-zero excess 
A := v - µ > O, the number of asymp totes of the complete 
root locus (1) is 2A, where A asymptotes perta in to the posi­
tive root locus and A to the negative root locus. [f A 2: 2, 

then all of the 2A asympto tes intersect a t a s ingle reaJ poin t, 
ca ll ed the center oj tlte nsy111ptotes and loca ted at 

r = [L; p; - Li z;I/A, where p; a nd Zi a re the poles and 
zeros of L(s), respectively [S]. Each asymptote of the nega­
tive locus bisects the angle formed by two adjacent asymp­
to tes of the positive locus, as shown in Figure 4. 

If L(s) is exac tly proper, that is,µ= v, then no brancl1 of 
the positive locus approaches infinity. However, the entire 
real axis necessarily belongs to the complete roo t locus 
because to every real po in t s, there corresponds a real 
value of K sat isfying (1), that is, K = -d(s)/11(s) [SJ. There­
fore, the complete root locus has at least two asympto tes. 
To find the asymptotes of the com p lete root locus when 
µ = v, according to the invariance property, it su ffices to 
consider a strictly proper loop transfer function L'(s) tha t 
g ives rise to the same complete root locus as the exactly 
proper L(s). The simplest L'(s) of th is kind is 

L'(s) = K' p,,(s) = K' d(s) - 11(s). (10) 
p,1(s) d(s) 

where p11 (s) and p,1(s) are given by (9) with a= O and 
fJ = - 1. The pole-zero excess of (10) is 
i.'= deg[p,,(s)] - deg[d(s)] > O and, conseq uently, the 
complete roo t locus for both L'(s) and L(s) has 2A1 asymp­
totes. For ins tance, if 11(s)=s3+s2 +3s+2 and 
d(s) = ś3 + s2 + 5s + 4, then p,,(s) = d(s) - 11(s) = 2s + 2 
and the pole-zero excess A' of L'(s) is two. lt fellows thal 
two branches of the complete roo t locus for both L'(s) and 
L(s) go lo infinity and return from there, as shown in 
Figure 5. To find the center r of the 2A' asymp totes of the 
complete root locus for L'(s) and thus for the exactly prop­
er L(s), we deno te the numerator and denominator polyno­
m ials 11(s) and d(s) of the exactly proper L(s) by 

II(S) = s1' + hv - 1s 1'- 1 +···+bo, 

d(s) = sv + flv-lSv - l + · ·+no. 

ln addi tion, !et A' ::: 2 a nd assume 

bv-i = flv-i• i= 1. 2, ... , A1 - 1 

and 

Since the sum of the poles of (10) is equal to -av -1 and the 
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FIGURE 6 Configuration of the root locus near the breakaway points. At a breakaway point of multiplicity a, the tangents to the branches of 
the root locus entering and leaving the breakaway point form 2a angles of equal measure. This configuration can be explained by vrewing 
the breakaway point as a mullrple point of arrival for a complete root locus of the same shape. Plot a) shows the compłete root locus for 
L(SJ = Kn(s)/d(s), where n(SJ = 1 and d(SJ = s(s2 + 3s + 3J = s(s + 1.5 - J 0.866)(5 + 1.5 - J 0.866). Ptot b) shows !he complete root 
locus for L' (SJ = K'(s + 1 J3/d(SJ wilh a zero at the triple point - 1 of the locus for l(sJ. 

sum of its zeros is equal lo 

-(au- A'-1 - bu- l.' - d/(au->: - bl'-l.' ), th e center of the 
asymptotes is 

_ l [""-A'-1 - b,-,·-1 ] 
r - "i:i llu - A' - bi, - >.: - llu - l · 

In the example of Figure 5, the center is r = O. 

LOCUS CONFIGURATION AT THE 
BREAKAWAY POINTS 
The invariance property can be exploited to show how the 
locus behaves at a breakaway poi11t, that is, a point where 
two or more locus b ranches intersect. The approach 
involves making the breakaway point a multiple departure 
or arrival point for a complete root locus of identical 
shape. 

Let us assume that a breakaway poi nt B of multiplicity 
a corresponds to the value Ks -::/:- O of the varying parame­
ter Kin (1) so that 

trarily close to Bon the positive roo t locus for (12), we 
ob tain 

arg [d(B)J - arg[pB(B) J = arg [d(B)J - at/,a - arg [pB(B) ] 

= (2k + l )rr. (13) 

where <Pa is the angle of the tangent to a locus branch 
approaching B along the positive locus. From (13), it fel­
lows that 

where 

'PB= _ (2k+ l)rr + 08 , 
a 

08 __ arg[d(B)]-arg[pn(B)] 

(14) 

As is known [5], (14) provides a different angles (one for 
each entering branch) obtainable by sett ing 
k=O . ... ,a - l. 

Similarly, evaluat ing the even phase condition (4) at a 
PB(s) := d(s) + KB 11(s) = (s - B)" PB(s). (11) point arbitrari ly close to B on the negative root locus for 

(12), the angles t/;a formed by the tangents to the a locus 

where Pa(s) is a polynomia l of d egree v - a. The locus con­
figuration in the neighborhood of B can be analyzed by 
considering the loop transfer function 

L' (S) = K' pa(s) 
8 d(s) 

(12) 

whose zeros are the roots of (11). Therefore, the point B is 
an arrival point of multiplicity a on the locus for (12). 

Evaluating the odd phase condition (3) at a point arbi-
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branches approaching Ba long the nega ti ve locus are given 
by 

2krr 
t/;•=--+e •. 

a 

Therefore, as shown in Fig ure 6, each of the a branch­
es arriving at B bisects, at least locally, the ang le of 
2n /a rad fo rm ed by two adjacent branches depart ing 
from B. 



ROOT -LOCUS CHARACTERIZATION OF THE 
ALL-PASS STABILIZATION PROCEDURE 
l_n this section, we use the root-locus invariance properly 

to characterize a stabil ization procedure leading to a circle­
shaped Nyguis t p lot around the critical point - 1 + ;O. 
After motivating the stabiliza tion procedure, we note that, 
if the Nyquist diagram of the loop transfer function 
L(s) := Gc(s)Gp(S), where Gc(S) and Gp(S) a re the controller 
and plant transfer functions, travels a long a circle centered 
at the critical point, then E(s) := 1 + L(s) is all-pass. Next, 
we point ou t tha t the complete root locus constructed from 
the poles and zeros of L(s) is the same as the complete root 
locus constructed frorn the poles and zeros of E(s). Finally, 
an algorithm for synthesizing the stabilizing con troller 
Gc(s) is provided and then Ulustrated w ith the aid of two 
examples. 

Since open-left-half-plane (OLHP) zeros and poles can 
safely be canceled, we assume that all of the zeros and 
poles of G,,(s) are in the open righ t half-p iane (OR HP). We 
also assume, for convenience, that Gµ(S) is exactly proper. 
When the pole-zero excess A of Gp(s) is greate r than zero, 
the stabilization procedure can be app lied to the fictitious 

exactly proper plant transfer function 

G,,(s) := (-z) _, (s - z)' c,,(s). (15) 

where z is chosen to be posihve and sufficiently large so that 
the zero at infinity of multiplici ty A of Gp(s) is converted into 
a large but finite ORHP zero of the same multiplicity. For 
instance, if G1,(s) = (s - 2)/ [(s - l )(s - 3)], the procedtlfe can 
be applied to 

Gp(S) = 
(S - 2)(5 - 1000) 

IO00(s - l)(s - 3). 

as shown at the end of this section. 

Motivation 
Gain and phase margins have traditionally been importan t 
measures of stabili ty robustness s ince if either is small, the 

system is close to instability. However, the gain and phase 
margi ns can be la rge and yet the Nyquis t diagram of the 
loop transfer function can pass close to the critical point 

- 1 -1- JO. A better measure of stabiHty robustness is pro­
vided by the distance óc from the critical point to the near­
est point on the Nyquist plot of the loop transfer funct ion 
L(s). This distance is given by [6] 

I 
li,= supw IS(} w)I' 

that is, the reciproca\ of the infinity norm of the sensitivity 
function S(s) = 1/ [l + L(s)j. 

When the p lant Gp(s) is unstable and nonminimum 
phase, the maximum attainable stability ma rgi ns can be 
ti..ny (upper bounds on their va lues are given, for instance, 

in [6]) and the robust stabilization problem is more 

0.01 

0.005 
~ 

~ 
i o 
·gi 
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-1.015 - 1.01 -1.005 -1 -0.995 -0.99 -0.985 
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FIGURE 7 Circ1e-shaped loop Nyquist diagram produced by the all­
pass stabilization procedure. When the plant transfer lunction 
Gp(S) is nonminimum phase, the maximum attainable stability mar­
gins can be very small. The stabilization procedure ensures that alt of 
the points on the loop Nyquist diagram are at a uniform distance lrom 
the critical point - 1 + 1 O. This figure shows the Nyquist diagram of 
L(s) = Gc(s)Gp(SJ, where Gp(S) = [(s - 1)(s - 3)]/[(s - 2)(s- 4J] 
is the exac tly proper plan t transfer function and 
Gc(s) = -1.01286 (s- 2.95619)/(s - 1.13746) is the controller 
transfer function leading to the desired cirde-shaped Nyquist dia­
gram. As required by the Nyquist criterion, this diagram encirc!es 
the cri ticał point three times in lhe counterclockwise direction. The 
radius of the circłe-shaped diagram is 8c = 0.01286, which is 
equa! to the reciprocal of the minimum inflnity norm of the all-pass 
sensitivity S (SJ. 

delicate. Here we consider a stabilization procedure that 
ensures an approximately c ircle-shaped Nyquist loop 
around the critical point so thai all of the points of L(J w) 

are abou t the same dis tance 8c from - 1 +JO. Note, how­
ever, that Oe may be small. The intent of this procedure is 
consistent with the fact that mi.nim izing the maximum of 

15(1 w)I leads to an all-pass sensitivity transfer function 
S(s) [7], that is, with IS(J w)I constant. 

Nyquist Diagrams of L(s) and 1 + L(s) 
ff the Nyquist diagram of L(s) travels along a circle cen­

tered at -1 +JO, then the Nyquist diagram of 
E(s) = 1 + L(s), whose poles are the same as those of L(s), 
travels a long a circle of the same radi us centered at the ori­

gin. Therefore, E(s) is an all-pass function, that is, IE(J w)J 
is constant, wh ich implies that the zeros of E(s) are the 
negatives of its poles. 

Note, by the way, that the denominator of E(s) is the 

product of the denominators rlc(s) and rlp(s) of Gc(s) and 
Gµ(s), respectively, beca use interna\ stability does not 
permit cancelations of ORHP poles and zeros [6J. This 
fact is used in the subsection dealing with the con lroller 

synthesis. 

Root Locus for L( s) and 1 + L( s) 
According to the root-locus i.nvariance property, the zeros 
of 
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FIGURE 8 Root-locus charncterization of the stabilization technique. The 
complete root locus for the exactly proper loop tr<1nsfer funclion L(S) is 
symmetric wilh respect to the imaginary ,1xis because its branches must p11ss 
simultaneously through the points, denoted by small diamonds, thal are 
symmetric to the poles of l( S) with respect to the imaginary axis. The fig u re 
shows the complete root locus constructed from the poles and zeros of the 
trnnsfer function l(SJ = Gc(s)Gp(S), where Gp(S) and Gc(5) are as in 
Figure 7. The positive root locus consists of the segments { 1, 1.1 3746), (2, 
2.95619) and (3, 4). The gain -1.01286 of L(5) is the v<1lue tnken by the 
varying parameter K in d(5) + Kn(5) = O, where 
d(5) = {5 - 1.13746)(5 - 2)(5 - 4) and n(5 J = (5 - 2.95619) 
(5- 1)(5 - 3), al the negatives of the poles of L(5), that is, 
-1.01286 = -d(-2)/nl-2> = - di-4)/nl-4) = -di-1.13746) 

E(s) = l + L(s) = d(s) + K ll(S). (16) 
d(s) 

which lie on the complete root locus associated with L(s), 
can be viewed as a new set of arrival points for the same 
locus. To ensure that the zeros of (16) are the negatives of 
the roots of d(s), the polynom ials d(s) + K 11(s) and d( -s), 

both of degree v, must coincide except for a constan t pro­
portionality factor r, that is, 

Control/er Synthesis 
The polynomial identi ty (17) can be used to find the para­
meters of 

1/c(s) 
G,(s) = d,(s) 

Kcsv, + b,.\ - 1s1'<·-1 + bl,, - 2sv,-l +···+bo. (lg) 

= s1'• + nv,-1s 1'•· - 1 + a,,,.-2sl',-2 + · · +no 

Letting v11 denote the degree of both the numerator and the 
denominator of the exactly proper plant transfer fu nction 

llp(S) 
Gp(S) = Kp dp(S). 

it fo llows from (17) and (18) that 

dc(s)dp(S) + Kptic(S)llp(S) 

= (l + K,Kµ)(- 1)",+",,d,-(-s)dp(-s). (20) 

By equating the coefficients of s'. i= O. 1, .... uc + Vp - l. 
on both sides of (20) (the coefficients of s1',-+v,, are necessarily 
equal), we can form a set of vc + v11 equations in the 2vc + 1 
parameters of (19). l f we consider Kc as a fixed pa rame ler, 
these equations are linear in th e remaining 2vc coefficien ts 
of (19). For v, = vp - l, so thai vp = v, + l , lhe identity (20) 
y ields a system of 2vr + 1 equations in the 2vc unknown 
coeffic ients of Gc(s). This system admits a solution only if 

Kc is such that the determinant ó. of the 
(2uc + 1) x (2uc + 1) system matrix is zero. To de termine 
Kc, it is therefore necessary to salve the algebraic equation 
b. = O. The remaining controller parameters are then found 
by insertjng the resulting value of Kc into a set of 2vc equa­
tions obtained by deleting one equa tion from the overde­
termined system of 2vc + 1 equa tions. Further details can 
be fo und in [8). 

d(s) + K ll(S) = rd(-s). n 7) Exactly Proper Example 

Since the leading coefficien ts of d(s) + K H(s) and d(-s) are, 
respectively, 1 +Kand (-lf', the proportionality facto r r 

is equal to 

Consider the second-order plant transfer function 

G 5 _ (s - l)(s - 3) 
,,( ) - (S - 2)(s - 4). (21) 

r=(l+K)( - 1)' 
Applyi ng the above synthesis procedure to (21) wi th 

(18) v, = Vp - 1 = 1, we find K, = - 1.01286 and 

Equation (17) implies that the poles and zeros of the 
desired controller transfer function Gc(S) must be chosen 
such that the complete roo t locus passes th rough the nega­
tives of the poles of L(s) = G,(s)Gp(s). The complete rool 
locus for the desired loop transfer function can therefore 
be plotted from two sets of departure and arriva l poinls 
that are symmetric about the imaginary ax is and, conse­
quently, the complete root locus itself is symmetric about 
this axis. 
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s - 2.95619 
G,(s) = -1.01286 5 _ 1.13746 . 

The ciccle-shaped Nyquist d iagram of L(s) = G, (s)Gµ (s) is 
shown in Figure 7. lts rndi us and, therefore, the minjmum 
dis tance Óc from - 1 +JO are equal to the absolu te va lue of 
r in (18), lha t is, 

8, = lrl = 11 + K, KµI = 0.01286. (22) 

which is equal to the reciprocal of the minimum infinity 
norm of the all-pass sensitiv ity S(s) [6J. The complete roo t 



locus for L(s) = Gc(s)G11 (s) is shown in Figure 8. This locus 
is symmetric with respect to the imaginary axis because it 
can be plotted from the zeros and poles of the all-pass 
function E(s) =I+ L(s). As (17) indicates, the loop ga in 
K = KcKp is the value of the varying parameter corre­
sponding to the negatives of the poles of L(s) along the 
locus constructed from the poles and zeros of L(s), that is, 

d(-2) di-4) -di- l.l3746) 
K= -1.01286 = - -- = - -- = ----. 

11(-2) 11(-4) 11(-1.13746) 

Observe that the radius of the circle-shaped Nyqu is l 
plots for both S(s) = 1/ E(s) and T(s) = 1 - S(s) is 1/11 + KI­
However, these Nyquist diagrams travel v times in the 
dockwise direction around their respective centers at (O, O) 
and (1, O). This property implies, in particular, that S(s) is a 
stable Blaschke product of order v. Obviously, the poles 
and zeros of both S(s) and T(s) can play the role of depar­
ture and arrival points for the same complete locus. 

Strictly Proper Example 
Finally, consider the stric tly proper plant transfer function 

s - 2 
c,,(s) = (s - l)(s - 3) · 

According to (15), the controller can be designed wi th ref­
erence to the ficlitious p lan t transfer function 

- (s - 2)(s - 1000) 
Gpis) = - l000(s - l )(s - 3). 

leading to 

s -1.4993 
G,(s) = 933·77 s - 874.8336 . 

The Nyquist diagram for L(s) := Gc(s)Ć11 (s) is exactly circu­
lar, whereas the diagram for L(s) = Gc(s)Gp(s), shown in 
Figure 9, exh ibits an almost circular shape at the !ower fre­
quencies and tends to the origin as w-+ oo. The minimum 
d islance of the Nyquist p lot of L(s) from - 1 +JO is 
., = 0.06. 

CONCLUSIONS 
The same complete root locus is generated by all loop trans­
fer functions whose numerator and denominator are Hnear 
combinations of the polynomials 11(s) and d(s) . Therefore, a 
complete root locus can be constructed star ting from differ­
ent se ts of arrival and departure points. This property can 
be used to find the asymptotes of the negative locus for an 
exactly proper loop transfer function and to determine the 
configuration of the locus branches around the breakaway 
points. The root-loc us invariance property can also be 
exploited to characterize a s tabiliza tion procedure leading to 
an exactly proper loop transfer function whose Nyquis t d ia­
gram travels along a cirde centered at - 1 +JO. 
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Callouts 

Since its introduction by Walter H. Evans 

in the 1950s, the root-locus method has 

continued to be of interest to control 

engineers. 

Most of the rules for plotting a root locus 

concern the sets of departure and arrival 

points. 

A measure of stability robustness is 

provided by the distance from -1 + 1 o 
to the nearest point on the Nyquist plot of 

the loop transfer function. 
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