
Raport Badawczy

Research Report
RB/59/2006

Breakpoint searching algorithms
for the continuous quadratic

knapsack problem

K. C. Kiwiel

Instytut Badań Systemowych
Polska Akademia Nauk

Systems Research Institute
Polish Academy of Sciences

POLSKA AKADEMIA NAUK

Instytut Badań Systemowych

ul. Newelska 6

01-447 Warszawa

tel. : (+48) (22) 8373578

fax : (+48) (22) 8372772

Kierownik Pracowni zgłaszający pracę:
Prof dr hab. inż. Krzysztof C. Kiwiel

Warszawa 2006

Math. Program., Ser. A
DOI I0.!007/s!0\07-006-0050-z

FULL LENGTH PAPER

Breakpoint searching algorithms for the continuous
quadratic knapsack problem

Krzysztof C. Kiwiel

Received: 4 March 2006 / Accepted: 29 September 2006
© Springer-Verlag 2006

Abstract We give several linear time algorithms for the continuous quadratic
knapsack problem. In addition, we report cycling and wrong-convergence exam
ples in a number of existing algorithms, and give encouraging computational
results for large-scale problems.

Keywords Nonlinear programming • Convex programming
Quadratic programming • Separable programming • Singly constrained
quadratic program

Mathematics Subject Classilication (2000) 65K05 • 90C25

1 Introduction

The continuous quadratic knapsack problem is defined by

where x is an n-vector of varia bies, a, b, I, u E R.11 , r E R., D = diag(d) with d > O,
so thai the objective fis strictly convex. Assuming P is feasible, lei x• denote
its unique solution.

Problem P has applications in resource allocation [2,3,13], hierarchical
production planning [2], network flows [26], transportation problems [9]. multi
commodity network flows [12,22, 25]. constrained matrix problems [10], integer

K. C. Kiwiel (181)
Systems Research Institute, Polish Academy of Sciences,
Newelska 6, 01•447, Warsaw, Poland
e•mail: kiwiel@ibspan.waw.pl

~ Spring~r

K. C. Kiwiel

quadratic knapsack problems (4,5], integer and continuous quadratic
optimization over submodular constraints (13], Lagrangian relaxation via sub
gradient optimization (11], and quasi-Newton updates with bounds (7].

Specialized algorithms for P salve its dual problem by finding a Lagrange
multiplier r. thai solves the equation g(t) = r, where g is a monotone piece
wise linear function with 2n breakpoints (cf. Sect. 2). The earliest O(n log n)
methods [11,12] sort the breakpoints initially, whereas the O(n) algorithms
[6, 7, 9, 13, 18, 19,23] use medians of breakpoint subsets (see (1,20] for exten
sions); [23] also proposed an approximate median version with an average-case
performance of O(n). Another class of methods with worst-case performance
of O(n2) [2,5,21,24,26,27] employs variable fixing (17].

This paper focuses on linear time algorithms for P. The existing algorithms
differ in two aspects: (1) the choice of the current breakpoint subset for which
the median is found; and (2) the updates of quantities used for evaluating the
function g at the median.

As for the first aspect, we give a breakpoint searching framework that is
conceptually simpler than those in (6, 7,9,13,18,19,23]. In particular, the sim
plest method resulting from aur framework seems to be competitive in practice
with the mare complex methods of (6, 7] (see Sect. 10). Moreover, we show thai
the remaining methods [9,13,18,19,23] may cycle on simple examples, due to
insufficient reduction of the breakpoint subsets.

Concerning the second aspect, we introduce a mare refined version of the
standard g-evaluations of [6, 7], and a complementary one thai extends some
ideas in [9, 13]; their practical performance will be discussed elsewhere [15].

The paper is organized as follows. Basic properties of P are reviewed in
Sect. 2. Our simplest algorithm is introduced in Sect. 3 together with the stan
dard g-evaluation of [6, 7]. Amore refined g-evaluation is derived in Sect. 4, and
a complementary one in Sect. 5. To ease comparisons with related methods, in
Sect. 6 we state simplifications for quadratic resource allocation. Extensions of
the two median approach of [6] and the additional breakpoint removal of [7]
are discussed in Sects. 7 and 8, respectively. Section 9 discusses relations with
the methods of [9, 13, 18, 19,23]. Finally, preliminary computational results for
large-scale problems are reported in Sect. 10.

2 Basic properties of the problem

Viewing t E IR as a multiplier for the equality constraint of Pin (1.1), consider
the Lagrangian prima/ solution (the minimizeroff(x) +t(b T x-r) s.t. I :5 x :5 u)

x(t) := min(max[l,D-1(a -tb)],u) (2.1)

(where the min and max are taken componeritwise), its constraint value

g(t) := b T x(t) (2.2)

~ Springer

Breakpoint searching algorithms for the continuous quadratic knapsack problem

and the associated multipliers for the constraints I - x :;: O and x - u :5 O,
respectively,

µ,(t) := max {Dl - a+ tb , O) and v(t) := max {a - tb - Du, O). (2.3)

Solving P amounts to solving g(I) = r for a multiplier lying in the optima/
dual set

T. := {t: g(t) = r). (2.4)

Indeed, invoking the Karush- Kuhn- Tucker conditions for P as in
[7, Theorem 2.1], [12, Sect. 2], [22, Sect. 2], [23, Theorem 2.1] gives the fol
lowing result.

Fact 2.1 x• = x(t) iff t E T •. Further, the set T. is nonempty, and t, µ,(t), v(t)
are Lagrange multipliers of P whenever IE T •.

As in [6], we assume for simplicity thai b > O, because if b; = O, x; may
be eliminated (xi = min{max[/;, a;/d;], u;)), whereas if b; < O, we may replace
{x;, a;, b;, I;, u;) by -{x;, a;, b;, u;, I;) (in fact, this transformation may be implicit).

By (2.1), (2.2), the function g has the following breakpoints

1 ._ (a; - l;d;)
I; .- --b-,-. - and lu ·= (a; - u;d;)

I • b; ' i= 1: /1. (2.5)

Note thai I/' :5 t/ from I; :5 u; and b; > O in (2.5) . Further, each x;(I) may be
expressed as

{
u ·

x;(t) = (~; - tb;) / d;
I;

if t ~ tj",
if tf === t :5 tf,
if 1/ :5 /.

(2.6)

Thus g(I) is a continuous, piecewise linear and nonincreasing function of t (see
Fig.1).

(a)

a;/d,

U;

/ slope -b;/ d,

'-
x,(t)

l" - - - - - - , - - - - - - ,_,_ __ _

(b)
a,b;/d;

b,l,

Y slope - bUd,

Fig. 1 a Illustration of x;(l) := min{max[l;, (a; - tb;) / d;], u;J . b lllustration of b;x;(()
min{max[b;l;, (a;b; - tbf} j d;) , b;u;J (for b; > O)

~ Springer

K. C. Kiwiel

Hence the optima! set T. of (2.4) is an interval (possibly infinite) of the form

T. = [ti,, tu] n IR with ti, := inf(I: g(t) = r), lu := sup(I: g(I) = r),

(2.7)

withg(li,) = rifti, > -oo,g(lu) = riftu < oo;c!early,g(I) > rifft < ti,,g(I) < r
iff lu < t. Denoting the minimal and maxima/ breakpoints by 1:~in := min; 1/1

and t'm•r := max;t/, we have g(I) = bTu?. r for all t 5 1::.in• g(I) = bTI 5 r for
all I?. Imax·

3 The breakpoint searching algorithm

In this section we state our algorithm and discuss its simplest implementation.
The algorithm below generates successive nondecreasing underestimates IL

of ti, and nonincreasing overestimates tu of tu in (2.7) by evaluating gat trial
breakpoints in (/L, tu) until IL and tu become two consecutive breakpoints; then
gis linear on [IL,tu], and 1. is found by interpolation. Let N:= (1: n} denote
the set of all varia bies.

Algorithm 3.1
STEP O (Initiation). Set To:= U/liEN U (l)'J;eN, T := To, IL:= -oo, tu:= oo.
STEP 1 (Breakpoint selection). Choose a breakpoint 7 in T.
STEP 2 (Computing g(t)). Calculate the constraint value g(t).
STEP 3 (Optimality check). If g(1) = r, stop with 1, := 7.
STEP 4 (Lower breakpoint removal). If g(t) > r, set IL := 1, T := (1 e T: 1 < I}.
STEP 5 (Upper breakpoint removal). If g(t) < r, set tu := 7, T := (1 e T: I < t).
STEP 6 (Stopping criterion). If T ;6 0, go to Step 1; otherwise, stop with

(3.1)

The following comments c!arify the nature of the algorithm.

Remark 3.2 (a) At each iteration in Step 2 we have IL< tu, T. c [IL,tu] and
7 e T = To n UL, tu) (this follows by induction from the properties of g given in
Sect. 2).

(b) To compute g(t) efficiently, we may partition the set N into the following
sets

L := {i: t/ 5 tL), M :={i: IL,IU e [t/',t/]}, U:= {i: tu 5 t!'), (3.2a)

/ := {i: rj e (IL,lu) or tj' e (/L,lu)), (3.2b)

which are disjoint because IL < tu and t)' 5 1/ for all i. Further, we have

I= ft u I„ with 11 := {i: 1/ e UL,tu)), / 11 := {i: t;' e UL,tu)), (3.3)

© Springer

i

..

Breakpoint searching algorithms for the continuous quadratic knapsack problem

and
T = (1/)iE/1 U (l!'J;EJ";

hence 1/1 :5 I TJ. Tuus, by (2.2), (2.6) and (3.2),

where

g(t) = L b;x;(I) + (p - tą)+ s V te [IL, tu],
ie/

...._..,b_.., b;(a; - tb;)_.., b·l·_.., b· .
L.., ;x;(I) = L.., d· + L.., , 1 + L.., ,u,,
ie/ ie/:re[IJ' ,t!J I iel:tl<t iel:t<t/1

._'"' a1b;
P .- L.., d· ,

ieM i

bf
ą:= L-1:- and s:= I;b;l;+ I;b;u;.

ieM di iel ieU

(3.4)

(3.5)

(3.6)

(3.7)

Setting / := N, p, ą, s := O at Step O, at Step 6 we may update/, p, ą and s as
follows:

for ie/ do
if 1/ :5 IL , set/ := / \ {i), s := s + b;l;;
if tu :5 t/', set I:=/\ {i), s := s + b;it;;

(3.8)

if IL, tu E [I/', 1/J, set I:=/\ {i),p := p + a;b;/d;, ą := ą + b[/d;.

This update and the calculation of g(t) due to (6] require order 1/1 :5 I Ti
operations. ·

(c) When the set T becomes empty, then / = 0 in (3.5), so gis linear on
[IL,tu] and (3.1) yields g(t.) = r. (Note thai g(IL) and g(lu) musi have been
evaluated earlier: tu = oo would imply IL = l~ax and g(tL) = b TI :5 r, con
tradicting g(/L) > r (cf. Step 4); similarly IL = -oo would yield tu = t~in and
g(lu) = b T" 2: r, another contradiction.) Alternatively, (3.5) with I= 0 shows
thai (3.1) is equivalent to

._ (p +s - r) !.,.-----.
ą

(3.9)

(d) Since each iteration reduces the set T, Algorithm 3.1 must terminale with
1. E T.; then x• = x(t.) (cf. Fact 2.1) is recovered via (2.1) in order n operations
(cf. (2.6)].

The choice of t in T at Step 1 is crucial for efficiency, as explained below.

Remark 3.3 (a) For an arbitrary choice of 1, Algorithm 3.1 requires order n 2

operations in the worst case. The complexity can be improved to order II by
selecting t as the median of T, which requires order I Tl operations; see, e.g.,
(8, Sect. 9.3]. Tuus the complexity of each iteration is 0(1 Tl). Since I Ti is orig
inally 211 and is at least halved at each iteration, the total work is of order
2n + 11 + n/2 + • • • = 4n. Tuus the algorithm makes 0(log11) iterations in time
0(11); see, e.g., [7, p. 1438] for a mare generał proof.

© Springer

K. C. Kiwiel

(b) As suggested by (23], in practice it may be preferable to choose t in T at
random, with an expected number of iterations of O(logn) in an expected time
O(n), which can be derived as in (8, Sect. 9.2].

We now briefly describe severa! useful modifications.

Remark 3.4 (a) Step O may set IL := t~in• tu := rmax• T :=Ton (IL, tu). termi
nating with 1. := IL if g(IL) = r, ort, := tu if g(lu) = r, ort, given by (3.9) if
T=0.

(b) If the set of fixed variables L = := (i: I;= u;) is nonempty, at Step O we
may set/ := N\ L =, T := !t/,t)');eJ, replace L by LU L = in (3.2) and (3.7),
modify U and I accordingly, and terminale with any 1. E IR if T = 0.

(c) An extension to infinite bounds is easy, since t/ = oo iff/; = -oo, t)' = -oo
iff u;= oo. Step O may set T := !t/);e/1 U (t/');eJ„ with ft, / 11 given by (3.3), termi
nating with 1. given by (3.9) if I = 0. Tuus infinite breakpoints are effectively
ignored.

4 More refined updates

In a simple implementation based on (3.5)-(3.8), certain sums of (3.6) are
repeated in (3.8). We now give a more refined version of Algorithm 3.1 thai
elimina tes these redundancies.

Our refinement consists in using the following partition of the set/ [cf. (3.3)]
inio

lm :={i: IL < t/' :5 t/ <tu), (4.la)

ft:= {i: t/' s IL <I;< tu) and 111 := {i: IL < t/' < tu s I;), (4.lb)

with I= lm Uli Ul11, 11 = lm Ul1J11 = lm Ul11. Thuslm = I1nl11 ,l1 = 11 \I„ and
111 = 111 \ 11 index the middle, /ower and upper breakpoints of T = (t;);e1„u,1 U
{tfl;e1,.,u,,, . To shorten notation, for any subsets M, i, U of N, we Jet [cf. (3.7)]

(M) ·= '°' a;b;
P . L; d;'

ieM

. '°' b~ • '°' . '°' q(M) := L., i• s1(L) := L.,b;l;, s11 (U) := L.,b;u;.

ieM I ieL ieU

(4.2)

Algorithm 4.1
STEP O (/nitiation). Set IL := -oo, tu := oo, T := {t;);e1,.,U11 U {t/')iel,.,UJ„ with lm,

ft, 111 given by (4.1), p := p(M), q := q(M), s := s1(L) + s11 (U) with M, L, U
given by (3.2).

STEP 1 (Breakpoint selection). Choose a breakpoint t in T.

STEP 2 (Computing g(t)). Set Mm:= {i E lm : t/' SI :5 t/J. Mi:= {i E 11: IS t/).
M11 := {i E 111 : t/' s t). i := {i E 11 : t/ < t). fj := {i E /11 : I < t/').

~ Springer

(

.
'
:,

Breakpoint searching algorithms for the continuous quadratic knapsack problem

p := p + p(Mm) + p(M1) + p(M11), {J := q + q(Mm) + q(M1) + q(M11), S :=
s + s1(L) + s11 (U), g(t) = (p - tą) + s.

STEP 3 (Optimality check). If g(I) = r, stop with i.:= 1.
STEP 4 (Lower breakpoint removal). If g(t) > r, set IL := i, T := {! E T : 1 < t),

• • • . I • • •
p := p + p(M11), q := ą + q(Mu), ft:= (1 E /1 : t; = t), s := s + s1(L) + s1(/1).

STEP 5 (Upper breakpoint removal). If g(t) < r, set tu := 1, T := {! E T : t < t),
p := p + p(M1), q := ą + q(M1).J11 := (i E /11: t/' = t), s := s+s11 (U) +s11(!11)

STEP 6 (Stop ping criterion). If T cp 0, go to Step 1,else stopwith 1. given by (3.9).

The sums in Step 2 require a single scan of/ = fm U ft U 111 ; another scan
suffices for updating fm, 11 and 1 11 at Step 4 or 5 [cf. (4.1); for brevity, explicit
updates are omitted]. The work of Step 2 is comparable to that in using (3.5),
(3.6); however, relative to (3.8), Steps 4 and 5 save the work needed for (re)com
puting the sums p(M11), q(M11), etc., available from Step 2. Tuus the efficiency
estimates of Remark 3.3 remain valid for Algorithm 4.1. li remains to show thai
the algorithm is correct.

Theorem 4.2 Algorithm 4.l terminates with t. E T •.

Proof To validate the calculation of g(t) at Step 2, suppose 1 E (/L, tu) and (3.7)
holds (this is true initially; cf. Step O). Then (3.3) and (4.1) with IL 5 1 5 tu
imply thai Mm, M, and M11 form a partition of M := (i E / : 1r 5 i 5 t/),
with Mm = Mn fm, M1 = Mn fi, Mu = Mn 111 , whereas M together with
L = (i E / : t/ < i) and U = (i E / : 1 < tr) form a partition of/. Hence (3.6)
and (4.2) yield

~:>;x;(I) = p(M) - tq(M) + s1(L) + Su(U)
ie/

= p(Mm) + p(M1) + p(M11) - I[q(Mm) + q(M,) + q(M11)]

+s,(L) + s11(U).

Combining this with (3.5) and (3.7) shows thai Step 2 computes g(I) correctly.
Tuus, as long as (3.7) holds, Algorithm 4.1 may be identified with

Algorithm 3.1. We now show thai (3.7) is maintained by the updates of Steps 4
and 5, using superscript + for the updated quantities, e.g., p+.

First, suppose 1t = 1 at Step 4. Since IL 5 tt and tu does not change, u+ = U
by (3.2) and/\ 1+ splits into M+ \ M and L + \ L. The first set M+ \ M consists
of i E / such thai t)' 5 1 5 t/ and ę 5 tu 5 t/, so, since t)' < tu V i e /, it coincides
with the intersection of M and (ie/: tu 5 1/) =]11 [cf. (4.1)], which is M11 • The
second set L + \ L equals L := {i e / : 1/ 5 1) (tt = i), with L = {ie /1 : 1/ 5 i)
[using i< tu in (3.3)]. Tuus M+ =MU M11 -with Mn Mu = 0, L + =LU L
with L n L = 0, u+ = U. Further, L = L u 11 with L n l, = 0. Combining the
preceding relations with (3.7) and (4.2) gives p+ = p(M) + p(M11) = p(M+),
q+ = q(M) + q(M11) = q(M+), s+ = s1(L) + s11(U) + s,(L) = s1(L +i + s11 (u+).
Tuus (3.7) holds for the updated quantities.

~ Springer

K. C. Kiwiel

Next, suppose rt = t at Step 5. Since rt ::: tu and IL does not change, L + = L
by (3.2) and/\ J+ splits into M+ \ M and u+\ U. The first set M+ \ M consists
of i E. I such that t)' ::: i::: r; and 1/' :::: IL ::: t/, so, since IL < 1/ V i E /, it coincides
with the intersection of M and {i E /: t)' ::: tL) = 11 [cf. (4.1)], which is M1. The
second set u+ \ U equals U := U E / : 1 :::: tj') (tt = i), with U = (i E lu : t ::: t/'}
[using IL < i in (3.3)]. Thus M+ = Mu M1 with Mn M 1 = 0, u+ = U u[;
with U n [; = 0, L + = L. Further, U = D U lu with Dn lu = 0. Combining
the preceding relations with (3.7) and (4.2) gives p+ = p(M) + p(M1) = p(M+),

q+ = q(M) + q(M1) = q(M+), s+ = s1(L) + Su(U) + Su(U) = s1(L +) + s.,(U+).
Thus (3.7) holds for the updated quantities.

Il follows by induction that (3.7) always holds at Steps 2 and 6.
Upon termination with T = 0, 1, E T, by Remark 3.2(c). o

5 Decremental updates

Algorithm4.1 works with the quantitiesp = p(M), q = q(M),s = s1(L)+su(U),
incrementing them when M, Land U grow. Using the set [cf. (3.2), (3.3)]

K := {i: IL < f; and t)' <tu)= I UM= 11 U/., UM, (5.1)

we now describe a version of Algorithm 3.1 that employs the redefined
quantities

p = p(K), q = q(K) and s = s1(L) + su(U), (5.2)

decrementingp and q when K shrinks; this idea stems from [9,13].

Algorithm 5.1
STEP O (Initiation). Set IL := -oo, tu := oo, T := (f;};eI, U [1/'l;e1„ with ft, I„

given by (3.3), set p, q, s via (5.1), (5.2) with /, M, L, U given by (3.2).
STEP 1 (Breakpoint selection). Choose a breakpoint 1 in T.

STEP 2 (Compitting g(t)). Set l := {i E /1 : t/ < I}, U:= [i E / 11 : i < t/'), j, :=

p-p<ll-p<Vl, ą := ą-ą<ll-ą<DJ,s := s+s1<li+s.,(Vl,g(il = (ft-tąl+s.
STEP 3 (Optimality check). lf g(t) = r, stop with t, := /.

STEP 4 (Lower breakpoint remova/). lf g(i) > r, set IL := t, T := [t E T: t < t),

11 := li E 1, : t/ = i}, p := p - p(l) - p(ł1), q := q - q(ł) - q(l1), s :=

s + s1(ł) + s1(ł1), /1 := [i E 11 : t < t/), I., := (i E I., : i < t)').
STEP 5 (Upper breakpoint removal). If g(t) < r, set tu := t, T := [t e T : t < t),

ł., := {i E I., : t)' = t), p := p - p(U) - p(ł.,), q := q - q(V) - q(łu),
s := s+s.,(V) +s.,(łu), 11 := {i E 11: t/ < t), I.,:= (i Elu: t/' < t).

STEP 6 (Stopping criterion). If T ,,fa 0,go to Step 1,else stopwitht, given by (3.9).

The work of Step 2 in computing j,, q is proportional to 1L1 + I VI, whereas
that of Algorithm 4.1 is proportional to IMI, with IMI +Ili+ IVI = Ili (cf.
the proof of Theorem 4.2). Hence again the efficiency estimates of Remark 3.3
remain valid, and we need only show thai the algorithm is correct.

,© Springer

}.

Breakpoint searching algorithms for the continuous quadratic knapsack problem

Theorem 5.2 Algorithm 5.l terminates with 1. E T •.

Proof To validate the calculation of g(t) at Step 2, suppose re UL. tu) and (5.2)
holds (this is true initially; cf. Step O). Using (2.6), (3.2), (3.3), (4.2), (5.1) and
(5.2), we may express g(t) := LiEN b;x;(t) as

g(t) = L b;x;(t) + L b;l; + L b;u; = L b;x;(t) + s, (5.3a)
iEK iEL ie U iEK

where in the notation of Step 2 (with L, [; c K, L n [; = 0 from t/' ;<ó t/) we
have

L b;x;(t) = L b;x;(t) + L b;l; + L b;u;
iEK iEK\(LuU) ieL ieb

= [p (K \ cL u DJ) - tą (K \ cL u DJ)]
+s1(L) +su(D) (5.3b)

= [p(K) - p([) - p(D)] - t [ą(K) - ą(L) - ą(D)]

+s1(L) +su(D).

Relations (5.3) and (5.2) show thai Step 2 computes g(t) correctly.
Tuus, as long as (5.2) holds, Algorithm 5.1 may be identified with Algo

rithm 3.1. We now show that (5.2) is maintained by the updates of Steps 4 and
5, using superscript + f?r the updated q_uantities, e.g., p+ ._ _

First, suppose t! = t at Step 4. Let L := [i E ft : t/ :<ó t). Then K = K+ UL
with K+ = [i: t < t/ and t/' < tu) and K+ n L = 0 by (5.1) and (3.3), whereas
the partition (3.2) yields Lu U = N\ Kand L + u u+ = N\ K+ with u+ = U
and L n U = 0, so L + = L u L with L n L = 0. Further, L = Lu]1 with
L n 11 = 0 at Step 2. Combining the preceding relations with (5.2) and the
rules of Step 4 gives p+ = p(K) - p(L) = p(K+), q+ = q(K) - ą(L) = q(K+),
s+ = s1(L) +su(U) +s1(L) = s1(L +) +su(U+). Tuus (5.2) holds for the updated
quantities.

Next, suppose 1t = t at Step 5. Let {; := (i E fu : t :::= t/'l- Then K = K+ U {;
with K+ = (i: IL < t/ and tf < t) and K+ n{;= 0 by (5.1) and (3.3), whereas
the partition (3.2) yields L U U = N\ Kand L + U u+ = N\ K+ with L + = L
and {; n L = 0, so u+ = U U {; with U n {; = 0. Further, {; = [; u lu with
[; n fu = 0 at Step 2.

Combining the preceding relations with (5.2) and the rules of Step 5 gives
p+ = p(K) - p(U) = p(K+), q+ = q(K) - q(U) = q(K+), s+ = s1(L) + s11 (U)+
s1(U) = s1(L +) + Su(U+). Tuus (5.2) holds for the updated quantities.

Tuus, by induction, (5.2) always holds at Steps 2 and 6.
When T = {t/);Efi U {lf};E,,. becomes empty, 11 =fu= 0. Then (3.3) and (5.1)

show thai (5.2) with K = M reduces to (3.7), so 1. E T. by Remark 3.2(c). o

~ Springer

K. C. Kiwiel

Remark 5.3 An asymmetric version of Algorithm 5.1 is obtained by replacing
L with L := {i E 11 : 1/ ~ 1} at Steps 2 and 4 with 1, omitted; alternatively
we may replace U by U := {i E / 11 : 1 ~ t/'J, omitting p(ł,,), etc. In fact both
i:_ep!acements may be ysed whenever I< u (since (5.3b) with L, [; replaced by
L, U only needs L n U = 0] .

6 Simplifications for quadratic resource allocatiou

The quadratic resource allocation (QRA) problem is a special instance of P
with I; = O and u; = oo for all i. In this case Algorithm 4.1 simplifies as follows
(cf. Remark 3.4(c)).

Algorithm 6.1 (for QRA: I; = O, u; = oo Y i E N)
STEP O (Initiation). Set IL := -oo, tu := oo, /:=N, T ,= {t/);eN, p := 0, q := 0,

s:= O.
STEP 1 (Breakpoint selection). Choose a breakpoint 1 in T.
STEP2 (Computing g(t)). Set M := {i E /: 1 ~ 1/J,j, := p+p(M),q := q+q(M),

g(t) = j, - tą.
STEP 3 (Optima/iły check). If g(t) = r, stop with 1. := 1.
STEP 4 (Lower breakpoint removal). If g(t) > r, set IL := 1, T := (1 E T: 1 < t},

/ := (i E /:I< f;).
STEP 5 (Upper breakpoint removal). If g(1) < r, set tu := 1, T := (I E T: I < 1}.

p := j,, q := q, I:= {i E /: f; < I}.
STEP 6 (Stopping criterion). If T fe 0,go to Step 1, else stopwith 1. given by (3.9).

In a parallel development, also Algorithm 5.1 may be simplified as follows.

Algorithm 6.2 (for QRA: I; = O, u; = oo Y i E N)
STEP O (Initiation). Set IL := -oo, tu := oo, / := N, T := (1/};eN, p := p(N),

q := q(N), s := O.
STEP 1 (Breakpoint selection). Choose a breakpoint 1 in T.

STEP 2 (Computing g(1)). Set L := (i E / : f; < 11, j, := p - p(L), q := q - q(L),
g(1) = f, -1q.

STEP 3 (Optima/ity check). If g(1) = r, stop with 1. := 1.
STEP 4 (Lower breakpoint removal). If g(1) > r, set IL := 1, T := (IE T: I < 1},

1 := UE I: r; = 1]. p := f, - p(ł), ą := ą - q(l), 1 := UE 1: 1 < f;}.
STEP 5 (Upper breakpoint remova/). If g(I) < r, set tu := 1, T := (1 E T : I < 1},

/ := {i E /: f; < 1).
STEP 6 (Stop ping criterion). If T fe 0,go to Step 1,elsestopwith 1. given by (3.9).

Note the complementary features of both algorithms, which also appear in
their modifica tions discussed belo w.

~ Springer

1'

Breakpoinl searching algorithms for 1he continuous quadratic knapsack problem

Remark 6.3 (a) For M := {i E I : 1 < r;} and l := {i E I : 1/ = 1), we have
M = MU 7 with Mn J = 0, and p(I) - tq(ł) = O from (a; - t/b;)/d; = I; = O
V i EJ; thus p(M) - tq(M) = p(M) - tq(M). Hence M may replace Mat Step 2
of Algorithm 6.1, but then Step 5 musi set p := fj + p(I), q := q + q(I).

(b) In the asymmetric version of Algorithm 6.2 discussed in Remark 5.3, the
set L := {i EI: r; :5 t) replaces Lat Step 2, and Step 4 sets p := fj, q := q.

7 A double-median approach

In the spirit of [6, Sect. 3], we now consider a modilication of Algorithm 3.1
in which Steps 1-5 are replaced by a call to the following procedure thai may
update both IL and tu.

Procedure 7.1
STEP PO: Set t := median{t;liel• If tu :5 t, go to Step P4.
STEP Pl: If g(t) = r, stop with /• := l.
STEP P2: If g(1) > r, set IL := 1 and exit, else set tu := 1.
STEP P3: Set C := {i EI: 1/,t/' i (/L,tu)). If ICJ::: ¼III, exit.

STEP P4: Set i:= median{t)'l;ei• where ł := {i E I: 1 :5 t/J.
STEP P5: If g(i) = r, stop with 1. := i.
STEP P6: If g(i) > r, set IL := i, else set tu := i.

After IL, tu are updated to 1!, 1t, 1 and Tare updated to 1+ and T+ via (3.3),
(3.4).

Lemma 7.2 Procedure 7.1 either terminates, or finds t!, 1t such thai 11+1 :5 ¾lfl.

Proof At Step PO, IL < t because IL < t/ V i E / by (3.3). If Step P2 exits
with t! = i, then {i E 1 : 1/ :5 1) c L + c I\ 1+; otherwise, tu is decreased to
1. If Step P3 exits, then C = 1 \ [+. If Step P4 is entered from Step P3, then
IE UL,lu). Indeed, I :5 IL would imply CM:= {i Eł: t/' :5 t) CC using tu= l,
with ICMI ::: ½Ili ::: ¼Ili. whereas tu :5 i would yield Cu:= {i EJ: i :5 t!') c C
with !Cui ::: ½III ::: ¼Ili. contradicting ICJ < ¼1/1. Also i E UL,tu) if Step P4
is entered from Step PO with tu :5 1, since by (3.3), tu :5 1 :5 r; V i E] implies
I/' E (IL, tu) V i E] and hence i E UL, tu). If rt = i at Step P6, then CM := {i E

l: t)' :5 i} c Af+ from l C {i E 1: tt :5 1/J, with ICMI ::: ¼1/1. Otherwise rt = t
yields Cu := {i E J: t :5 t)') c u+ with !Cui ::: ¼ 1/1. In each case I\ J+ contains

a set of cardinality at least ¼Ili; hence 11+1 :5 ¾1/1. o

Remark 7.3 (a) The exits in Steps P2 and P3 of Procedure 7.1 are intended to
save work in finding I and g(t) . Note thai ICJ is easily determined while comput
ing g(t). Both exits may be replaced by an exit at Step P4 when I <le UL, tu), stili
ensuring 11+1 :5 ¾Ili; this version corresponds to the algorithm in [6, Sect. 3).

~ Springer

K. C. Kiwiel

(b) Procedure 7.1 requires order 111 operations for g(t) and g(I) computed
via (3.5)-(3.8) as in [6, Sect. 3], or as in Algorithms 4.1 and 5.1. As before,
the condition T = 0 (or equivalently l = 0) serves as the stopping criterion.
Since 111 is initially n and is reduced by at least a quarter at each iteration, the
overall complexity is 0(11) as in the single median versions of Algorithms 3.1,
4.1 and 5.1.

8 Removing more breakpoints at each iteration

Consider the following modification of Algorithm 3.1 which removes more
breakpoints from the set Tas in [7, Algorithm 2.3]. Replace Steps 4 and 5 by
STEP 4' (Lower breakpoint removal). If g(t) > r, find the right adjacent break-

point i := min(t E T: I < t); if i < oo and g(t) > r, set IL := i, T := {t E T:
i< t), else set tL := t, tu:= min{tu,1) and stop with 1. given by (3.1), or (3.9)
if tu= oo.

STEP 5' (Upper breakpoint removal). If g(t) < r, find the left adjacent break
point 1 := max(t E T: I < t); if 1 > -oo and g(l) < r, set tu := 1, T := {IE T:
I< 1), else set IL:= max{IL,1), tu:= I and stop with t. given by (3.1), or (3.9)
if IL= -oo.
By (2.6) and (3.5), because t and 1 are consecutive breakpoints, we may

compute

g(t) = g(i) - (i- t)[q + q(l;_;)] with l;,; := { i El: i,i E [t)',t/]) (8.1)

in order 111 operations. Tuus the complexity estimates of Remark 3.3 remain
valid. Yet, relative to the original version, this modification will typically remove
only one more breakpoint; it is not elear whether this is worth the additional
effort in finding i and g(i). The version of (7, Algorithm 2.3] is less aggressive,
setting T := (1 E T: 1 ~ I) in Step 4' and T := {IE T: I~ i) in Step 5'.

Algorithms 4.1 and 5.1 may be modified similarly, using

g(t) = g(i) - (i - il { ! ? - ą<?1l l
I ą - q(l,,) J

if i < 1,
if 1 < i,

(8.2)

for q available from Step 2. Of course, 1 replaces t in Steps 4 and 5. More spe
cifically, !et J, := [i E fi : t/ = i), J,, := [i E 1,, : t/' = i), jl := [i E 11 : 1/ = i),
j,, := {i EJ,, : rr = 1). In Algorithm 4.1, p, q, s increase by p(ju), q(ju), s1(ł1)
in Step 4, and by p(j1), q(j1), s1 (ł,,) in Step 5, respectively. In Algorithm 5.1,
subtract p(ł1), q(ł1) from p, q, and add s1(ł1) to sin Step 4, and do the same in
Step 5 with 11 replaced by I,,. The derivation of these updates and of (8.2) is
quite long, and hence omitted.

~ Springer

Breakpoint searching algorithms for the continuous quadratic knapsack problem

9 Relations with other methods

The relations of Algorithm 3.1 and its modifications with the two earliest
methods of [6, 7] were discussed in Sects. 7, 8. In this section we highlight some
features of the remaining O(n) methods of [9, 13, 18, 19,23]. First, we acknowl
edge thai our framework employs severa! ideas introduced in these works. For
instance, Algorithm 3.1 may be regarded as a simplified variant of the method of
[23, Sect. 2], Algorithms 6.1 and 6.2 employ the updates of [18] and (9, Sec!. 1.2],
respectively, whereas Algorithm 5.1 was inspired by thai in [13, Sec!. 3]. On the
other hand, the algorithms of [9, 13, 18, 19,23] employ more complex choices
of breakpoint subsets for which the median is found. Although their choices
work on most problems, it turns out they may cycle on simple examples. To see
this, we first describe some "dangerous" choices. Afterwards, we discuss each
algorithm and suggest a "cure", i.e., a convergent modification; to save space,
fairly obvious details are omitted.

9.1 Dangerous modifications

Steps 4 and 5 of Algorithm 3.1 reduce the set T independently of how we choose
I in T. The following examples (see Figs. 2, 3) illustrate the need for such reduc
tions when 1 := median(T) at Step 1. Le! e := (1, ... , 1) E IR" denote the unit
vector.

Example 9.1 Suppose Steps 4 and 5 of Algorithm 3.1 set T := T n [IL, tu]. For
the problem with n= 3, d = b = e, a= O, r = -l, I= (0,-1,-2), u= O,
we have T. = {0.5] and To = {O, 1, 2, O, O, OJ, but !his version will loop infinitely
with 1 = O, g(t) = O.

(a) (b)

x 1 (t) = O

x 2 (t)
-1

x,(t)
-2

r= -1

-2

g(t)
-3

Fig. 2 a Illustration of Example 9.1. b Illustrarion of Example 9.2

-1 O

x1 (t) = x,(t)
1

-1 O t. l

~ Springer

K. C. Kiwiel

(a) (b)

x 3 (t)

- 0.2 -O.I O O.I 0.2 -1 O

- - - - - ---- -- 1 = r

t,:
g(t) IL,

.r = 1 ---

-0.2 -O.I O O.I 0.2 -1 O t, = I 2

Fig. 3 a Illustration of Example 9.3. b Illustration of Example 9.4

Example 9.2 Consider QRA with n = 5, d = b = e, a = (1, 1, O, O, O) , r = 1,
T+ = (0.5). Algorithm 6.2, starting with T = (1, 1, O, O, OJ, generates IL = t = O,
T = (1, 1), I = (1, 2), then tu = t = 1, T = 0, terminating with I+ = 0.5. Now,
suppose Step 5 sets T := (t E T: t ::: t), I := {i E / : 1/ :::: t} , and Step 6 stops if
ITI :::: l. This version loops infinitely with tu= 1 = 1, T = (1, 1).

Example 9.3 Consider QRA with n = 3, d = b = e, a = (O, 0.1, 0.2), r = 1,
T. = (-Jjjl- Algorithrn 6.1, starting with T = (0,0.1,0.2}, generates tu= 1 =
O.l, T = (OJ, p = 0.3, q = 2, then tu = t = O, T = 0, p = 0.3, q = 3, terminating
with I+ = -Jjj - Now, suppose that when t = t~, at Step 1 for some m E /,

Step 4 sets T := (I E T : i < t) U (I), I := (i E / : i < t/) U (m), Step 5 sets
T := (t E T : t < t) u (tj,/:= {i E /: t/ < t) U {m), and Step 6 stops if ITI :::: 2.
Then the first iteration terminates with I+ = - ,k.

As will be seen, several methods fail on the following sim ple example.

Example 9.4 Consider QRA with n = 3, d = b = e, a = (0, O, 2) , r = l ,
T. = (1). Algorithms 6.1 and 6.2, starting with T = {O, 0, 2), generate IL =i= O,
T = (2), then tu = t = 2, T = 0, terminating with I+ = 1.

9.2 The algorithm of Pardalos and Kovoor

In our notation, the algorithm of [23, Sect. 2], starting with T := To U (-oo, oo},
sets t := median(T), computes g(1) via (3.5), sets IL := i if g(t) ::: r, tu := i if
g(t) :::: r, T := fn UL,tu], updatingp, q,s as in (3.8) until / = 0. First, without
reducing T, it loops on Example 9.1. Second, the updates of (3.8) are not valid
when IL = tu; this makes it fail on the following example.

~ Springer

Breakpoint searching algorithms for the continuous quadratic knapsack problem

(a) (b)

--~l__.__..._: x,(t):

-2

t. =l -5 -4 -3 -2 - 1 O

-1

r = -2

-3

-4 -5 -4 -3 -2 t. -1

Fig. 4 a Illustration of Example 9.5. b Illustration of Example 9.7

3
2=r
I

Example 9.5 For n= 2, Jet d = b = e, a= O, r = -2, I= (-2,-2), u= (-1,0).
Then T. = (1) (see Fig. 4) and x* = (-1, -1), but the algorithm of [23, Sec!. 2]
delivers the wrong solution (-0.5, -0.5).

A simple cure is to make the algorithm of [23, Sec!. 2] fit the pattern of
Algorithm 3.1 by replacing some of its nonstrict inequalities by strict ones.

9.3 The algorithm of Cosares and Hochbaum

In our notation, the algorithm of [9, Sect. 1.2] differs from Algorithm 6.2 in
two aspects. First, it employs the modification of Example 9.2; hence it cycles
on that example. Second, assumming implicitly thai 1/1 = 1 in Step 4, it fails on
Example 9.4 (producing t. = -0.5). The cure is simple: in Step 3 of Routine
Q-Alloc [9, p. 99]. replace am/bm, 1/bm, a; :c: ·& by Li:a;=a,,, a;/b;, Li:a;=am 1/b;,
a; > ó, and in Step 4, ILI 2: 2 by ILI 2: 1.

9.4 The algorithm of Maculan and de Paula

In our notation, the algorithm of [19] differs from Algorithm 6.1 in two aspects
(note that Step 3 in [19, Sect. 3] should set S := {XjU E Jl). First, it employs the
modification of Example 9.3, but only stopping in Step 4 if IT/ :'.': 2, or in Step 5
if /Tl :'.': 1; hence it cycles on thai example (assuming median{0,0.1) = 0.1).
Second, its calculation of g(t) is wrong: it terminates on Example 9.4 with
'• = -1. A natura! cure is to simplify the modification of Remark 6.3(a) for
d = b = e, using t/ = a;,p(M) = LieMa;, q(M) = /Ml.

~ Springer

K. C. Kiwiel

9.5 The algorithm of Maculan, Minoux and Plateau

In our notation, the algorithm of [18] differs from Algorithm 6.1 in three aspects
(note thatp-,p1 should be swapped with q-, ą1 in calculatinga in [18, Sect. 3]).
First, employing the modification of Example 9.3, it fails on that example (pro
ducing 1, = -ło)- Second, it fails on instances where g(t) < r never occurs, such
as Example 9.4 (producing I, = -fi). Third, for n :5 2, it only yields I, = -fj.
The cure is to reorganize its main loop to fit the patiem of Algorithm 6.1,
modified as in Remark 6.3(a).

9.6 The algorithm of Hochbaum and Hong

The algorithm of [13, Sect. 3] is close in spirit to the asymmetric version of
Algorithm 5.1 of Remark 5.3 (with L replaced by L), modified as in Exam
ple 9.2; hence it may cycle.

Example 9.6 For n= 1, Jet d = b =u= e, a= 2, r = 1, I= O; then T, = (ł }
Assuming median{-2, -1) = -2, the algorithm of [13, Sect. 3] cycles on this
example.

Moreover, its updates ofp, q,s and the finał formula fort, are wrong.

Example9.7 For n= 3, let d = b = e, a= (0,-1,-2), r = 2, I= O, u= 3e;

then T, = (-ł} (see Fig. 4). The asymmetric version of Algorithm 5.1, starting

with T = {O, -1, -2, -3, -4, -5), generates IL = 1 = -2, T = {O, -1), then
tu = 1 = -1, T = 0, terminating with t, = -r The algorithm of [13, Sect. 3]
stops with 1, = 1 or 1, = O, depending on whether !ower or upper medians are
chosen.

A natura! cure is to simplify the modification of Remark 5.3 (with L replaced
by L) for b = e, l = O.

10 Numerical results

Two versions of Algorithm 3.1 were programmed in Fortran 77 and run on a
notebook PC (Pentium M 755 2 GHz, 1.5 GB RAM) under MS Windows XP.
The first version computed exact medians of T via the method of [14]. The
second version chose t in T at random as in Remark 3.3(b). We also give results
for the modified Brucker method (Procedure 7.1), the original Brucker method
[cf. Remark 7.3(a)], and the modified Calamai-More version of Sect. 8 (which
behaved like the original version [7, Algorithm 2.3] in our tests).

Our test problems were randomly generated with n ranging between 50,000
and 2,000,000. As in [4, Sect. 2], all parameters were distributed uniformly in
the intervals of the following three problem classes: (1) uncorrelated: a;, b;, d; E

(10, 25]; (2) weakly correlated: b; E [10, 25], a;, d; E [b; - 5, b; + 5]; (3) strongly

~ Springer

Breakpoint searching algorithms for the continuous quadratic knapsack problem

correlated: b; E [10, 25), a; = d; = b; + 5; further, /;, u; E [1, 15), i E N,
, E [b T /, b Tu]. For each problem size, 20 instances were generated in each class.

Tables 1, 2, 3, 4 and 5 report the average, maximum and minimum run limes
over the 20 instances for each of the listed problem sizes and classes, as well as
overall statistics.

Table 6 reports the finał iteration numbers for the tested methods.
As expected, the average run limes grew linearly with the problem size.
Algorithm 3.1 with exact medians was faster than the other versions by abo ut

20%.
The relatively good performance of the exact median versions was due to the

high efficiency of the median finding routine of [14]. Random median selections
performed quite well on average, but exhibited much larger variations in run
limes.

Table 1 Run times of Algorithm 3.1 with exact medians (in seconds}

n Uncorrelated Weakly correlated Strongly correlated Overall

Avg Max Min Avg Max Min Avg Max Min Avg Max Min

50,000 0.02 o.os 0.02 0.02 0,03 0,02 0,03 0.05 0.02 0,02 0.08 0,02
I00,000 0.05 0.06 0.05 0.05 0.06 0.05 0.05 0.06 0.05 0.05 0.06 0.05
500,000 0.27 0.28 0.25 0.27 0.28 0.26 0.27 0.28 0.26 0.27 0.28 0.25
1,000,000 0.53 0.55 0.51 0.54 0.55 0.51 0.54 0.55 0.52 0.54 0.55 0.51
1,500,000 O.BO 0.82 0.76 O.BO 0.82 0.77 O.BO 0.82 0.77 O.BO 0.82 0.76
2,000,000 I.OB 1.09 1.02 I.OB 1.10 1.02 I.OB 1.09 1.03 I.OB 1.10 1.02

Table 2 Run limes of Algorithm 3.1 with approximate medians

n Uncorrelated Weakly correlated Strongly correlated Overall

Avg Max Min Avg Max Min Avg Max Min Avg Max Min

50,000 0.03 0.05 O.Ol O.QJ 0.06 O.Ol O.QJ 0.06 0.02 0.03 0.06 O.Ol
I00,000 0.05 O.OB O.QJ 0.06 O.IO 0.04 0.05 O.OB 0.04 0.05 O.IO 0.03
500,000 0.30 0.38 0.17 0.31 0.42 0.18 0.30 0.50 0.17 0.30 0.50 0.17
1,000,000 0.63 0.97 0.35 0.60 0.77 0.31 0.60 0.95 0.26 0.61 0.97 0.26
1,500,000 0.90 1.35 0.52 0.86 1.26 0.58 0.95 1.44 0.41 0.90 1.44 0.41
2,000,000 1.18 1.77 0.86 1.38 2.IO 0.76 1.30 2.13 0.64 1.29 2.13 0.64

Table 3 Run times of the modified Brucker algorithm

n Uncorrelated Weakly correlated Strongly correlated Overall

Avg Max Min Avg Max Min Avg Max Min Avg Max Min

50,000 0.02 0.05 O.Ol 0.03 0.06 0.02 0.03 0,07 0.02 0.03 0.07 O.Ol
I00,000 0.06 0,07 0.04 0.06 0,07 0.05 Q,07 0.09 0.05 0.06 0.09 0.04
500,000 0.31 0.38 0.23 0.33 0.35 0.24 0.33 0.36 0.24 0.32 0.38 0.23
1,000,000 0.64 0.74 0.47 0.66 0.71 0.47 0.62 0.71 0.49 0.64 0.74 0.47
1,500,000 0.98 1.11 0.73 0.93 1.06 0.73 0.93 1.05 0.72 0.95 1.11 0.72
2,000,000 1.31 1.48 0.96 1.26 1.40 0.99 1.27 1.43 0.97 1.28 1.48 0.96

~ Springer

K. C. Kiwiel

Table4 Run limes of Brucker's algorithm

Uncorrelated Weakly correlated Strongly correlated Overall

Avg Max Min Avg Max Min Avg Max Min Avg Max Min

50,000 0.03 0.03 o.oi 0.03 0.06 0.02 0,03 0.06 0.02 0.03 0.06 O.Ol
100,000 0.06 0,07 o.os 0.06 O.o? o.os 0,07 0,07 0.06 0.06 0,07 0.05
500,000 0.33 0.38 0.24 0.34 0.37 0.28 0.33 0.36 0.26 0.33 0.38 0.24
1,000,000 0.66 0.76 0.49 0.69 0.79 0.52 0.65 0.72 0.52 0.67 0.79 0.49
1,500,000 I.Ol 1.13 0.85 I.Ol 1.17 0.84 0.99 1.07 0.80 1.00 1.17 0.80
2,000,000 1.35 1.51 I.IO 1.31 1.45 1.00 1.33 1.44 1.08 1.33 1.51 1.00

Table 5 Run times of the Calamai-Morć algorithm

n Uncorrelated Weakly correlated Strongly correlated Overall

Avg Max Min Avg Max Min Avg Max Min Avg Max Min

50,000 0.02 0.03 0.02 0,03 0.03 0.02 0,03 0.03 0.02 0.03 0,03 0.02
100,000 0.06 O.o? 0.05 0.06 0,07 0.06 0.06 0,07 0.06 0.06 0,07 0.05
500,000 0.32 0.34 0.31 0.33 0.34 0.31 0.33 0.34 0.32 0.33 0.34 0.31
1,000,000 0.65 0.67 0.62 0.65 0.66 0.63 0.66 0.67 0.64 0.65 0.67 0.62
1,500,000 0.98 1.00 0.94 0.98 1.00 0.95 0.98 1.00 0.94 0.98 1.00 0.94
2,000,000 1.31 1.34 1.25 1.31 1.33 1.25 1.32 1.33 1.26 1.31 1.34 1.25

Table 6 Iteration numbers for the tested algorithms

Method n Uncorrelated Weakly Ć:orrelated Strongly correlated

Avg Max Min Avg Max Min Avg Max Min

Alg. 3.1 exact 1,000,000 20 21 20 21 21 21 20 21 20
2,000,000 21 22 21 22 22 22 21 22 21

Alg. 3.1 appr. 1,000,000 30 43 19 29 37 20 27 39 16
2,000,000 29 40 20 31 41 24 30 43 19

Mod. Brucker 1,000,000 19 25 11 19 23 13 19 25 15
2,000,000 20 23 16 19 26 13 20 24 15

Orig. Brucker 1,000,000 18 22 11 18 22 13 18 22 12
2,000,000 19 24 13 19 24 13 19 24 13

Calamai-Morć 1,000,000 18 20 16 19 20 17 18 20 16
2,000,000 19 21 13 20 21 16 20 21 17

For exact medians, the modified Brucker method was slightly faster than the
original Brucker method, and their run times were less stable than those of
Algorithm 3.1. The Calamai-More method performed similarly to the Brucker
variants on average, but its run limes were more stable. Relative to
Algorithm 3.1, the extra complications of the Brucker and Calamai-More vari
ants did not pay in practice.

More extensive numerical tests of Algorithms 3.1, 4.1 and 5.1, and compari
sons with variable fixing methods [16] will be given elsewhere [15].

Acknowledgments I would like to thank the Associate Editor and the three anonymous referees
for their helpful comments.

~ Springer

Breakpoint searching algorithms for the continuous quadratic knapsack problem

References

1. Berman, P., Kovoor, N., Pardalos, P.M.: Algorithms for the least-distance problem. In:
Pardalos, P.M. (ed.) Complexity in Numerical Optimization, pp. 33-56. World Scientific,
Singapore (1993)

2. Bitran, G.R., Hax, A.C.: Disaggregation and resource allocation using convex knapsack prob
lem, with bounded variables Manage. Sci. 27, 431-441 (1981)

3. Bretthauer, K.M., Shetty, B.: Quadratic resource allocation with generalized upper bounds.
Oper. Res Leu. 20, 51-57 (1997)

4. Bretthauer, K.M., Shetty, B., Syam, S.: A branch and bound algorithm for integer quadratic
knapsack problem• ORSA J. Comput. 7, 109-116 (1995)

5. Bretthauer, K.M., Shetty, B., Syam, S.: A projection method for the integer quadratic knapsack
problem. J. Oper. Res. Soc. 47, 457-462 (1996)

6. Brucker, P.: An O(n) algorithm for quadratic knapsack problems. Oper. Res. Lett. 3, 163- 166
(1984)

7. Calamai, P.H., More, J.J.: Quasi-Newton updates with bounds. SIAM J. Numer. Anal. 24,
1434-1441 (1987)

8. Carmen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: In1roduction to Algorithms, 2nd edn.
MIT Press, Cambridge (2001)

9. Cosares, S., Hochbaum, D.S.: Strongly polynomial algorilhms for the quadratic transporlation
problem wilh a fixed number of sources. Ma1h. Oper. Res 19, 94-111 (1994)

10. Cottle, R.W., Duvall, S.G., Zikan, K.: A Lagrangean relaxation algorithm for the constrained
matrix problem. Naval Res. Logist. Quart. 33, 55-76 (1986)

11. Held, M., Wolfe, P., Crowder, H.P.: Validation of subgradient optimization. Math. Program. 6,
62-88 (1974)

12. Helgason, K., Kennington, J., Lali, H.: A polynomially bounded algorithm for a singly con
strained quadratic program. Math. Program. 18, 338- 343 (1980)

13. Hochbaum, D.S., Hong, S.P.: About strongly polynomial lime algorithms for quadratic optimi
zation over submodular constraints. Math. Program. 69, 269-309 (1995)

14. Ki wiei, K.C.: On Floyd and Rivest's select algorithm. Theor. Comput. Sci. 347, 214-238 (2005)
15. Kiwiel, K.C.: Bracketing methods for the continuous quadratic knapsack problem. Technical

report . Systems Research Institute, Warsaw (2006) (in preparation)
16. Kiwiel, K.C.: Variable fixing algorithms for the continuous quadratic knapsack problem.

Technical report. Systems Research Institute, Warsaw (2006) (in preparation)
17. Luss, H., Gupta, S.K.: Allocation of effort resources among competing activities. Oper. Res.

23, 360-366 (1975)
18. Maculan, N., Minoux, M., Plateau, G.: An O(n) algorithm for projecting a vector on the inter

section of a hyperplane and R'.J.. RAI RO Rech. Oper. 31, 7-16 (1997)
19. Maculan, N., de Paula, G.G., Jr.: A linear-time median-finding algorithm for projecting a vector

on the simplex of R". Oper. Res. Lett. 8, 219-222 (1989)
20. Megiddo, N., Tamir, A.: Linear time algorithms for same separable quadratic programming

problems. Oper. Res Lett. 13, 203-211 (1993)
21. Michelot, C.: A finite algorithm for finding the projection of a point onto the canonical simplex

of R". J. Optim. Theory Appl. 50, 195-200 (1986)
22. Nielsen, S.S., Zenios, S.A.: Massively parallel algorithrns for singly cons1rained convex pro

gram• ORSA J. Comput. 4, 166- 181 (1992)
23. Pardalos, P.M., Kovoor, N.: An algorithm for a singly constrained class of quadratic programs

subject to upper and lower bounds Math. Program. 46, 321-328 (1990)
24. Robinson, A.G., Jiang, N., Lenne, C.S.: On the continuous quadratic knapsack problem. Math.

Program. 55, 99-108 (1992)
25. Shetty, B., Muthukrishnan, R.: A parallel projection for the multicommodity network model.

J. Oper. Res. Soc. 41, 837-842 (1990)
26. Ventura, J.A.: Computational development of a Lagrangian dual approach for quadratic net

works. Networks 21, 469-485 (1991)
27. Zipkin, P.H.: Simple ranking methods for allocation of one resource. Manage. Sci. 26, 34-43

(1980)

~ Springer

