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Abstract. We give a proximal bundle method for minimizing a convex function J over a convex 
set C. It requires evaluating f and its subgradients with a fixed but possibly unknown accuracy E > O. 
Each iteration involves solving an unconstrained proximal subproblem and projecting a certain point 
onto C. The rnethod asymptotically finds points that are E-optimal. In Lagrangian relaxation or 
convex programs, it allows for e-accurate solutions of Lagrangian subproblems and finds e-optimal 
primal solutions. For semidefinite programming problems, it extends the highly successful spectral 
bundle method to the case of inexact eigenvalue computations. 
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1. Introduction. We consider the convex constrained minimization problem 

{1.1) f. := inf{f(u): u EC}, 

where Cis a nonempty closed convex set in the Euclidean space IRn with inner product 
(·, ·) and norm I· I, and f: JR"--; JR is a convex function. We assume that for a fixed 
accumcy tolemnce , I 2: O, for each u E C we can find an approximate value fu and 
an approa,imate subgmdient gu off that produce the approximate linearization off: 

(12) fu(·):= fu+ (gu,· - u) '.5 f(·) with fu(u) = fu 2: f(u) - 'J· 

Thus fu E [/(u) - ,,,t(u)) estimates f(u), while gu E 8,,f(u); i.e., gu is a member 
of the •rsubdifferential 8,,f(u) := {g: f(-) 2: f(u) - , 1 + (g, · - u)} off at u. 

Our assumption is realistic in many applications. For instance, if f is a max-type 
function of the form 

{1.3) f(u) := sup { F,(u): z EZ}, 

where each F, : IR" -+ IR is convex and Z is an infinite set, then it may be impossible to 
compute f(u). However, if for same fixed (and possibly unknown) tolerance ,, we can 
find an •rmaximizer of (1.3), i.e., an element zu EZ satisfying F,.(u) 2: f(u) - , 1 , 
then we may set fu := F,,. (u) and take gu asany subgradient of F,. at u to satisfy 
(1.2). An important special case arises in Lagrangian relaxation [HUL93, Chap. XII), 
[Lem0l) , where problem {1.1) with C := IR+ is the Lagrangian dual of the prima! 
problem 

(1.4) sup ,Po(z) s.t. ,f.,,(z) 2: O, i= 1: n, z EZ, 
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2 KRZYSZTOF C. KJWIEL 

with F,(u) := ,f,0 (z) + (u, ,t,(z)) for ,t, := (,J,1, ... , 'Pn)- Then, for each multiplier 
u ~ O, we need only find Zu E Z such that fu := F,. (y) ~ f(u) - ff in (1.3) to 
use 9u := ,f,(zu)- For instance, if (1.4) is a semidefinite program (SDP) with each ,/,; 
affi.ne and Z the set of symmetric positive semidefinite matrices of order m with a 
bounded trace, then f(u) is the maximum eigenvalue of a symmetric matrix M(u) 
depending affi.nely on u [Tod0l, sect. 6.3), and Zu can be found by computing an 
approximate eigenvector corresponding to the maximum eigenvalue of M(u) via the 
Lanczos method [HeK02, HeR00, Nay05]. 

The recent paper [Kiw06b] extended the proximal bundle methods of [Kiw90j and 
[HUL93, sect. XV.3J to the inexact setting of (1.2) (see [Hin0l, Kiw85, Kiw95, Mil0l, 
Sol03] for earlier related developments, and [Kiw05J for numerical tests). Such meth
ods at each iteration find a trial point that minimizes over C a polyhedral model of 
f built from accumulated linearizations, stabilized by a quadratic prox term centered 
at a point which is usually the best iterate found so far. Solving this subproblem 
can require much work for large n even when the set C is polyhedral, including the 
simplest case of C = lR'j. used in Lagrangian relaxation. 

This paper extends the projection-proximal method of [Kiw99J to the case of 
inexact linearizations. For this method, we may regard (1.1) as an unconstrained 
problem f. = inf fe with the essential objective 

(1.5) fe:= f +ie, 

where ie is the indicator function of C (ie(u) = O if u E C, oo otherwise). In its 
simplest form, the method generates the trial point in two steps. The first proximal 
step minimizes a polyhedral model J off, augmented with a quadratic proximal term 
and a linearization of ie obtained at the previous iteration, to produce a linearization 
of J. The second projection step minimizes over C this linearization augmented with 
the proximal term; this amounts to projecting a certain point onto C to produce the 
trial point and the next linearization of ie. Thus the standard bundle subproblem 
is replaced by two subproblems, where the first "unconstrained" subproblem is much 
easier to solve, and the projection is straightforward if the set C is "simple." Our 
development is related to the alternating linearization approach of [KRR99), in which 
the prox subproblem for the sum of two functions, such as (1.5), is approximated by 
two subproblems in which the functions are alternately represented by linear models. 

Our extension of [Kiw99J is natura! and simple: the original method is run as 
if the objective linearizations were exact until a test on predicted descent discovers 
their inaccuracy; then the proximity weight is decreased to produce descent or confirm 
that the current prox center is f roptimal. We show that our method asymptotically 
estimates the optima! value f. of (1.1) with accuracy f/ and finds E1-optimal points. 
In Lagrangian relaxation, under standard convexity and compactness assumptions on 
problem (1.4) (see section 5), it finds E1-optimal prima! solutions by combining partia! 
Lagrangian solutions, even when Lagrange multipliers don't exist. These features 
are essentially "inherited" from the inexact framework of [Kiw06bj ( although some 
technical developments are nontrivial). On the other hand, this paper reorganizes and 
simplifies the convergence framework of [Kiw06b] and sheds light on severa! important 
issues not discussed in there (such as the "true" impact of inexact evaluations, the 
possible use of "more inexact" null steps, prima! recovery for Lagrangian relaxation 
with subgradient aggregation, and Lagrangian relaxation of equality constraints). 

For the important special case where the functions ,t,, of the prima! problem (1.4) 
are affi.ne, we show how to employ nonpolyhedral models off. Each model has the 
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form f(·) := sup,Eż F,(·) stemming from (1.3), where Ź is a closed convex subset 
of Z. Then the proximal step can be implemented by solving a dual subproblem of 
minimizing a convex quadratic function over Ź (e.g., via interior-point methods when 
Ź is simple enough), and the projection on C := IR';_ is trivia!. Further, the dual 
subproblem solutions estimate f1-optimal prima! solutions asymptotically as above. 
In particular, aur framework extends the highly successful methods of [FGRS06, sect. 
3.2) and [ReS06, sect. 3] (see Remark 5.6). 

Finally, for SDP (see below (1.4)) aur generał framework yields extensions of sev
era! variants of the spectra! bundle method [Hel03, Hel04, HeK02, HeR00, Nay99). 
This method employs the nonpolyhedral models discussed above, with Ź constructed 
from accumulated eigenvectors of the dual objective matrix M(u). The original ver
sion of [HeR00) could handle only equality-constrained SD Ps. Its extension [HeK02) to 
inequality-constrained SD Ps can be seen as a specialization of the method of [Kiw99]; 
this helps in distinguishing its "driving force" from "implementation details" ( al
though the latter are, of course, crucial for its performance in practice). Hence the 
prima! recovery result of [Hel04, Thm. 3.6) also follows from aur mare generał re
sults (see Theorems 3. 7 and 5.2); in fact, we don't need the assumption of [Hel04, 
Thm. 3.6) that the dual problem has a solution (see Remark 5.7(i)). Our exten
sion to the case of approximate eigenvectors (see below (1.4)) is relevant for both 
theory and practice. Namely, while the existing version [HeK02] already employs ap
proximate eigenvectors at so-called null steps ( and this saves much work in practice 
[Hel03, HeK02, Nay99, Nay05]), it requires exact eigenvalues at the remaining descent 
steps. Our theoretical results show what to expect if approximate eigenvectors are 
used at descent steps as well, thus opening room for mare efficient implementations. 

The paper is organized as follows. In section 2 we present aur method for generał 
objective models. Its convergence is analyzed in section 3. Various modifications 
and model choices are given in section 4. Applications to Lagrangian relaxation are 
studied in section 5. 

Our notation is fairly standard. Pe(u) := argmine I· -ul is the projector anto 
C. 

2. The proximal-projection bundle method. Our method generates a se
quence of trial points { uk}~1 C C for evaluating the approximate values J!; := fu•, 
subgradients gk := gu,, and linearizations fk := fu• such that 

as stipulated in (1.2). At iteration k, the current prox (or stability) center uk .
uk(l) E C for same k(l) S k has the value fi := t!(l) (usually fi = minJ-1 ID; note 
that, by (2.1), 

(2.2) ti E [f(uk) - ff, f(uk)). 

For a model Jk S f, the next point uk+ 1 approximately solves the prox subproblem 

(2.3) min A(·)+ ie(·)+ 2~k I· -ukl2, 

where tk > O is a stepsize that controls the size of Juk+! - u.kJ. To this end, two 
partia! linearizations of (2.3) are employed. First, replacing ie by its past linearization 
~-l S ie in (2.3), we find its solution ,;k+J and a linearization fk S A such that 
,:;k+l solves (2.3) with Jk, ie replaced by Jk, ~-1. Next, replacing A by fk in (2.3), 
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~e find its solution ':k+l and a linearization ,~ :a:; ie such that uk+' solves (2.3) with 
!k, ie replaced by fk, •~- Due to evaluation errors, we may have fi < fk(uk), in 
which case the predicted descent Vk := fi -A(uk+l) may be nonpositive; then tk is 
increased and uk+ 1 is recomputed to decrease fk(uk+l) until Vk > O. A descent step 
to uk+ 1 := uk+l is taken if Jt+l :a:; fi - 1wk for a fixed i< E (O, 1). Otherwise, a null 
step uk+l := uk occurs; then A and the new linearization fk+l are used to produce 
a better model A+1 2'. max{A , A+d (e.g., A+1 = max{A,A+dl-

Specific mies of aur method will be discussed after its forma[ statement below. 
ALGORITHM 2.1. 

Step O (initialization). Select u 1 E C, a descent parameter i< E (O, 1), a stepsize 
bound tmin > O, and a stepsize t, 2'. tmin· Set fo := fi (cf. (2.1)), ~ := (p~, · - u 1) 

with p~ := o, u1 := u 1, JJ := f~ :=ful, g 1 := 9ul (cf. (2.1)), i/ := o, k := k(O) := 1, 
ł := O (k(l) - 1 will denote the iteration of the łth descent step). 

Step 1 (model selection). Choose A : !Rn -t IR closed convex and such that 

(2.4) max{A-1,fd :a:; A :a:; fe. 

Step 2 (proximal point finding). Set 

(2.5) 

(2.6) 

Step 3 (projection). Set 

(2.7) uk+l := arg min {cf,~(-):= fk(·) +ie(·)+ 2-1. -ukl2 } = Pe(uk - tkp}), 
2tk 

(2.8) 

(2.9) 

Step 4 (stopping criterion). If max{jpkj, <k} = O, stop (fi :a:; J.). 
Step 5 (stepsize correction). If vk < -<k, set tk := lOtk, i~ := k, and go back to 

Step 2. 
Step 6 (descent test). Evaluate Jt+ 1 and gk+ 1 (cf. (2.1)) . If the descent test 

holds, 

(2.10) 

set uk+l := uk+1, Ji+ 1 := J:+l, i~+l := O, k(l + 1) := k + 1, and increase l by 1 

(descent step); otherwise, set ;,k+i := u", J1+1 := Jj, and i~+l := i~ (null step) . 
Step 7 (stepsize updating). If k(l) = k + 1 (i.e., after a descent step), select 

tk+l 2'. tk; otherwise, either set tk+l := tk or choose tk+l E [tmin, tk) if i~+! = O. 
Step 8 (loop). Increase k by 1 and go to Step 1. 
Severa! comments on the method are in order. Step 1 may choose the simplest 

model A = max{fk-i,fd; mare efficient choices are given in section 4.4. For a 
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polyhedral model A, subproblem (2.5) can be handled via simple QP solvers [Kiw86]; 
in contrast, the more difficult subproblem (2.3) employed in [Kiw06b) requires more 
sophisticated solvers even for a polyhedral set C [Kiw94). The projection of (2.7) is 
easily found if the set Cis "simple" (e.g., the Cartesian product of boxes, simplices, 
and ellipsoids). 

We now use the relations of Steps 2 and 3 to derive an optimality estimate, which 
involves the aggregate linearization f~ := fk + •~ and the optimality measure 

(2.11) 

LEMMA 2.2. (i) The vectors pJ and p~ defined in (2.6) and (2.8) are in /act 
subgmdients, 

(2.12) 

and the linearizations A and ~ defined in (2.6) and (2.8) provide the minorizations 

(2.13) 

(ii) The aggregate subgradient pk defined in (2.9) and the linearization n above 
satisfy 

(2.14) 

(2.15) 

(iii) The predicted descent Vk and the aggregate linearization error fk of (2.9) 
satisfy 

(2.16) 

(iv) The aggregate linearization f~ is expressed in terms of pk and fk as follows: 

(2.17) 

(v) The optimality measure Vk of (2.11) satisfies Vk $ max{IPkl, ,k}(l + łuki) 
and 

(2.18) fi $ /c(u) + Vk(l + lul) for all u. 

(vi) We have Vk 2'. -,k # tk1Pkl 2/2 2'. -,k # vk 2'. tk1Pkl 2/2. Moreover, Vk 2'. ,k, 
-fk :$ ff, and 

(2.19) tlPkl2 } Vk 2'. max - 2-,1,kl if Vk e". -fk, 

(2.20) Vk $ max { (2t~k r
2

, vk} (1+ luki) if Vk e". -fk, 

(2 .21) ( r2 vk < ~': (1 + luki) if Vk < -€k, 
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Proof (i) By (2.5)-(2.6), the optimality condition (using 9~- 1 = p)/ 1; cf. (2.8)) 

-k+1 Ak 

o E a,t,}(;;k+1) = aA(uk+1) + P~-1 + u - u = aA(uk+1) - P} 
tk 

and the equality fk(uk+ 1) = ]k(uk+ 1) yield p} E 8]k(uk+ 1) and/.$ A, By (2.7)
(2.8), 

k+l Ak 

OE 8,p2,(uk+ 1) = p} + 8ie(uk+I) + u - u = 8ie(uk+I) - pi 
tk 

(using V/.= p}) and ,i(uk+I) = ie(uk+I) = O give pi E 8ic(uk+ 1) and ,i$ ie. 

Combining both minorizations, we obtain that /.+,i ~ Jk + ie ~ fe by (2.4) and 
(1.5). 

(ii) Use the linearity of n := f. + ,i, (2.6), (2.8) with ,i(uk+I) = o, and (2.9). 
(iii) Rewrite (2.9), using the fact that n(ii.k) = fk(uk+I) + tk1Pkl 2 , by (ii). 
(iv) We have ff - Ek = f8(uk) by (iii), and 18 is affine by (ii) and minorizes fe 

by (i). 
(v) Use the Cauchy-Schwarz inequality in the definition (2.11) and in (iv). 
(vi) The equivalences follow from the expression of vk = tk1Pkl 2 + Ek in (iii); in 

particular, vk 2'. Ek, Next, by (2.16), (2.13), and (2.2) with fe(uk) = f(uk) (uk EC), 
we have 

-Ek = n(uk) - fi ~ fe(uk) - fi= f(i/) - fi~ EJ, 

Finally, to obtain the bounds (2.19)-(2.21), use the equivalences together with the 
facts that Vk 2: Ek, -Ek ~ EJ and the bound on Vk from assertion (v). • 

The optimality estimate (2.18) justifies the stopping criterion of Step 4: Vi = O 
yields fi $ inf fe = f.; thus, the point uk is Eroptimal; i.e., f(uk) $ f. + EJ by 
(2.2). In the case of exact evaluations (EJ = O), we have _Vk 2: Ek 2: O by Lemma 
2.2(vi), Step 5 is redundant, and Algorithm 2.1 becomes essentially that of [Kiw99, 
Alg. 3.1]. When inexactness is discovered via Vk < -Ek, the stepsize tk is increased 
to produce descent or confirm that uk is E roptimal. Namely, when uk is bounded in 
(2.21), increasing tk drives Vk to O, so that ff ~ f. asymptotically. Whenever tk is 
increased at Step 5, the stepsize indicator i} # O prevents Step 7 from decreasing tk 
after null steps until the next descent step occurs (cf. Step 6). Otherwise, decreasing 
tk at Step 7 aims at collecting mare loca! information about f at null steps. 

We now show that an infinite cycle between Steps 2 and 5 means that uk is 
EJ-Optima!. 

LEMMA 2.3. ff an infinite cycle between Steps 2 and 5 occurs, then ff ~ f. and 
Vk --+ 0. 

Proof At Step 5 during the cycle the facts that Vk < (2,tftk) 112(l + juki) by 
(2.21) and tk t oo as the cycle continues give Vk --+ O, so that ff $ inf fe = f. by 
(2.18). • 

3. Convergence. In view of Lemma 2.3, we may suppose that the algorithm 
neither terminates nor cycles infinitely between Steps 2 and 5 ( otherwise uk is , r 
optima!). At Step 6, we have uk+ 1 EC and Vk > O (by (2.19), since max{jpkl, ,k} > O 
at Step 4), so that uk+I E C and fi+I $ ff for all k. We shall show that the 
asymptotic value ff' := limk fi satisfies ff' $ f •. As in [Kiw99, sect. 4], we assume 
that the model subgradients p} E aJk(uk+I) in (2.12) satisfy 

(3.1) {p}} is bounded if {uk} is bounded. 
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It will be seen in Remark 4.4 that typical models A satisfy this condition automati
cally. 

We first consider the case where only finitely many descent steps occur. After 
the last descent step, only null steps occur, and the sequence { tk} eventually becomes 
monotone, since once Step 5 increases tk, Step 7 can't decrease tk; thus the limit 
t00 := limk tk exists. We deal with the cases of t00 = oo in Lemma 3.1 and t 00 < oo 
in Lemma 3.2 below. 

LEMMA 3.1. Suppose there exists k such that only null steps occur Jor all k ~ k, 
and t00 := limk tk = oo. Let J( := {k ~ k: tk+I > tk}. Then Vk ~ O at Step 5. 

Proof. At iteration k E J(, before Step 5 increases tk for the last time, we have 

Vk < (2,J/tk)112 (1 + Jf,_kl) by (2.21); consequently, tk--+ oo gives Vk ~ O. O 
LEMMA 3. 2. Suppose there exists k such that, for all k ~ k, only null steps occur 

and Step 5 doesn't increase tk. Then Vk --+ O. 
Proof. First, using partial linearizations of subproblems (2.5) and (2.7), we show 

that their optima! values ,p}(i/+1) :S ,t,~(uk+I) are nondecreasing and bounded above. 
Fix k ~ k. By the definitions in (2.5)-(2.6), we have fk(uk+ 1) = fk(uk+l) and 

(3.2) ;,k+l = argmin {~,o:= AO + ~-10 + 2). I· -ukl 2} 

from 'v~j(uk+I) = O. Since ~j is quadratic and ~j(uk+I) = ,p}(uk+1), by Taylor's 
expansion 

(3.3) 

Similarly, by the definitions in (2.7)-(2.8), we have ,~(uk+I) = ie(uk+ 1 ) = O, 

(3.4) uk+l = arg min { ~~(·) := fk(·) + •~(·) + 2;, I· -uk l2}, 

(3.5) ~~(-) = ,t,t(uk+I) + 2i, I• -uk+IJ2. 

Next, to bound the objective values of the linearized subproblems (3.2) and (3.4) from 
above, we use the minorizations fk :S fe and ~-1, ;;~ :S ie of (2.13) with uk E C: 

(3.6a) 

(3.6b) 

,t,j(,:/+1) + 2!. luk+1 - ukl2 = ~j(uk) :s J(u'), 

,t,~(uk+I) + 2i, luk+! - ukl2 = ~~W) :s f(uk), 

where the equalities stem from (3.3) and (3.5). Due to the minorization ~-l :S ie, 
the objectives of subproblems (3.2) and (2.7) satisfy ~j :S <Pt- On the other hand, 

since uk+1 = uk, tk+I :S tk (cf. Step 7), and fk :S fk+ 1 by (2.4), the objectives of (3.4) 
and the next subproblem (2.5) satisfy ~~ :S <11}+ 1 . Altogether, by (3.3) and (3.5), we 
see that 

(3.7a) 

(3.7b) 

<P}(;,k+l) + 2i, luk+!_ ,,k+112 = ~j(uk+I) :S <P~(uk+I), 

,t,t(uk+I) + 2;, luk+2 _ uk+1l2 = ~~(;,k+2) :S <P~+1(;,k+2). 

In particular, the inequalities ,p}(uk+l) :::; ,p~(uk+1) :::; ,p}+l(;,k+2) imply that the non

decreasing sequences {,t,}(uk+l)h2'.ii and {,t,~(uk+1)h2'.ii, which are bounded above 
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by (3.6) with uk = uk for all k 2: k, must have a common limit, say ą,00 :S f(u"). 
Moreover, since the stepsizes satisfy tk :S t 1c. for all k 2: k, we deduce from the bounds 
(3.6)-(3. 7) that 

(3.8) 

and the sequences {uk+I} and {uk+I} are bounded. Then the sequence {p}} is 
bounded by (3.1), and the sequence {gk} is bounded as well, since gk E 8,1 /(uk) 
by (2.1), whereas the mapping 8,1 / is locally bounded [HUL93, sect. XI.4.1]. 

We now show that the approximation error Ek := Jt+I - fk(uk+I) vanishes. Using 
the form (2.1) of fk+,, the minorization fk+1 :S A+1 of (2.4), the Cauchy-Sch,.,.arz 
inequality, and the optima! values of subproblems (2.5) and (2. 7) with uk = uk for 
k 2: k, we estimate 

fk :=tt+' -fk(uk+I) = !k+1(uk+2)-ik(uk+I) + (gk+l,uk+I -uk+2) 

:s Jk+1(uk+ 2) -A(uk+l) + lgk+llluk+I - -;;k+ 2 1 

(3.9) = ą,~+'(-;;k+2) - ą,~(uk+I) + l:,.k - ~(uk+2) + lgk+111uk+I - -;;k+21, 

juk+! - -,;kj2 is bounded, ;;k+2 - uk+l -t O by (3.8), and tm;n :S tk+I :S tk for k 2: k 
by Step 7. These properties also give ,~(uk+2) -t O, since by (2.8) and the Cauchy
Schwarz inequality, we have 

where {p}} is bounded. Hence, using (3.8) and the boundedness of {gk+l} in (3.9) 

yields limk Ek :S O. On the other hand, for k 2: k the null step condition Jt+I > 
IŻ - l<Vk gives 

where K < 1 by Step O; we conclude that Ek -t O and vk -t O. Finally, since Vk -t O, 
tk 2: 1,n;n (cf. Step 7), and uk = il for k 2: k, we have vk -t O by (2.20). • 

We may now finish the case of infinitely many consecutive null steps. 
LEMMA 3.3. Suppose that there exists k such that only null steps occur for all 

k 2: k. Let K := {k 2: k: tk+I > tk} if tk -t oo, K := {k: k 2: k} otherwise. Then 

vk3-+o. 
Proof Steps 5-7 ensure that the sequence {td is monotone for large k. We have 

Vk 3-+ O from either Lemma 3.1 if 100 = oo, or Lemma 3.2 if /00 < oo. O 
It remains to analyze the case of infinitely many descent steps. 
LEMMA 3.4. Suppose that infinitely many descent steps occur and /[i° := limk Jk > 

-oo. Let K := {k: Jż+ 1 < Jk}. Then limkEK Vi = O. Moreover, if {uk} is bounded, 

then vk 3-+ o. 
Proof We have O< KVk :S Jk- Jf+I if k E K, JŻ+I = IŻ otherwise (see Step 6). 

Thus LkeK l<Vk $ JJ - /[i° < oo gives Vk 3-+ O and hence Ck, tk1Pkl 2 3-+ O by (2.19) ., 



PROXIMAL-PROJECTION BUNDLE METHOD 9 

and IPkl ~ O, using tk 2'. tmin (cf. Step 7). For k EI<, ,1k+1 - uk = -tkpk by (2.9), 
SO 

Sum up and use the facts that ,1k+1 = uk if k </c I<, LkEK tk 2'. LkEK tmin = oo to 
get 

(since otherwise lukl 2 --; -oo, which is impossible). Combining this with tk1Pkl 2 ~ O 

gives limkEK(pk, uk) ś O. Since also fk, IPkl ~ O, we have limkeK Vi =Oby (2.11). 

If {uk} is bounded, using fk, IPkl ~ O in Lemma 2.2(v) gives Vk ~ O. • 
We may now state and prove our principal result. 
THEOREM 3.5. (i) We have fi, .j. f'jf' ś f., and additionally limk Vk = O if 

f. > -oo. 
(ii) f. Ś !huk f(uk) Ś Jimk f(uk) Ś f'jf' + ff. 
Proof The inequalities in (ii) stem from the facts that f. = infe f, { uk} c C, 

and f(uk) :S fi,+ ff for all k by (2.2). By (ii), if f't' = -oo, then f. = -oo in (i). 
Hence, suppose f. > -oo. Then f't' 2'. f. - ff > -oo by (ii). We have limk Vk = O 
by Lemma 3.3 in the case of finitely many descent steps, or by Lemma 3.4 otherwise. 
Finally, using limk Vk = O in the estimate (2.18) gives f'i,° ś inf fe = f.. • 

It is instructive to examine the assumptions of the preceding results. 
Remark 3.6. (i) lnspection of the preceding proofs reveals that Theorem 3.5 

requires only convexity and finiteness of f on C, and local boundedness of the ap
proximate subgradient mapping u>-+ 9u off on C (see below (3.8)). In particular, it 
suflices to assume that f is finite convex on a neighborhood of C. 

(ii) The requirement max{fk-1,/k} ś A of (2.4) is needed only after null steps 
in the proof of Lemma 3.2. After a descent step (when k = k(l)), Step 1 may take 
any A :S fe. 

We now show that for exact evaluations (ff = O), our algorithm has the usual 
strong convergence properties of typical bundle methods. Instead of requiring that 
infk tk 2'. tmin > O, as before, we give more generał stepsize conditions in the theorem 
below. 

THEOREM 3.7. Suppose that ff= O. Let U.:= Argmine f denote the (possibly 
empty) solution set of problem (1.1). Then we have the following statements: 

(i) If only l < oo descent steps occur and tk .j. t00 > O, then uk(l) E U. and 
Vk --t 0. 

(ii) Assuming that infinitely many descent steps occur, suppose that LkeK tk = 
oo for I< := {k : f(uk+ 1 ) < f(uk)}. Then f(uk) .j. f •. Moreover, we have the 
following. 

(a) Let <k := f(uk+l) - fk(uk+ 1 ) for k E I<. If u. f= 0 and LkeI< tk<k < oo 

(e.g., supkEK tk < oo), then uk--; u"" EU., and Vk ~ O if infkeK tk > O. 
(b) If u. = 0, then luki--; 00. 

Proof Since ff = O, Step 5 is inactive, and Algorithm 2.1 fits the framework of 
[Kiw99, Alg. 3.1). For l ft oo, the conclusion follows from Lemma 3.2 and Theorem 
3.5. For l --; oo, combine [Kiw99, Thm. 4.4] and the proof of Lemma 3.4. • 
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4. Modifications. 

4.1. Looping between subproblems. To obtain a mare accurate solution to 
the prox subproblem (2.3), we may cycle between subproblems (2.5) and (2.7), up
dating their data as if null steps occur without changing the model A. Specifically, 
for a given subproblem accuracy threshold k. E (O, 1 ), suppose that the following step 
is inserted after Step 5. 

Step 5' (subproblem accuracy test). If 

(4.1) 

set ~- 1 (-) := ,::,(-), p~-i := Pt and go back to Step 2. 
We now give two motivations for the test (4.1) written as (cf. (2.9)) 

lk := A(uk+I) - fk(uk+I) > (1 - k.)vk. 

First, when lk is small relative to Vk, A is correctly approximated by A, so the loop 
can be broken. Second, since fk $ Jk (Lemma 2.2(i)) in (2.7), by standard arguments 
[Kiw99, p. 145], the distance from uk+1 to the prox solution of (2.3) is at most J2tklk. 

The analysis of this modification is given in the following remarks. 
Remark 4.1. (i) For any k, each execution of Steps 2 through 5' is called a loop. 

First, suppose that finitely many loops occur for each k. By its proof, Lemma 2.2 
holds at Step 4 for the current quantities. This suffices for the proofs of Lemmas 2.3, 
3.1, and 3.4, whereas the proofs of Lemma 3.3 and Theorem 3.5 will go through once 
Lemma 3.2 is established. The proof of Lemma 3.2 is modified as follows. For each 
k 2'. k, (3.6) and (3.7a) hold at each loop, and (3.7b) holds for the finał loop. For any 
preceding loop, letting u~tx\ and </J},next stand for ,1k+ 1 and </J} produced by Step 2 on 

the next loop, use the minorization A $ fk of (2.13) in subproblems (3.4) and (2.7) 
to get Jt $ </J},next and, by (3.5), 

(4.2) <l>t(uk+I) + 2Uu~tx~ _,,k+Il2 = Jt(u~tx~) $ 4>},nex,(u~;;.~). 

Then, replacing (3.7b) by (4.2) for all nonfinal loops, we deduce that the optima! 
values ą,j(uk+I) $ ą,i(uk+I) can't decrease during the loops or when k grows; hence 
(3.8) and the boundedness of { ,1k+1} and { uk+1} follow as before. For the rest of the 
proof, Jet uk+2 in (3.9) stand for the point produced by Step 2 on the first loop at 
iteration k + 1, and argue as before. 

(ii) Next, suppose that infinitely many loops occur at iteration k = k, for some 
k. If Step 5 drives tk to oo, ff $ f. and Vk --; O by the proof of Lemma 2.3. Hence 
we may assume that Step 5 doesn't increase tk at all. To show that Vi --; O (in 

which case fŹ $ f. by (2.18)), we suppose that the subdifferential aA is locally 
bounded, and we use a subgradient mapping C 3 u >-+ bu E aA(u). Consider the 
following modification of Algorithm 2.1. Starting from the first loop at iteration 
k = k, omit Step 5'; at Step 6 set f!+l := Jk(uk+I), gk+I := bu•+•, and K := k.; 
at Step 7, set tk+I := tk; finally, when Step 1 is reached, set A := A-i• This 
modification only translates loops into additional iterations with a constant model 
A = ].; in particular, only null steps occur, because the descent test (2.10) can't 
hold with fi+' := A(uk+I) and K := k. due to the model test (4.1). Further, the 
"new" linearization fk+1(·) := f!+I + (gk+I, • - uk+1) satisfies f•+i $ A+i- Hence, 
to get v.--; O, we may use the proof of Lemma 3.2, obtaining boundedness of {p}}, 

{gk+ 1 } from the boundedness of {uk+1}, {uk+1} and the !ocal boundedness of a].. ' 
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Note that having ~-, as a model of ie in subproblem (2.5) is essential only after 
null steps or loops due to Step 5'. Otherwise, a better model may be constructed as 
follows. After Step 5 increases tk, we can set~-'(·) := •~(-), Pt- 1 := p~, or use the 
mare efficient update uk := Pc(uk - tkp}), Pt-' := (uk - uk)/tk - P}, and ~- 10 := 

(pt- 1,. - uk), which corresponds to resolving subproblem (2.7) before going back to 
Step 2. Similarly, if uk+' f uk after Step 7, we may use u := Pc(uk+I - tk+iP}), 

p~ := (uk+I - u)/tk+i - p}, and,~(-) := (p~, • - ii), where ii plays the role of uk+i. 

4.2. Evaluation errors and relaxed null-step requirements. We now in
spect the impact of inexact evaluations on our preceding results, in order to obtain 
weaker convergence conditions and to provide some practical recommendations. 

Our assumption (1.2) on the error tolerance <t means <t := supuEcf/(u) - fu] < 
oo. In fact, we need only the weaker condition that < / := supk <} < oo for the evalu

ation errors <J := f(uk) - J/: (cf. (2.1)). Thus, for <t := supk <}, Theorem 3.5 says 
that aur method produces solutions that are as good as the supplied linearizations. 

In fact, the asymptotic accuracy depends only on the errors that occur at descent 
steps. Indeed, at Step 1 we have uk = uk(I) and f(uk) =fi+ <~(I), where k(l) - 1 is 
the iteration number of the łth (i.e., !atest) descent step (see Steps O and 6). Hence 
the tolerance <t in Theorem 3.5(ii) may be replaced by the asymptotic error 

(4.3) €00._ / { 
/Ul if only ł < oo descent steps occur, 

1 .- lim1 <~(I) otherwise. 

In particular, e1 = O if all descent steps happen to be exact. On the other hand, 

whenever an inexact descent step occurs, then <~+l := f(uk+l)-J/:+ 1 may potentially 

determine ,1 (only if J/:+ 1 ::; /., since ft"::;/, by Theorem 3.5). 
Since the asymptotic error is not influenced by the errors occurring at null steps, 

!et us now discuss the case where infinitely many successive null steps occur. Then, 
by the proof of Lemma 3.2, instead of the requirement supk <} < oo (which may 
be difficult to check for same oracles), it suffices if the following relaxed null-step 
requirements a.re nrnt: 

(a) the sequence {gk} is bounded whenever the sequence {uk} is bounded; 
(b) a null step implies that J/:+I > fi - iłvk for some fixed parameter ił E [11:, 1). 

Condition ( a) holds if the mapping u >-+ 9u is locally bounded on C ( cf. Remark 
3.6(i)). Condition (b) means that the new linearization /k+I may have any accuracy, 
as long as it improves the next model sufficiently at uk+I. For ił > 11:, the oracle may 
set an indicator i, := 1 when ił should replace 1< in the descent test (2.10) to accept 
a shallower null step; i, := O otherwise (i.e., when (2.10) is not modified). Of course, 
shallow cuts may slow down convergence, but this may be offset by saving the oracle's 
work per call. To illustrate these requirements, consider the following generalization 
of the setting of [HeK02]. 

Example 4.2. Suppose that the objective / has the form /(-) := sup,Ez F,(·) 
of (1.3) with F,(·) convex and aF,(-) locally bounded on C, uniformly w.r.t. z EZ. 
Suppose for each k that the oracle used for approximate evaluation of f(uk+I) gen
erates points z(i) E Z, i= 1, 2, ... , stopping for some i to deliver J/:+I := F,u> (uk+I) 
and some gk+l E aF,,,, (uk+I ). To meet the relaxed null-step requirements, the oracle 
may stop when F,,,, ( uk+I) > fi - iłvk holds, possibly together with other conditions, 
setting i, := 1 to force a null step. 
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Remark 4.3. For an SDP (cf. section 5.6), Example 4.2 accommodates the "in
exact null steps" of [HeK02j, which can save much work in eigenvalue computations 
[Hel03, Nay99, Nay05j. In generał, when the relaxed null-step requirements are met 
and the descent steps are exact, then E1 = O in ( 4.3) and Theorem 3. 7 holds (by its 
proof). In particular, Theorem 3.7 holds for the method of [HeK02]. 

Insisting that all descent steps be exact may be unrealistic (e.g., as in [Hel03, 
HeK02, Nay05j, where this issue is ignored) or tao expensive (cf. [Kiw051). 

For the aracie of Example 4.2, additional stopping criteria may be employed to 
make a "tao inexact" descent step less likely. The generał idea is to make the aracie 
work harder before a descent step is accepted. We distinguish the following two cases. 

Case l. Suppose that the oracle's underestimates F,(,,(uk+I) of f(uk+I) improve 
when i grows. Then for a given iteration limit imax the aracie may stop when ei
ther F,u,(uk+I) > Jfl - Rvk and i ś imax (setting iR := 1 to force a null step), or 
F,(,,(uk+I) ś jfl - KVk and i= imax (setting iR := O for a descent step). 

Case 2. In addition to the assumptions of Case 1, suppose that the aracie gener
ates upper bounds JJ~ 2: /(uk+ 1 ) such that fJ~ -F,(,,(uk+I)-+ O ifi-+ oo. Then the 

aracie may also stop as soon as for same i ś imax, fJ~ < Jfl, or JJ~ - F,(•l (uk+I) ś 
Er/F,(,,(uk+I)/ for a given relative accuracy tolerance Er> O, setting iR :=Oto pro
mote a descent step. 

We add that Case 2 covers oracles employing branch and bound in Lagrangian 
relaxation of integer programming problems. Then, for diflicult Lagrangian subprob
lems, it pays to use rather loose accuracy requirements, because tighter criteria (e.g., 
small Er) may force the aracie to work tao long on same calls (see, e.g., [Kiw051). For
tunately, a typical branch-and-bound aracie generates a good !ower bound F,(•l ( uk+I) 

quickly (although improving the upper bound JJ~ may need much time). Then the 
stopping criterion of Case 2 with a moderate tolerance Er ( or another heuristic crite
rion) may stili ensure that the actual error E~+l := f(uk+ 1) - J!+I is small enough. 
Thus aur framework is especially suitable for applications with oracles that deliver 
reasonably accurate linearizations most of the time, although explicit control of their 
accuracy might be tao costly. (We add that the preceding remarks apply also to the 
method of [Kiw06b], and they partly explain the good numerical results of [Kiw05j.) 

4.3. A weaker descent test. As in [Kiw06b, sect. 4.3], at Steps 5 and 6 we may 
replace the predicted decrease Vk = tk/Pk[ 2 + Ek (cf. (2.16)) by the smaller quantity 
Wk := tk/Pk[ 2/2+tk. Then the equivalences in Lemma 2.2(vi) are replaced by the fact 
that 

-
Hence, Wk 2: -Ek at Step 6 implies Wk ś Vk ś 3wk and Vk 2: -Ek for the bounds 
(2.19)- (2.20), whereas for Step 5, the bound (2.21) is replaced by the fact that 

( ) 
1/2 

vk < 4E;:ax (1 + ,,·li) 

The preceding results extend easily. (In the proof of Lemma 3.2, 1:;+ 1 > Jfl - KWk 
implies 1:;+ 1 > Jfl-,wk , whereas in the proofofLemma 3.4, LkEK vk ś 3 LkEK Wk < 
oo.) 
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4.4. Linearization accumulation, selection, and aggregation. There are 
three basie choices of polyhedral models satisfying relation (2.4) rewritten as 

(4.4) 

First, accumulation takes A+1 := max{A, fk+i}, f1 := /i; then we may replace 
fe by/ in (4.4), using the minorizations A ~ Jk of (2.13) and !k+1 ~ f of (2.1). 
In other words, here A = maxJ- 1 /; is the richest model stemming from all the past 
linearizations, but its storage requirements and QP work per iteration grow with k, 
so the other choices discussed below are mare attractive in practice. 

Second, selection retains only selected linearizations for its kth model, 

(4.5) fd•):=max/;(·) with kEJkc {l, ... ,k}. 
JEJi. 

Then Jk ~ f by (2.1), so, in view of (4.4), we need only show how to choose the 
set Jk+I so that A~ fk+I· Since p} E aA(uk+I) by (2.12) and each /; is affine in 
(4.5), there exist multipliers v;, j E Jk, also known as convex weights, such that (cf. 
[HUL93, Ex. VI.3.4]) 

(4.6) (p},1)=:~::>;cv/;,l), vj2:o, v;[Jk(uk+l)-l;(uk+l)]=O, jEk 
jEJi. 

Then, using relations (2.6) and (4.6), it is easy to obtain the fo llowing expansion: 

(4.7) (ik, l) = L vJ(/;, 1) with Jk := {j E Jk: vj > O}. 
jE]k 

In other words, the aggregate linearization fk is a convex combination of the "ordi
nary" linearizations /; selected by the active set Jk. Since A ~ max;EJ• /j, it suffices 
to choose 

(4.8) Jk+I :::J jk U {k + l}. 

Active-set methods for solving subproblem (2.5) [Kiw86, Kiw94) find multipliers v; 
such that j}kl ~ n+ 1. Hence we can keep llk+d ~ n for any given upper bound 
n 2'. n+2. 

Third, aggregation treats the past aggregate linearizations !; like the "ordinary" 
linearizations /;, defining /-;:=!;for j = O: k -1 to replace (4.5) by the aggregate 
model 

(4.9) fk(·) := max/;(·) with k E Jk C {l - k: k}, /; := f-; for j ~ O. 
JEli, 

The weights v; of (4 .6) produce f-k :=Avia (4.7), and relation (4.8) is replaced by 

(4.10) lk+I ::i { - k, k + l}, 

so that only n 2'. 2 linearizations may be kept. Formally, if /; ~ / for all j E Jk, 
then f-k := fk ~ f by (4.7); hence, by induction, (4.9)- (4.10) yield (4.4) for all k. 
Of course, the selection requirement (4.8) may replace (4.10) whenever j}kl ~ n - 1. 
After a descent step, we can replace (4.8) and (4.10) by Jk+I 3 k + 1 (cf. Remark 
3.6(ii)). 

Remark 4.4. In the proof of Lemma 3.2, condition (3.1) holds automatically for 
the models discussed above. Indeed, by (4.6) (and induction for aggregation), we have 
p} E co{gi}J-1 and hence IP}I ~ maxJ-1 jgij, whereas the sequence {gk} is bounded. 

Similarly, each model A has a bounded subdifferential, as required in Remark 4.l(ii). 
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5. Lagrangian relaxation. 

5.1. The prima! problem. Let Z be a real inner-product space with a finite 
dimension m. (We could, of course, aiways identify Z with JR.'h, but a less concrete 
approach helps our future development.) In this section we consider the special case 
where problem (1.1) with C := IR'.;. is the Lagrangian dual problem of the following 
prim al convex optimization problem in Z: 

(5.1) i/J8'ax := max i/Jo(z) s.t. i/J,(z) 2'. O, i= 1: n, z E Z, 

where 0 # Z c Z is compact and convex, and each i/J, is concave and closed ( upper 
semicontinuous) with dom i/J, :J Z. The Lagrangian of (5.1) has the form ,jJ0(z) + 
(u, ,jJ(z)), where ,jJ := (,jJ1 , ... , VJn) and u is a multiplier. Suppose that, at each u EC, 
the dual Junction 

(5.2) /(u):= max { i/Jo(z) + (u, ,jJ(z)): z EZ} 

can be evaluated with accuracy <f 2'. O by finding a partial Lagrangian <rsolution 

(5.3) z(u) EZ such that fu := i/Jo(z(u)) + (u, ,jJ(z(u))) 2'. /(u) - <1-

Thus fis finite convex and has an <rsubgradient mapping gu := ,jJ(z(u)) for u EC. 
In view of Remark 3.6(i), we suppose that ,jJ(z(·)) is locally bounded on C. (Note 
that the whole set ,jJ(z(C)) is bounded if inf z min~=! i/J, > -oo, or the function ,jJ is 
continuous on Z.) 

5.2. Prima! recovery with selection. We first consider our method with lin
earization selection ( cf. section 4.4). 

The partia] Lagrangian solutions z• := z(uk) (cf. (5.3)) and their constraint values 
g• := ,jJ(z•) determine the linearizations (2.1) as Lagrangian pieces of/ in (5.2): 

(5.4) 

Using their weights {vj},EJ, (cf. (4.6)), we may estimate a solution to (5.1) via the 
aggregate prima/ solution 

(5.5) 

By ( 4. 7), this convex combination is associated with the aggregate linearization J. 
via 

(5.6) (J.,z•,l)= "I:,vj(fj,z1,l) with jk:={jEJk:vj>O}. 
jEj„ 

We now derive useful bounds on ,jJ0(ik) and ,jJ(z•), generalizing [Kiw06b, Lem. 5.1). 
LEMMA 5.1. zk E Z, i/Jo(zk) 2'. fi - <k - (pk, uk), and ,jJ(zk) 2'. p} 2'. pk. 
Proof By (5.6), zk E co{z1}1Ej, c Z, ,jJ0(zk) 2'. I:;1 vji/J0(z1), and ,jJ(zk) 2'. 

I:;1 vji/J(z1) by convexity of Z and concavity of i/Jo, ,jl. Since p~ E 8iw, (uk+l) by 

(2.12), we have Pt~ O and (p~, uk+ 1) = O [HUL93, Ex. !II.5.2.6(b)), so p} = pk-Pt 2'. 
pk by (2.14). Next, using (5.6) with p} = V fk by (2.6) and V / 1 = ,jJ(z1) by (5.4), 

we get !.(O)= Lj vji/Jo(z1) and p} = Lj vji/J(z1). Since fk(O) = nco) - ~(O) with 
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,~(O) = -(p~, uk+ 1 ) = O from (2.8), we have fk(O) = fi(O) = fi - fk - {pk, uk) by 
(2.17). Combining the preceding relations yields the conclusion. O 

In terms of the optimality measure Vk of (2.11), the bounds of Lemma 5.1 imply 

(5.7) ik EZ with ,Po(ik) 2: fi - Vk, ,f;;(ik) 2: -Vk, i= l: n. 

We now show that {ik} has cluster points in the set of frOPtimal primal solutions of 
(5.1), 

{5.8) Z, 1 := { z EZ: ,Po(z) 2: ,f.,0ax - ff, ,f;(z) 2: O}, 

unless this set is empty, i.e., the prima! problem is infeasible. 
THEOREM 5.2. Either f. = -oo and fi .j. -oo, in which case the primal problem 

(5.1) is infeasible, orf, > -oo, fi .j. f't' E [/, - ff,/,], limk f(uk) ~ f't' + ff, and 
K' 

limk Vk = O. In the Latter case, let K' c N be a subsequence such that Vk --t O. Then 
we have the following: 

(i) The sequence { ik}kEK' is bounded, and all its cluster points lie in the set 
z. 

(ii) Let i 00 be a cluster point of the sequence {ikhEK'. Then i 00 Ez,,. 
(iii) dz, 1 (ik) := infzEZ,, W - zł ~ O. 

Proof The first assertion follows f:rom Theorem 3.5 (since /, = -oo implies prima! 

infeasibility by weak duality). In the second case, using fi .j. f't' 2: /, -ff and Vk ~ 
O in the bounds of (5. 7) yields limkEK' ,Po(ik) 2: /, - ff and limkEK' minf= 1 ,f;,(ik) 2: O. 

(i) By (5.7), {.ik} lies in the set Z, which is compact by our assumption. 
(ii) We have i 00 E Z, ,f.,0 (i00 ) 2: f,-f f, and ,f.,(200 ) 2: O by the closedness of ,f.,0 and 

,f.,. Since/, 2: ,f.,8'ax by weak duality (cf. (1.1), (5.1), (5.2)), we get ,Po(i00 ) 2: ,;.,0ax-ff. 

Thus 200 E z,, by the definition (5.8). 
(iii) This follows from (i), (ii), and the continuity of the distance function 

dz,,. • 
Remark 5.3. (i) For Theorem 5.2, we can replace ff in (5.8) by ff (cf. (4.3)). 
(ii) By the proofs of Lemma 2.3 and Theorem 5.2, if an infinite cycle between Steps 

2 and 5 occurs, then Vk-+ O yields dz,, (ik)-+ O. Similarly, if Step 4 terminates with 

Vk = O, then ik Ez,,. In both cases, we can replace ff with ft (cf. (4.3)). 
(iii) Given a tolerance ftol > O, the method may stop if 

,Po(ik) 2: fi - ftol and ,f;,(ik) 2: -ftol, i= 1: n. 

Then 1/Jo(ik) 2: 1/JB'ax - ff - ftol from fi 2: /, - ff (cf. (2.2)) and/. 2: ,p/J'ax {weak 
duality), so that the point ik E Z is an approximate prima! solution of (5.1). This 
stopping criterion will be satisfied for some k if f, > -oo ( cf. (5. 7) and Theorem 
5.2). 

5.3. Prima! recovery with aggregation. Let us now consider the variant with 
aggregation based on (4.9), where each Jinearization /; has an associated prima! point 
zi, with / 1 := f-; and zi := z-i for j < O. Letting z0 := z 1, suppose for induction 

that (!1,z1) E co{(f,,z')}\~o for j E Jk. For the convex weights vj satisfying (4.7), 
let z-k := ik for the aggregate prima! solution ik given by (5.6). Since a convex 
combination of convex combinations of given points is a convex combination of those 
points, we deduce the existence of convex weights vj such that 

(5.9) U-k,z-\1) := (A,z\l) = L vj(f;,z1,l) 
O~j~k 

with vj 2: O, j = O: k. 
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In other words, U-k, z-k) Eco{(/,, z')}t-o, as required for induction. Replacing (5.6) 
by (5.9) for Lemma 5.1, we conclude that the preceding convergence results remain 
valid. 

5.4. Handling prima! equality constraints. Consider the prima! problem 
(5.1) with additional equality constraints of the form 

(5.10) ,j;0'ax := max 'Po(z) s.t. ,f;z(z) 2: O, 'Pc(z) = O, z EZ, 

where IuE = {1: n}, Inf= 0, and 'Pe is affine. For C := JRf1 x JRl<I, the finał bound 
in Lemma 5.1 becomes ,f;z(ik) 2: P},z 2: pi, ,J;ł:(ik) = P},c = p} (using Pt.z S O, 
Ptc = O, (Pt,uk+I) = O as before); the finał inequalities in (5.7) are replaced by 
mi;1,EI,J;,(ik) 2: -Vk, max;Eł: l,J;,(ik)I S Vi, and ,J;(z) 2: O in (5.8) by ,f;z(z) 2: O, 
,f;ł:(z) = O. With these replacements, the proof of Theorem 5.2 extends easily (since 
limkEI<' maxiE< l,J;,(ik)I = O yields ,j;ł:(i 00 ) = O in (ii)). 

Remark 5.4. We add that the ideas of sections 4.2, 5.3, and 5.4 can be translated 
into additional properties of the method of IKiw06b). Further, a simplified variant of 
the latter method is obtained by modifying relations (2.5)-(2.8) as follows. Letting 
uk+I solve the prox subproblem (2.3), for the subgradients p} E Dfk(uk+ 1) and Pt E 
8ic(uk+ 1 ) such that p} + Pt = (il - uk+I )/tk, define A by (2.6) with ;;k+I := uk+I 
and ,t by (2.8). Then Lemma 2.2 holds by construction, and the proof of Lemma 
3.2 simplifies to that of 1Kiw06b, Lem. 3.3). In effect, except for section 4.1, all the 
preceding results hold for this variant as well. 

5.5. Nonpolyhedral objective models. In addition to the assumptions of 
section 5.1, suppose ,j; is affine: ,µ(z) := b - Az for some given b E lir and a linear 
mapping A: Z-+ !Rn. Then the Lagrangian of (5.1) has the form 

(5.11) L(z, u) := 1/Jo(z) + (u, ,J;(z)) = ,J;o(z) + (u, b- Az) 

and J(-) := max,Ez L(z, ·). Suppose Step 1 selects the (possibly) nonpolyhedral model 

(5.12) Ao := maxL(z,·) with zk E zk Cz, 
zez„ 

where the set Zk is closed convex. Since fk(·) = L(zk, ·) by (5.4), we have fk S A S J. 
Thus, to meet the requirement of (4 .4), we need only show how to choose a set 
Zk+I 3 zk+I so that fk S fk+1· First, for solving subproblem (2.5) with the model 
A given by (5.12), we employ the Lagrangian L: IR" x Zk -+IR.of subproblem (2.5) 
defined by 

(5.13) 

so that 

(5.14) <!>}(·) = max{L(-,z): z E Zk}-

For each prima! point z E Zk, the (unique) Lagrangian solution 

(5.15) u,:= argminL(-,z) = il-tk[,J;(z) +p~- 1 ] 

substituted for u in (5.13) gives the value of the dual Junction q : Zk -+ IR defined by 

(5.16) q(z) := minL(·, z)= ,J;o(z) + (,J;(z), i/)+ (p~- 1 ,{,k - uk) - ~l,J;(z) + p~-y 
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Since ą is closed and Zk is compact, the dual problem maxz, q has at least one solution: 

(5.17) ik E Argmax{ą(z): z E Zk}-

LEMMA 5.5. Given a dual solution i := ik of (5.17), define the Lagrangian 
solution u := u, by (5.15). Then we have the following statements: 

(i) The pair (u, i) is a saddle-point of the Lagrangian L defined by (5.13): 

(5.18) L(u,z) :5 L(u,i) :5 L(u,i) Vu E nr,z E zk. 

(ii) For ,:;•+1, [k, and p} defined by (2.5) - (2.6), we have ,:;k+I = u, pJ = ,p(ik), 

(5.19) 

(5.20) 

Proof (i) L is convex-concave on !Rn x Zk, Zk is compact, and for each z E Zk, 
L(u, z) -+ oo when !ul -+ oo. Hence L has a saddle-point (ii, z) [HUL93, Thm. 
VII.4.3.1). Since i E Argmaxz, minu L(u, •) by (5. 16)- (5.17), (ii, i) is a saddle-point 
as well [HUL93, Thm. Vll.4.2.5). Then L(ii, i) :5 L(u, i) Vu yields ii = u; = u by 
(5.15), so that (5.18) holds. 

(ii) By (2.5) and (5.14), (5.18) implies ,:;k+l = u [HUL93, Thm. VII.4.2.5). Then 
(2.6) and (5.15) with z = i yield pj = ,p(ik). The left inequality in (5.18) combined 
with (5.11)-(5.13) gives i.(uk+ 1) = ,p0 (zk) + (uk+ 1 ,,p(ik)), and then (2.6) yields 
(5.20). O 

In view of (5.12) and (5.20), the requirement of (4.4) is met ifthe set Zk+I satisfies 

(5.21) 

in addition to being a closed convex subset of Z. Further, condition (3 .1) holds (with 
p} = ,p(ik), ik E Zk , Zk compact, ,p continuous), and the aggregate representation 

(5.20) can be seen as a special case of (5.6) (with Jk := {k} and z• replaced by ik in 
(5.4)). In effect, the results of section 5.2 hold for this variant as well. 

Remark 5.6. (i) We add that for p} = ,p(ik) (and C := IR'/-), (2.7)- (2.8) simplify 
to 

(5 .22) uk+I = max{ u• - tk(b - Aik), O} and p~ = min { f- b + Aik, O}. 

In generał, (p~- 1 ,uk) = O from p~-I E aic(uk), so we can o)Tiit u• in (5.13) and 
(5.16). A dual interpretation of (5 .22) follows. Since ie(·) = sup{-(1J, •) : 7J E IR'/-}, 
using a dual variable 1J E IR'/- for subproblem (2.3), its Lagrangian L(u, z, 1J), relaxed 
solution u,,,, and dual function ą(z, 1J) are given by (5.13), (5.15), and (5 .16) with 
p~-, replaced by -1], Let 1Jk := -p~- 1. The dual problem maxz,xR+ ą is treated 
in a Gauss- Seidel fashion by finding ik E Argmaxz, ą(·,1Jk) (cf. (5.17)) and then 
1Jk+I := argmaxw, ą( ik, •), for which uk+I = u,,,,,>+• and 1Jk+i = -p~ by (5 .22) . 
Thus alternating linearizations of subproblem (2 .3) correspońd to coordinatewise max
imizations of its dual function. 

(ii) Suppose that 1/Jo is linear and Zk := co{z1}J-i· Then z E Zk iff z= I:;1 v1z1 

for a weight vector v in N:= {v E IRt : I:;1 v1 = l}. For F := [1/Jo(z 1 ), ... , 1/Jo(zk)) and 
G := [g 1 , ... , g•), we have 1/Jo(z) = Fv and 1/J(z) = Gv. Using these representations 
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in (5.16)- (5.17), we may take zk = LJ vjz1 for any solution vk to the dual QP 
subproblem 

(5.23) vk E Argmax { Fv + vTaT,;_,k - *IGv - p~- 1 12 : v EN}. 
In effect, our framework comprises the method of [FGRS06, sect. 3.2], which requires 
exact evaluations. Note that the similarity of zk above to (5.5) is not accidental: the 
model (5.12) with Zk := co{z1}J= 1 is equivalent to the polyhedral model (4.5) with 
Jk := {l: k} (cf. (5.11) and (5.4)). Other choices of Jk from section 4.4 correspond 
to Zk :=co{z1}jEJ.· 

(iii) For problem (5.10) with mixed constraints, formula (5.22) is valid for com
ponents indexed by I, whereas u1+1 = u~ - tk(b - Azk)E and P~,E = O. Then the 
setting of (ii) above comprises the method of [ReS06, sect. 3) (for exact evaluations). 

(iv) By Remark 4.1, the results of section 5.2 hold when Step 51 is used as well, 
since each A has bounded subgradients (by (5.11)-(5.12) and the compactness of 
zk c Z). 

5.6. SDP via eigenvalue optimization. To discuss applications in SDP, we 
need the following notation. 

We consider the Euclidean space sm of m x m real symmetric matrices with the 
Frobenius inner product (x, y) = tr xy (we use lowercase notation for the elements of 
sm for consistency with the rest of the text). S'{.' is the cone of positive semidefinite 
matrices. The maximum eigenvalue Amax(Y) of a matrix y E sm and its positive part 
>-;1;.x(Y) := max{>-max(Y), O} satisfy (see, e.g., [LeO96, Tod0l)) 

(5.24a) 

(5.24b) 

Amax(Y) = max{(y,x): XE Em} with i:;m := {x ES'{.': trx = l}, 

>-;1;,x(Y) =max{(y,x): x EE;;'} with E;;' := {x ES'.;: trx $ I}. 

Let a > o, b E JR", C E sm, and A : sm -+ IR" be linear. Consider the SD Ps 

(5.25) 

(5.26) 

(P=): max(c,x) s.t. Ax$b, xES'.;, trx=a, 

(P.:;): max(c,x) s.t. Ax$b, xES'.;, trx$a. 

Any SDP can be formulated as (P<) without the finał trace condition. If we know 
or simply guess an upper bound a o-n the trace of some optima! solution, we may use 
(P<)- (For a wrong guess, our method will produce dual values going to -oo, thus 
indicating prima! infeasibility.) Of course, (P<) can be formulated as (P=) by adding a 
slack variable, but this is not really necessary,-since our method can handle both. ( P =) 
is natura! in many combinatorial applications, where the trace of all feasible solutions 
is known [HeR00); (P5 ) is employed in [Nay05) for equality-constrained SD Ps. 

We can regard (P=) as an instance of (5.1) with Z := sm, 1/Jo(z) := (c, z), 
,f;(z) := b - Az, and Z := aEm. Then, by (5.2) and (5.24a), the dual function f 
satisfies 

(5.27) J(u) = a>-max(c- A'u) + (b, u) V u, 

where A' is the adjoint of A (defined by (z,A'u) = (Az,u) V z E sm, u E IR"). 
For each u, the approximate evaluation condition (5.3) is met by z(u) := ar(u)r(uf, 
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where r(u) E !Rm is an (ctfa)-eigenvector of the matrix s(u) .- c - A'u E sm 
satisfying 

(5.28) r(uf s(u)r(u) 2'. Amax(s(u)) - :.L, 
a 

r(uf r(u) = l. 

Then the crsubgradient mapping u-+ 9u := ,p(z(u)) = b -Az(u) is bounded on !Rn. 
Thus we can use the setting of section 5.5 with models A given by (5.12) for sets 

Zk satisfying (5.21). In effect, the results of section 5.2 and Remark 5.6 hold for this 
variant as well. 

Remark 5. 7. (i) Our dual problem/, := infc fis equivalent to the standard dual 
of (P=), which is strictly feasible. Hence (cf. [Tod0l, Thm. 4.11) if (P=) is feasible, 
then its optima! value is finite and equals /., although the dual problem need not 
have solutions. Thus, even for exact evaluations, Theorem 5.2 improves upon [Hel04, 
Thm. 3.6], which assumes that Arg minc / I 0. We show elsewhere [Kiw06a] how 
to extend a related result of [Hel04, Thm. 4.8], without assuming that Arg minc f is 
nonempty and bounded. 

(ii) Condition (5.28) is particularly useful when approximate eigenvectors are 
found by iterative methods (such as the Lanczos method [Hel03, Nay05]) that em
ploy only matrix-vector multiplications to exploit the structure of the matrix s(u) := 
c - A'u. This condition has the following meaning in the setting of Example 4.2 
with u= uk+l, sk+I := s(uk+l). Suppose that an iterative method generates ap
proximate eigenvectors r('l E !Rm, lr('ll = 1, i = 1, 2, ... , stopping for same i to 

deliver zk+ 1 := a,-(<),-(i)T_ To meet the relaxed null-step requirements, the method 
may stop when ar(•)T sk+l,-(i) + (b, uk+I) > J/{ - Rvk. If a descent step occurs, then 

c~+l = a>-max(sk+I) - a,-(i)T sk+l,-(i) may potentially determine the asymptotic error 

ej of (4.3). To ensure that ,}+1 is not "tao large," we can employ additional stopping 

criteria based on upper estimates of Amax(sk+l) generated as in [Nay05]. 
(iii) We may employ the following choice of the set Zk due to [Nay99, Nay05]: 

(5.29) Zk := { t VjZj + pvpT: V E IR~, V Es;, t Vj + trv =a}, 
j=l j=l 

where each ii' E ,:;m and p is an m x r orthonormal matrix. The resulting model 

(5.30) ]k(u) = a max{ _max (c - A'u, z'), Amax(PT(c - A'u)p)} + (b, u) 
J=lc J 

attempts to strike a balance between being easy to handle (the polyhedral part) and 
accurate enough for fast convergence (the semidefinite part). Then the dual subprob
lem (5.17) can be cast as a eonie optimization problem and handled by specialized 
solvers. Two efficient updates of Zk satisfying (5.21) are given in [Nay99, sect. 4.4.2] 
(although they update AZk, they can update Zk as well). For j = 1, (5.29) reduces 
to the original choice of [HeR00j; again, (5.17) can be solved efficiently as a quadratic 
SDP [HeK02], and efficient updates of Zk are given in [Hel03, HeK02j. 

(iv) For problem (A,:) of (5.26), we can take Z:= aI:::?. Then (cf. (5.24)), >-;t.x 
replaces Amax in (5.27), and we can take r(u) := O if Am;:-x(s(u)) < O, using (5.28) 
otherwise. We can thus stop an iterative eigenvalue computation whenever an upper 
bound indicates that Amax(s(u)) < O. Of course, the finał "=" in (5.29) is replaced 
by"$,,. 
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