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A THERMODYNAMIC APPROACH OF PHASE-FIELD 
MODELLING OF THERMOELASTIC MATERIALS 

IRENA PAWŁOW 

ABSTRACT. The goal of this paper is to work out a thermodynamical set­
ting for phase-field models with conserved and nonconserved order para­
meters in thermoelastic materials. Our approach consists in exploiting the 
second law in the form of the entropy principle according to I. Milller and 
I. S. Liu which leads to the evaluation of the entropy inequality with mul­
tipliers. 

As the main result we obtain a generał scheme of phase-field models which 
involves an arbitrary extra vector field. We explain the presence of such a 
field in the light of Edelen 's decomposition theorem asserting a splitting of a 
solution of the dissipation inequality into a dissipative and a nondissipative 
part. For particular choices of this extra vector field we obtain known 
schemes with either modified entropy equation or modified energy equation. 
A detailed comparison with severa! known phase-field models, in particular 
Cahn-Hilliard and Allen-Cahn models in the presence of deformation and 
heat conduction, will be presented in a forthcoming paper [Paw06cj. 

J( eywords: phase-field models, thermoelastic materials, order parame­
ters, conserved and nonconserved dynamics. 

Mathematic Subject Classification: 74A30, 35K25, 35Q72, 35L20. 

1. lNTRODUCTION 

Phase-field approaches to modelling of phase transitions in various conserved 
and nonconserved systems have gained a lot of popularity during the last years. 
Among the mostly known and broadly investigatecl we mention the Caginalp 
model of solid-liquid phase transitions 1Cag86], Penrose-Fife models with con­
servecl and nonconservecl order parameter IPenFife90J, IPenFife93], moclels due 
to Fried- Gurtin lfriGur93], [FriGur94J, Gurtin 1Gur96J, Fremond (Frem02], 
IFremMi96], and Falk 1Falk82], (Falk90] for phase transitions in solids, in par­
ticular phase separation, ordering in alloys, damage and shape memory prob­
lems. 

The phase-field models postulate one or more order parameters as indicators 
of the state of the materiał, in adclition to the usual ones such as temperature, 
elastic strain etc. In models of this type - 011 the contraty to sharp interface 
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elastic strain etc. In models of this type - on the contraty to sharp interface 
ones - the order parameters vary continuously in the medium, including the in­
terfacial regions between the phases. This is due to the fact that the phase-field 
models are governed by a potentia! of Landau-Ginzburg type which depends 
on the order parameter and its gradient. 

In most of the Iiterature the derivations of phase-field models are based on 
variational arguments and adapt concepts from classical equilibrium thermo­
dynamics in nonequilibrium situations. 

Having in mind severa! objections to variational derivations, in particular 
not sufficient generality of postulated constitutive equations, E. Fried and M. 
E. Gurtin have developed in a line of their papers IFriGur93], IFriGur94], 
IFriGur99], !Gur96] a thermodynamical theory of phase transitions based on 
a microforce balance in addition to the basie balance Iaws and and a mechan­
ical version of the second law. Parallel to that theory M. Fremond 1Frem02], 
IFremMi96] has proposed a theory based on microscopic motions as a tool of 
modelling of various phase transitions, specifically shape memory and damage 
problems. Despite of different ideas Fremond's approach bears same resem­
blance to the Fried- Gurtin theory. 

Another approach to modelling phase transitions has been proposed in 
IAitPaw95], [AltPaw96) and applied in IPawOOa], [ PawOOb], IPawOOc). This 
approach consists in exploiting the second law in the form of the entropy prin­
ciple according to I. Miiller [Mul85], complemented by the Lagrange multipliers 
method suggested by I. S. Liu ILiu72). Such method leads to the evaluation of 
the entropy inequality with multipliers, known as the Miiller-Liu inequality. 
Recently the multipliers-based approach was applied for deriving generalized 
Cahn-Hilliard and Allen- Cahn models coupled with elasticity (see 1Paw06a]) . 
A comparison with the Fried- Gurtin theory based on a microforce balance 
showed coincidence of results and several interesting connections. 

We point out that all the above mentioned thermodynamical approaches 
allow to obtain models with much mare generał structure than those introduced 
by variational arguments. 

The goal of the present paper is to work out a generał thermodynamical 
setting for phase-field models with conserved and nonconserved order param­
eters in thermoelastic materials by means of the multipliers-based approach. 
Our ultimate aim is to obtain a generał class of thermodynamically consistent 
schemes for Cahn-Hilliard and Allen- Cahn models - two central equations in 
materials science - in the presence of deformation and heat conduction. This 
will be presented in a sep ar a te paper [ Paw06c) where we discuss the generał 
thermodynamic scheme in severa! special situations and compare the results 
with the mentioned above well-known phase-field models. In particular, we 
shall consider there the Cahn- Hilliard and Allen-Cahn models coupled sepa­
rately either with elasticity or with thermal efects. The latter case allows 
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to enlighten a generał question of particular interest in phase-field modelling 
whether to modify the energy or the entropy equation (for related discussion 
see e.g. [FGM06]). In this respect the answer given by the present paper is 
that both variants of the schemes with extra energy or extra entropy flux a.re 
thermodynamically consistent and arise in dependence on whether there ap­
pears or not a nondissipative (anomaly) thermodynamical flux in the system. 
More precisely, in the present paper we show that one can choose a nonsta­
tionary part ( depending on the time derivative of the order parameter) of the 
energy flux in an arbitrary way not restricted by the entropy principle. This 
property, characteristic for models governed by gradient-type potentials, was 
observed firstly in [AltPaw96]. Here we explain this freedom in the light of 
Edelen's decomposition theorem [Ede73], [Ede74] which asserts a splitting of 
a solution of the dissipation inequality into a dissipative and a nondissipative 
part. Clearly, a finał selection of this flux must follow from an additional 
analysis of the resulting model equations. 

Prior to presenting a generał scheme of phase-field models we describe briefly 
the Miiller-Liu multipliers-based approach. The application of this approach 
to phase transition models requires a special procedure which consists of three 
main steps. 

In the first step we consider the system of balance laws with a set of constitu­
tive variables relevant for the phase transition under consideration. Distinctive 
elements in this set are variables representing higher gradients of the order pa­
rameter and its time derivative. The presence of such variables is characteristic 
for theories involving free energies of Landau-Ginzburg type. In accordance 
with the principle of equipresence we assume that all quantities in balance laws 
are constitutive functions defined on this set of variables. 

In the second step we postulate the entropy inequality with multipliers con­
jugated with the balance laws. Again, we assume that all quantities in this 
inequality, including multipliers, depend on the same constitutive set. Next, 
making no assumptions on the multipliers, we exploit the entropy inequality 
by using appropriately arranged algebraic operations. As a result we conclude 
a collection of algebraic restrictions on the constitutive equations. 

In the third step we presuppose that the multipliers associated with the 
equations for the order parameter and the energy are additional independent 
variables. Then, regarding algebraic restrictions obtained in the previous step, 
we deduce an extended system of equations including in addition to the balance 
laws the equations for the multipliers. Moreover, we require the resulting 
system to be consistent with the principle of frame indifference. 

We present now the main result of the paper which yields a generał scheme 
for phase-field models with conserved and nonconserved order parameters, gov­
erned by a first order gradient free energy in the presence of deformation and 
heat conduction. 
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We use the following notation: x - order pararneter, u - displacement, F -
deformation gradient, µ - chemical potential, 0 > O - absolute temperature, 
f - free energy, e - internal energy, 7) - entropy, q - energy flux, W - enropy 
flux, j - order parameter flux, r - order parameter production, T - external 
source of the order parameter, g - external heat source. 

We assume that there are given a free energy J = f(F, X, Dx, 0) which is 
strictly concave with respect to 0, and a dissipation potentia! 1) = D(X; w) 
with 

X:= (~,D~,D1,x,,) -thermodynamical forces, 

w:= (F,DF,x,Dx,D 2x,0) - state variables, 

which is nonnegative, convex in X and such that 1J(O; w) = O. Here Dx, D2x, x,,, 
etc. denote variables corresponding respectively to 'vx, 'v2x, x; superimposed 
dot denotes the materiał time derivative. 

The unknowns are the fields u, X, µ/0 and 0 > O satisfying the following 
system of equations: 

(1.1) ii - 'v . f.F = b, 

X + 'v · j - r = T, 

/!. = 8(! /0) + 'v ~ . hnd + ad 
0 8x 0 ' 
e + 'v • ą - f,F -F = g. 

The subsequent equations in (1.1) represent respectively the linear momentum 
balance, the mass balance, a generalized equation for the chemical potential 
(equivalent to a microforce balance in Gurtins theory, see [Paw06a]) and the 
energy balance. Equation (1.1)2 combines various types of dynamics of the 
order parameter: - mixed type if j =f O, r =f O; - conserved if j =f O, r = O; -
nonconserved if j = O, r =f O. 

The expression '({t' denotes the first variation of the rescaled free energy 
f /0 with respect to x: 

(1.2) 8(:~0) = Gt -'v. C•:x) . 
the internal energy e = e(F, X, Dx, 0) is given by 

(1.3) e = J - 0f,0, 

and the energy flux q splits into a dissipative, qd, and a nondissipative, -xhnd 

(possibly zero), parts: 

(1.4) 
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The dissipative quantities 

(1.5) r = rd = ;:,J(x;w), j =l =J"(X;w), 
qd = qd(X; w), ad= a"(X; w), 

denoting respectively the order parameter production, the order parameter 
flux, the heat flux, and a dissipative part of the rescaled chemical potentia! 
µ/0, are given by 

(1.6) d av 
-r = 8(µ/0)' 

d av 
q = 8D(l/0)' 

•d av 
-J = 8D(µ/0)' 

ad= 8V 
Bx,,· 

The nondissipative flux hnd = hnd(X; w) is an arbitrary vector field which is 
not restricted by the entropy principle. lt should, however, like all other consti­
tutive quantities in (1.1), be consistent with the frame indifference principle. 
This principle restricts the dependence on F. In particular, the free energy 
should satisfy 

f(F, X, Dx, 0) = f(C, X, Dx, 0) 

where C = FTF is the right Cauchy-Green strain tensor; other quantities 
should transform appropriately ( see Section 4). 

It will be shown (see Corollary 4.2) that solutions of system (1.1) satisfy the 
following entropy equation and inequality 

( ) · n ,T, µ d nµ ·d n l d · d µ g > µ g 
1.7 T]+v·-,,=-er -ve·J +vo·q +xa +0r+0-0r+0, 

with the entropy flux W given by 

(1.8) W µ.d + 1 d + . f ,Dx -hnd 
= -OJ Bq X 0 

The quantity 

( ) µ d µ •d l d d I: X; w := - 0r - D0 · J + D0 · q + X,, a 2': O 

on the right-hand side of (1.7) represents a dissipation. 
Another important property of system (1.1) is the Lyapunov relation (see 

Corollary 4.4) which a.sserts that if the external sources vanish, i.e. b = O, r = 
O, g = O, and if the boundary conditions on S imply that 

(1.9) (J,Fn)•u=O, tn·j=O, (1-~)n·(qd-Xhnd)=O, 

x en. f ,ox= o, 
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then solutions of (1. 1) satisfy the inequality 

(1.10) d { 1 2 -dt ln (e(F,x,Dx,0) + 2iul - 011(F,x,Dx,0))dx :s; o 

for sóme constant 0 > O. This provides the Lyapunov relation. 
The distinguishing elements of system (1.1) are nonstandard energy and 

entropy fluxes, q and '11, which contain extra nonstationary terms. As seen 
from (1.4), (1.5) and (1.8), the fluxes '11, q and jare related by the condition 

(111) ,T, + µ , 1 • f ,Dx · "' BJ - eq = x-0- · 

This condition shows that in phase-field models with first-order gradient en­
ergy (i.e. f,Dx cf O) at least one of the fluxes must include an extra nonstation­
ary term with X· We point on the two extreme choices of the nondissipative 
flux hnd: 

(i) hnd = 0 
leading to models with extra entropy flux 

d ,T, µ •d + 1 d + . f,Dx 
ą = ą ' "' = -BJ eą x-0-; 

(ii) hnd = f,Dx 
leading to models with extra energy flux 

d µ .d l d 
q = q - xf,Dx, q, = -BJ + eq . 

With the above special choices of hnd, assuming standard forms of the free 
energy f = J(F,x,Dx,0) and the dissipation potentia! 'D = 'D(X;w), we 
can derive from system (1. 1) severa! known phase--field models, in particu­
lar Peiirose-Fife models (corresponding to hnd = O), and Fried-Gurtin and 
Fremond models (corresponding to hnd = f,ox), see [Paw06c]. 

The paper is organized as follows. In Section 2 we introduce basie physical 
quantities, the balance laws, the entropy principle, the entropy inequality with 
multipliers and the state spaces relevant for phase field models under consi­
deration. Moreover, we present the duality relations generalizing the classical 
Legendre transformations to the case of gradient type potentials. These rela­
tions allow to formulate equations equivalently with respect to temperature, 
entropy or energy as independent variables, thus are of generał importance in 
phase-field modelling. 

In Section 3 we evaluate the entropy inequality with multipliers to select a 
class of thermodynamically consistent models. To this purpose it is convenient 
to use the state space with entropy (or energy) as an independent variable. The 
obtained restrictions are stated in Theorems 3.1 and 3.2. 
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In Section 4 we introduce an extended model with the multipliers corre­
sponding to mass and energy balances as additional independent variables. 
The model combines various types of dynamics of the order parameters and 
is expressed in terms of entropy as an independent variable. Next, making 
use of the duality relations, we give its equivalent formulation in terms of 
temperature as an independent variable. The thermodynamic consistency of 
both formulations is stated in Theorems 4.1 and 4.2. Besides, we present the 
formulations of the model within the linearized elasticity theory. 

In Section 5 we are concerned with solutions of a thermodynamic inequality. 
We recall two results on representations of such solutions, one due to Gurtin 
[Gur96] and the second one due to Edelen 1Ede73]. The application of Edelen's 
decomposition theorem to our system yields the splitting of the thermodynamic 
fluxes into a dissipative and a nondissipative part with extra nonstationary 
term. 

In Section 6, taking into account the decomposition of the fluxes, we present 
a finał scheme of phase-field models outlined above. We give also some stan­
dard examples of free energies and dissipation potentials. Besides, we present 
some equivalent forms of the model equations and discuss them for particular 
choices of the nondissipative energy flux. This way we prepare a stage for a 
comparison with phase-field models known in literature, to be presented in 
(Paw06c]. 

We list now the notation used in the paper. 
We generally follow the notation in [Gur00]. Vectors (tensor of the first 

order), tensors of the second order ( referred sim ply to as tensors) and tensors 
of higher order are denoted by bold letters. Tensors of the second order are 
linear transformations of vectors into vectors. The unit tensor I is defined by 
lu = u for every vector u; sr, trS, s-1 and det S, respectively, denote the 
transpose, trace, inverse, and determinant of a tensor S. 

A dot designates the inner product, irrespective of the space in question: 
u• v is the inner product of vectors u = (u.) and v = (v;), S • R = tr(STR) 
is the inner product of tensors S = (S;j) and R = (R;j), Am· Bm is the inner 
product of the m-th order tensors Am= (A:;' ...• m) and Bm= (Bf:_ .. ,m). 

In Cartesian components, 

(Su).= s.juj, (ST)ij = sji, trS = s .. , u. V= u.v,, 

S-R=S,jR;j, Am-Bm=A:;' ..• mB"?: .. im• 

Here and throughout the summation convention over repeated indices is used. 
The transpose of a tensor is defined by the requirement that 

u • Sv = (ST u) • v for all vectors u and v. 

By A = (A,jkl) we denote the fourth order elasticity tensor which represents a 
symmetric linear transformation of symmetric tensors into symmetric tensors. 
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We write (Ac:),; = A.;k!Ek1-

The term field signifies a function of a materiał point x E llł3 and time t. The 
superimposed dot, e.g. j, denotes the materiał time derivative of the field f 
(with respect tot holding x fixed), "v and "v- denote the materiał gradient and 
the divergence (with respect to x holding t fixed) . For the divergence we use 
the convention of the contraction over the last index, e.g. ("v -S), = BS,;/Bx;. 
We write f,A = BJ /BA for the partia] derivative of a function f with respect 
to the variable A (scalar or tensor). Specifically, for f scalar valued and Am= 
(A7,' ... ,m) a tensor of order m.f,Am is a tensor of order m with components 

f.Af; .. <m. 

Finally, for a function f = f(x, "vx) we denote by óf /óx its first variation 
with respect to x: 

óf 
óx = f,x(x, "vx) - "v · f:vx(x, "vx). 

2. THERMODYNAMIOCAL FOUNDATIONS 

2.1. Basic quantities. Let !1 c Jlł3 be a bounded domain with a smooth 
boundary S, occupied by a solid body in a fixed reference configuration. Let 
x E !1 be the materia! point. The motion (deformation) of the body is denoted 
by y(x, t) = x + u(x, t), where u is the displacement. Further, Jet 

F = "vy = I + "vu, 

subject to det F > O, be the deformation gradient, and C = FTF, in com­
ponents C,; = (Bym/Bx,)(Bym/Bx;), be the right Cauchy-Green strain tensor 
corresponding to F. 

We use an order parameter to characterize the notion of a phase and iden­
tify phase interfaces with thin transition zones within which the strain and the 
order parameter exhibit large gradients. To this end we consider the following 
fields in materia! representation: p - mass density, assumed constant normal­
ized to unity, p = I; 
S = ( S;1) - first Piola-Kirchhoff stress tensor; b = (b,) - external body force; 
x - scalar order parameter; j = (j,) - order parameter flux; 
r - order parameter production (scalar); 
r - external source of the order parameter; 
e - interna] energy; q = (ą;) - energy flux; g - external beat source; 
0 > O - absolute temperature, 1) = 1/0 - inverse temperature; 
µ - chemical potentia], µ = µ/0 - rescaled chemical potentia!; 
TJ - entropy, f = e - 0T] - Helmholtz free energy. 
Moreover, depending on the choice of thermal variable (see Section 2.5), we 
denote: 



.. 

A THERMODYNAMIC APPROACH OF PHASE-FIELD 

e, e, e - interna! energy respectively as a function of 0, ,{) and 7), 

1), fi, rf - entropy respectively as a function of 0, ,{) and e. 

2.2. Balance laws and the entropy principle. Letting p = 1, the balance 
laws for the linear momentum, the angular momentum, the order parameter 
and the interna! energy read as follows (see e.g. [Silh97]): 

ii-V· S = b, 
(2.1) SFT = FST, 

X + 'v · j - r = T, 

e + v -ą - s -F = g. 

We point out that equation (2.l)J combines various types of dynamics of 
the order parameter: 
- mixed conserved-nonconserved (mass balance with production term) j I O 
and r i O, 
- conserved (mass balance without production) j I O and r = O, 
- nonconserved (evolution law for the order parameter) j = O and r i O. 

Balance laws (2.1) are closed by constitutive equations for the quantities 
S,j, r, e and q: 

(2.2) S = S(Y), j = j(Y), r = r(Y), e = e(Y), q = q(Y), 

where Y denotes a set of independent constitutive variables (so-called state 
space) and S,j, r, e, ą are smooth functions of their arguments. The set Y has 
to be chosen so that to reflect properly the materia! properties (see Section 
2.3). As common we do not assume constitutive equations for the external 
sources b, r and g. 
The entropy principle is used to derive restrictions on constitutive equations 
(2.2) and this way to select a class of thermodynamically consistent models. 

We apply the entropy principle due to I. Miiller [Mul85]. This principle 
states that there exists an entropy 7) and an entropy flux W given by the 
constitutive equations 

(2.3) 1J = ij'(Y), w = i(Y), 

with smooth functions ij', W depending on the same set Y, such that for all 
solutions of the system of balance laws (2.1) with constitutive equations (2.2) 
(called thermodynamic processes) defined in a space-time domain !1'0 = !1 x 
(O, t0 ) the following implication holds 

(2.4) b = o, T = o, g = O in !1'0 • u := i/+ 'v · W ~ O in !1'0 • 

Remark 2.1. We recall two stronger versions of the Miiller entropy principle 
introduced in [AltPaw96]. They can be useful in the proofs of the existence 
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of the multipliers in the exploitation of the entropy principle by means of the 
Lagrange multipliers method due to I. S. Liu [Liu72] . 

In a slightly stronger version {2.4) is replaced by the following postulate: For 
all thermodynamic processes and all points (x, t) E fl'0 it hol ds 

(2.5) b(x, t) = O, r(x, t) = O, g(x, t) =O=> u(x, t) 2: O. 

An even stronger version asserts that there exists a scalar field O"o with a con­
stitutive equation u0 = a0 (Y, b, r, g), such that for all thermodynamic processes 
defined in fl'0 the following two conditions are satisfied 

(2.6) u 2: uo in fl'0 and a0 (Y, O, O, O) = O. 

for all variables Y. This version of the entropy principle describes the way 
it is used by Coleman and Noli [Co1Nol63] where, however, in contrast to the 
entropy principle formulated above it is assumed that q, and O"o are given by 
explicit formulas. • 

2.3. The Muller-Liu entropy inequality. The main step in the exploita­
tion of the entropy principle is based on introducing the Lagrange multipliers 
with the purpose to replace the inequality in (2.4), which holds for all ther­
modynamic processes, by an inequality (called entropy inequality) which is 
satisfied for arbitraty fields. This idea is due to I. S. Liu [Liu72] . 

For system (2.1) the entropy inequality reads as follows : There are multi­
pliers 

(2.7) Au= ~u(Y), Ax = 3:x(Y), ,\, = 3:,(Y) 

conjugated respectively with balances (2.l)i, (2.l)J and (2.1)4 , such that the 
inequality 

(2.8) 77+'v·'11-.Xu•(ii-'v·S)--Xx(x+'v•j-r)-,\, (H'v·q-S-F) 2: O 

is satisfied for all fields corresponding to the state space Y . 

Remark 2.2. Entropy inequality (2.8) implies the entropy principle with the 
strongest property (2.6), that is for solutions of (2.1) it holds 

(2.9) u= 1J + 'v · q, 2: :Xu(Y) · b + 3:x(Y)r + 3:, (Y)g =: o'o(Y, b , r, g) . 

Hence, entropy inequality (2.8) implies all three versions of the entropy prin­
ciple. • 

Remark 2.3. In a rigorous approach it has to be proved that entropy principle 
(2.4) implies entropy inequality (2.8) . The proof requires a characterization of 
admissible sets of the system of partia/ differentia/ equations under considera­
tion and the verification of the Liu lemma [Liu72]. For particular systems this 
question has been addressed in [Liu72], [AltPaw96] by means of the Cauchy­
K owalevsky theorem. A nother approach to this question is to ad mit arbitrary 
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sources in balance equations and postulate stronger version (2.5) of the entropy 
principłe {see [AltPaw96], Sec. 4)- • 

As common in the literature (see e.g. [Wilm98]) in the present paper we do 
not prove the entropy inequality (2.8) but take its validity for granted. 

2.4. State spaces for phase-field models. For phase-field models governed 
by a first order gradient free energy f = J(F, X, Dx, 0) the appropriate are the 
following state spaces which differ only by thermal variables: 

(2.10) Yo= {F, DF, ... , DMF, X, Dx, . .. , DK X, 0, D0, ... , DL0, x,,}, 
Y. := {F, DF, ... 'DM F, X, Dx, ... 'DK X, e, De, ... , DLe, x,,}, 
Y~ := {F, DF, ... , DMF, x, Dx, ... , DK x, 1), D1), ... , DL1), x,,} 

with integers M, K, L satisfying conditions M, L 2'. 1 and K 2'. 2. Here x,, 
denotes a variable corresponding to the time derivative X, 

Dkx = (x,,, ... ,.k, ... ,,.=1,2,3, o::; k::; K, 

is the k-th order tensor of variables corresponding to the k-th order gradient 

vkx = ( akx ) 
8xi1 · · · 8xi1,: i 1, .. ,ii.:=l,2 ,3 

is the (2 + m)-th order tensor of variables corresponding to the m-th order 
gradient of tensor F 

We use the convention D 0x = x-
Remark 2.4. Tensor F and its gradients represent mechanicał properties, X 
and its gradients - chemicał properties due to materiał heterogeneity, 0, e, 1) and 
their gradients - thermał properties, and x,, - viscous effects due to materiał 
heterogeneity. 

The distinguishing ełements in (2.10} are variables corresponding to higher 
order space derivatives and the nonstationary variable x,,. In [Paw00a) it has 
been shown that in order to admit the free energy depending on DPx,P E N, 
the set of constitutive variables has to include DP- 1X,t- Since aur goał here is 
to construct models with free energy depending at most on Dx we must admit 
X,, as a constitutive variable. 
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The higher gmdients of F, X, 0 ( or e, TJ) arise due to the first variation of/ ox 
which appears in the model. In particular, in case f = J(F, X, Dx, 0), we have 

of -f -'v·f óX - ,X ,D,: 

3 3 

= f,x - I:;U,x,;F · F,, + f,x,;xX,i + f,,:,;eB,,) - L f.x,;x,;X,ji 
i=) i,j=l 

which generates the variables DF, Dx, D 2x, DB in the state space Ye. For the 
clarity of further presentation we admit in (2.1 O) M, L 2'. 1 and K 2'. 2. • 

Remark 2.5. The arbitrariness in the choice Yo, Y, or Y" results from the 
duality relations (Legendre transformations) presented in Section 2. 5. We have 
found the choices of the state spaces Y. and Y" mare stmightforward for the 
exploitation of the entropy inequality in comparison with the space Y8 • We 
mention that in some particular situations the state space Y. has been used in 
[PawOOb], Y" in [PawOOc] and Ye in [AltPaw95]. • 

Remark 2.6. Prom the point of view of the axiom of frame indifference the ap­
propriate measure of the strain is for instance the right Cauchy- Green strain 
tensor C. However, as underlined in [Gur96] the exploitation of the second 
principle is simpler using deformation gradient F as the constitutive variable. 
The restrictions imposed by the frame indifference are accounted for ajter de­
riving consequences from the second principle. • 

Let us choose here the state space 

(2.11) Y=Y •. 

In such a case the internal energy e = i(F, X, Dx, TJ) expressed as a function 
of the entropy TJ will play the role of a thermodynamical potential. In view 
of the duality relations such potentia! is equivalent to the free energy f = 
.f(F, X, Dx, 0) (see Section 2.5). For later purposes Jet us split the state space 

(2.12) Y.={Y0,Y1} 

into two su bsets 

(2.13) 

and 

Y 0 := {F, DF, ... , DMF, X, Dx, ... , DK X, TJ, DTJ, ... , DLTJ} 

yl := {X,t}, 

which dinstinguish between stationary variables and the nonstationary one 
vanishing at equilibrium. According to (2.2) the constitutive equations are 

(2.14) S = S(Y.), j = J(Y.), r = r(Y.), e = i(Y.), q = q(Y.), 
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where S,j, r}, q are smooth functions of their arguments and i denotes the 
interna! energy expressed as a function of the entropy T/· 

Because of the presence of tensors of order higher than one we supplement 
(2.14) by the following convention: Any constitutive function defined on the 
set Yry, say j(Yn), is understood in the sense of the following extension: 

J(~J·, . .. 'Aij + (Aij)skew, ... 'X, ... ' 

Bk+ (Bk)skew, ... , T/, ... , cl+ (Cl)skew, ... ) 

= ](Fij, ... , A7J, ... , x, ... , Bk, ... , TJ, ... , ci, ... ), 

where A':J with 2 :S m :S M, i, j = 1, 2, 3, stands for the m-th order ten­
sor corresponding to Dm F;j, Bk with 2 :S k :S K for the k-th order tensor 
corresponding to Dkx, and C1 with 2 :S ł :S L for the ł-th order tensor cor­
responding to D1T/, and where (A':J)skew, (Bk)skew, (C1)•kew denote respectively 
the skew parts of A':J, Bk and C1. 

Such extension is used for all other constitutive functions. Consequently, for 
instance in case of D 2x, we can treat the variables X,ij and X,ii as independent 
despite of the equality 82x/8x,8xj = 82x/8xj8x,. This fact is used in applying 
the chain rule in Theorem 3.1. 

2.5. Basic thermodynamical relations. We present here some basie rela­
tions for continua characterized by a first order gradient free energy density 

(2.15) f = !(F,x,Dx,0). 

In particular, we recall from [AltPaw96] the duality relations generalizing the 
classical Legendre transformations to the case of gradient energy (2.15). Let 

(2.16) .,J = ~ > O 
0 

denote the inverse temperature, and 
1 

(2.11) <fo(F,x,Dx,t9) = 0J(F,x,Dx,0) 

be the rescaled free energy, known as the Massieu function (see e.g. [Silh97], 
Sec. 10.2.2). The equivalent statements of the Gibbs relation in terms of f 
and ,p are given by 

Lemma 2.1 (see [AltPaw96]). The Gibbs relation 

(2.18) e(F,x,Dx,0)- f(F,x,Dx,0) = 0T/(F,x,Dx,0), 

T/(F,x,Dx,0) = -f.o(F,x,Dx,0) 

is equivalent to 

(2.19) ,p(F, X, Dx, t9) + ry(F, X, Dx, t9) = t9e(F, X, Dx, t9), 

e(F, X, Dx, t9) = <P.~(F, X, Dx, t9), 
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e(F,x,Dx,19) = e (F,x,Dx, ¼), 
ry(F, X, Dx, 19) = TJ (F,x, Dx, ¼), 

In accordance with the classical definition, the specific heat coefficient (heat 
capacity) at constant volume is given by 

(2.20) eo= eo(F, X, Dx, 0) := e,e(F, X, Dx, 0). 

Then, by (2.18), 

(2.21) eo(F,x,Dx,0) = -0!,ee(F,x,Dx,0) = 0TJ,e(F,x,Dx,0), 

or equivalently, by (2.19), 

1 
eo(F, X, Dx, 19) = eo(F, X, Dx, J) = -192e,~(F, X, Dx, 19) 

= -1921~.~(F,x,Dx,19). 

Let us assume now the standard thermodynamical condition 

(2.22) eo(F, X, Dx, 0) > O 

which is known as a thermal stability. In such a case the duality relations hold 
true which allow to use alternatively the absolute temperature 0, the entropy 
TJ or the interna! energy e as independent thermal variables. 

Under assumption (2.22) it follows from (2.21) that 0,..... - J(F, x, Dx, 0) is a 
strictly convex function and 19 ,..... rp(F, X, Dx, 19) is a strictly concave function. 
Therefore the following conjugate functions are well-defined: The conjugate 
convex function 

(2.23) e(F,x,Dx,TJ) := sup {0TJ + J(F,x,Dx,0)} :S: +oo, 
D<B<+oo 

which is a !ower semicontinuous convex function of TJ E JR, and the conjugate 
concave function 

(2.24) ry(F, X, Dx, e) := inf {Je - rp(F, X, Dx, 19)} 2: -oo, 
D<t!l<+oo 

which is an upper semicontinuous concave function of e E R 
In view of (2.21)1 the map 0 >-+ TJ(F, X, Dx, 0) is strictly increasing. There­

fore there exists an inverse map 

TJ>-+ 0(F, X, Dx, TJ), 

and the property O < 0 < +oo is equivalent to TJ• < TJ < TJ* with TJ• = 
71.(F, X, Dx) 2: -oo and TJ* = ry*(F, X, Dx) :S: +oo. lf TJ• < TJ < TJ* then the 
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supremum in (2.23) is uniquely attained at 

7i = 0 = O(F,x,Dx,T/), 

and the following relations are satisfied 

(2.25) e(F, X, Dx, T/) - J(F, X, Dx, 0) = 0T7, 
e,"(F, X, Dx, T/) = 0. 

In view of Gibbs relation (2.18) it follows from (2.25) that 

(2.26) e(F, X, Dx, 0) = e(F, X, Dx, T/(F, X, Dx, 0)), 

15 

which shows that eis the interna! energy expressed as a function of the en­
tropy T/· 

Similarly, by (2.21)2, the map 1'J ....., e(F, X, Dx, rJ) is strictly decreasing. 
Therefore there exists an inverse map 

e ...... rJ(F, x, Dx, e), 

and the property O < 1'J < +oo is equivalent to e, < e < e' with e, = 
e,(F, X, Dx) ~ -oo and e' = e'(F, X, Dx) :S +oo. Moreover, if e, < e < e' 
then the infimum in (2.24) is uniquely attained at 

i9 = r} = i?(F, X, Dx, e), 

and the following relations are satisfied 

(2.27) ij'(F, X, Dx, e) + ,t,(F, X, Dx, rJ) = rJe, 
iJ,,(F, X, Dx, e) = rJ. 

Then, on account of (2.19), 

(2.28) ry(F, X, Dx, rJ) = ij'(F, X, Dx, e(F, X, Dx, rJ)), 

that is ij' is the entropy expressed as a function of the interna! energy e. 
We note that in view of (2.25) and (2.27) the specific heat coefficient Co can 

be equivalently expressed as 
1 rJ2 

(2.29) Co= -0f,ee = 0r = -:::,--. 
'"" T/,n 

For further use we recall also the formulas which relate the first variations 
of the thermodynamic potentials f(F, X, Dx, 0), ,p(F, X, Dx, 0), e(F, X, Dx, T/) 
and ij'(F, X, Dx, e) with respect to X· 

Lemma 2.2. The following relations are satisfied 

&f 2 ) &e 2 ) (2.30) &x (F, X, Dx, D X, 0, D0 = &x (F, X, Dx, D X, T/, DT/ , 

6,t,( 2 ) &ij'( D2 - -) &x F,x,Dx,D x,rJ,DrJ = - &x F,x,Dx, x,e,De, 



16 IRENA PAWŁOW 

where 0, D0 and TJ, Dry are related by the formulas 

0 = 0(F,x,Dx,TJ), 

0,, = 0,F · F,, + 0,-x.X,i + 0,nx · Dx,, + 0,qT/,i, 

and{), Dr/ and e, De by 

rl = i9(F,x,Dx,e), 

rl,, = rl,F · F,, + rl,xX,, + rl,ox · Dx,, + ri;,e,,. 

Proof (see [AltPaw96], Sec. 11). We use duality relations (2.25). From 
(2.25)1, 

J(F, X, Dx, 0) = -0ry(F, X, Dx, 0) + e(F, X, Dx, ry(F, X, Dx, 0)). 

Hence, using (2.25)2, we infer the equaJities 

(2.31) f,F = -0r,,F + e,F + e,qT/,F = e,F, 
f,x = -0r,,X + e:x + e,qT/,x = e,X 

f,Dx = -0T/,Dx + e,Dx + e,qT/,Dx = e,Dx 

with appropriate arguments. From (2.31)2,3 we deduce that 
óf 1 1 _ _ óe 
óx = ,x - 'v · ,Dx = e,x - 'v · e,nx = ÓX, 

which shows (2.30) 1 . 

In the same way, from duality relations (2.27) we conclude that 

,p(F, X, Dx, rl) = {)e(F, X, Dx, rl) - iJ(F, X, Dx, e(F, X, Dx, {))), 

and 

(2.32) ,P,F = -iJ,F, <P,x = -rf.x, <P,Dx = -iJ,Dx 

with appropriate arguments. This shows (2.30) 2 • • 

3. EVALUATION OF THE ENTROPY INEQUALITY 

3.1. The entropy inequality. Let us consider baJance Jaws (2.1) with con­
stitutive equations (2.14), where Yq is the state space defined by (2.10)3. To 
select a class of thermodynamicaJly consistent models we impose the entropy 
inequaJity with multipliers (2.8) which in case of state variables Yq reads as 
follows: 

(3.1) i/+ 'v ·w-Au· (ii- 'v ·S)->-x(x+ 'v-j-r)->..(e+ 'v-q-S-F) 2 O 

for all fields u, X and T/, where 

(3.2) \Jl= i(Yq), Au= Au(Yq), Ax = :Xx(Yq), .x. = :X.(Yq) 

are respectively the entropy flux and the multipliers conjugated with the bal­
ance laws for the linear momentum, order parameter and energy. 
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3.2. Algebraic preliminaries. We prepare some simplifying notations. For 
f = J(Y,) a smooth scalar function of its arguments and the set Y0 given 
by (2.10)3, we denote by or" f, i = 1, 2, 3, the algebra.ie version of the spatial 
derivative 8 f / 8x, restricted to the set of variables yo ( applying differentiation 
by the chain rule): 

M K L 

et f := L f,DmF · DmF,i + L f.n•x · Dkx,, + L f.n•, · D 11),,, 

m=O 1=0 

and by 'i7y0 f = ( ar0 f),=1,2,3 the corresponding gradient 'i7 f restricted to the 
set Y 0 • 

Similarly, for a smooth vector-valued function <I> = i.J?(Y,) with values in JR3 

we denote by 'i7Y0 • <I> the algebra.ie version of the divergence 'i7 • <I> restricted 
to the set yo, viz. 

Moreover, we introduce the following subset of Y 0 : 

(3.3) yo := yo\ {DMF, DK X, DL17} 

= {F, DF, ... , oM-1F, x, Dx, ... , oK-1x, 1/, D11, ... ,oL-111}-

For a function f = J(Y,) we denote by óY0 f /óx the algebraic version of the 
first variation óf /óx restricted to the subset Y0 : 

Óyof - - 'i7yo. 
ÓX - f,x f,Dx. 

= f,x - t [f f,x,,DmF · DmF,i + ~ f,x,,D•x · Dkx,i + I: f,x.,,D'o · D 111,.] · 
i=l m=O k=O l=O 

Let us note that 'i7Y0 
• f.Dx does not exceed the set Y0. 

In case the constitutive dependence off is restricted to f = J(F, X, Dx, 17) 
the above definition coincides with the algebraic version of the first variation 
óf /óx: 

(3.4) 
Óyo f 3 [ 3 ] óf 
- 0- = f,x - L f.x,,F · F,; + L f,x ,,x,;X,ji + f,x..,01/,i ÓX · 

X i=I j=I 

Moreover, in such a case it holds 

'i7yof = 'i7f. 
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3.3. The restrictions. We impose the following two structural assumptions: 
- nondegeneracy condition for the interna! energy 

(3.5) 

- relation between stationary entropy, energy and mass fluxes 

(3.6) 

where >It0 , /, ą0 , >-~and>-~ are stationary quantities defined by setting x,, = O 

in Y,, that is >It0 := ~(Y0, Y 1)ly1={0), and similarly for other quantities. 
We underline that assumption (3.5) expresses the strict positivity of the 

absolute temperature 0 (see (2.25)2). The relation (3.6) is standard in the 
classical thermodynamic theory without gradients (see e.g. [Mul85]) . 

We prove the following 

Theorem 3.1. (Consistency with the entropy inequality). 
Let us consider balance laws (2.1) with constitutive equations (2.14). Suppose 
that entropy inequality (3.1), (3.2) is satisfied and assumptions (3.5), (3.6) 
hold true. Then the following relations are satisfied: 

(i) multiplier of the linear momentum >-u = O; 

(ii) intemal energy e = i(F, x, Dx, 1)); 
{iii} energy multiplier 

(3.7) - 1 
>-.=>-.(F,x,Dx,1J)=_(F D )>O; 

e,, ,X, X,1J 

(iv) stress tensor 

(3.8) s = S(F, x, Dx, 1J) = e,F(F, x, Dx, 1J); 

( v) en tropy flux 

(3.9) '1t = >-,j + A,q + X,t [>-.eox - fo\>-x,x))(Y0,Tx,,)dT]; 

(vi) compatibility conditions 

(3.10) X,t [- r\>-x,,.j,)(Y0,-rx,,)dT] + A,: oMF]i = o, Jo · ,DMF • 

X,t [- [1(>-x.x,,j,)(Y0,Tx,,)dT] + >-x.oK,Ji = O, 
Jo ,DKx 

X,t [- f\>-x.x . .J<)(Y0, TX,,dT] + >-x,oL"]i = O Jo ,DL, 
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for i = l, 2, 3. 
Moreover, there exists a scalar quantity a= a(Y") such that 
(vii) multiplier >-x = ;x(Y") satisfies the equation 

(3.11) 
oe _ p•f1 

->-x = >-. Jx - 'v >-. · e.nx + 'v · Jo (>-x.,))(Y0 , TX,t)dr + a; 
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(viii) the quantities r = r(Yry), j = j(Yry), q = q(Y") and a= a(Y") satisfy the 
residua/ inequality 

(3.12) 

for all variables Y". 

Remark 3.1. By assertion (ii), Je/Jx depends on the variables {F, DF, X, 
Dx, D 2x, TJ, D17}. For that reason it was assumed in (2.10) that M, L ;:,: 1 
and K;:,: 2. • 

Remark 3.2. In view of thermodynamical relation (2.25)2 assertion (ii) im­
plies that the energy multiplier >-. corresponds to the inverse of the absolute 
temperature 

1 
>-...... e· 

Moreover, in view of thermodynamical relation (2.30)i, equation (3.11) for 
->-x resembles the expression for the chemical potentia/ in the classical Cahn­
Hilliard theory which for 0 = const is given by µ = of /Jx. Thus, the form 
(3.11) suggests that the negative of the multiplier ->-x corresponds to a gener­
alized, rescaled chemical potentia/ 

\ - µ -,.,x .... µ := rj" 
The above correspondences will be precised in Section 4- • 

Proof of Theorem 3.1. By inserting constitutive equations (2.14), (3.2) into 
en tropy inequality (3.1) and applying the chain rule we arrive at the following 
algebraic inequality 

(3.13) 17,t + 'P",x., · DX,t + 'vyo · 'V - Au,., · u,,t + >.u · (S,x.,Dx.,) 

+>.u · ('vy 0 
• S) - >-xX,t - >-xJx., · Dx,t - >-x 'vyo · j + >-xr 

M K L 

->-. L ~D=F. DmF,t - >-. L e.n•x. DkX,t - >-. L e,D'ry. D1rJ,t 
m=O k=O l=O 

->-.~x.,X,tt - >-.ą,x,, · Dx,t - >-. 'vy0 
• q + >-,S · F,t e". O 
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for all variables {W, Y~}- Here 

W := { ll,tt, X,tt, (DmF,,)os;ms;M, (Dkx,,)1s;ks;K, (D111,,)09s;L, DM+lp, DK +lx, 
DL+l1/} 

denotes the set of variables ( called higher derivatives) in which the left-hand 
side of (3.13) is linear. The evaluation of (3.13) consists in deriving conse­
quences from the linearity in the variables belonging to W. The linearity per­
mits to conclude that the coefficients preceding these variables have to vanish 
identically. We proceed stepwise in the following order: 

Step 1. By the linearity of the left-hand side of (3.13) in u,tt it follows that 
the corresponding coefficient has to vanish, that is Au = O. This shows (i). 

Step 2. By the linearity in the variables (DmF,,hsms;M, (Dkx,,)2s;ks;K, 
(D111,,)1s;1s;L, X,tt we read off that e,omp = O for 1 :,:'. m :,:'. M, e,o•x = O for 
2 :,:: k :,'.'. K, e,o•~ = O for 1 :,:: I :,:: L and e,x., = O. Hence, the constitutive 
dependence of eis restricted to e = e(F, X, Dx, 17) which shows (ii). 

Step 3. The linearity in 1/,t implies that 

1- >-,e.~ = o, 
so, in view of assumption (3.5) and (i) we infer (iii). 

Step 4. By the linearity in F,,, 

>.,s - >.,e,F = o. 
Hence, since >., > O, assertion (iv) follows. 

Step 5. From the Jinearity in Dx,, we deduce that 

(3.14) \J.i,X,t - >-xL,,, - >.,e,Dx - .\,ą,X,t = O. 

Let us define the vector 

(3.15) 

By virtue of assumption (3.6), 

(3.16) q;.o = O. 

From (3.15), using (3.14) and (iii), we get 

(3.17) j = \J.i - >. j - .\ j - >. q =>.eo - >. j. ,X,t ,X,t X,x,t X ,X,t e ,X,t e , X X,x,t 

Hence, in view of (3.16) and (ii), (iii), it follows that 

(3.18) rx·· j = >-,e.oxX,t - Jo (>-x,,))(Y0,0d( 

= X,, [>-.e.ox - i\>-x,,))(Y0 ,rx,,)dr]. 

" ' 
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From (3.15) and (3.18) we conclude (v) . 

21 

Step 6. It remains to examine the linearity in the variables nM+l F, DK+IX, 
DL+ 177. In view of the results obtained in the previous steps, inequality (3.13) 
is red uced to 

for all variables {DM+1F, DK+IX, DL+Iry, Y~}- We rearrange now the sum of 
the second, the third and the fourth term on the left-hand side of (3.19) to the 
form 

(3.20) 'vyo · W - Ax 'vyo • j - A, 'vyo • q 

= 'v'Y' · (\Jl - Axj - A,q) + 'vyo Ax · j + 'v'Y' Ae · q 

= 'v'Y' . ~ + 'v'Y' Ax . j + 'v'Y' Ae . q. 

Further, in view of (3.18), using the definition of the restricted divergence 
'v'Y°., we obtain 

(3.21) 'v'Y' · ~ = X,t [ 'vyo · (A,e:n,) - 'v'Y' · 1
1 
(Ax.x))(Y0, rx,,)dr] . 

Consequently, by combining (3.20) and (3.21), inequality (3.19) is transformed 
to 

(3.22) X,t [-Ax - A,e:x + 'vy0 
• (A,e,nx) - 'vy0 

• 11 
(Ax.x))(Y 0 , rx,,)dr] 

+Axr + 'v'Y' Ax · j + 'v'Y' A, · q 2: O 

for all variables {DM+lF, DK+1x, DL+Iry, Y~}-
From (3.22), performing differentiation by the chain rule in terms involving 

'v'Y0
• and 'v'Y0 (restricting now to the subset Y0), the linearity in the vari­

ables DM+1F, DK+ 1x and DL+177 implies that the coefficients preceding these 
variables have to vanish. Hence, recalling (ii) and (iii), we conclude (vi). 

Step 7. We shall derive conclusions from inequality (3.22) which remains 
after taking into account ( vi). It reads 

(3.23) X,t [-Ax - A,e,x + 'vyo · (A,e:nx) - 'v'Y' · 1\Ax,x))(Y0, rx,,)dr] 

+Axr + 'vyo Ax · j + 'v'Y' A, · q 2: O 
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for all variables Y~. Now, Jet us define a scalar quantity a = a(Y~) given by 
the squared parenthesis in (3.23), viz. 

(3.24) a := -Ax - >-ee:x + ,:;:,Y0 · (>-ee:Dx) - ,:;:,i'0 · /1 (>-x_.,j)(Y0 , -rx,,)d-r Jo , 
->.x - >-e(e,X - ,:;:,i'O. e,oxl + ,:;:,i'' Ae. e:ox 

-'v'yo · 11 (>-x.x))(Yo, -rx,,)d-r. 

Let us note that on account of (ii) and (iii) it holds 

(3.25) 

so that, recalling (3.4), 
,yo- ,­
_u_e = e - 'y'yo. e D = ~-
óX .x , x 6x 

Using these equalities we conclude from (3.24) assertion (vii). Finally, owing 
to (3.24), inequality (3.23) takes the form of the residua! inequality (3.12). 
This shows assertion (viii) and thereby completes the proof. • 

3.4. The restrictions in the nonconserved case. The statement of The­
orem 3.1 simplifies greatly in case of the nonconserved dynamics of the order 
parameter. Then assumption (3.6) reads 

(3.26) 

and we have 

Theorem 3.2. ( Consistency with the entropy inequality in the nonconserved 
case). 
Let us consider balance laws (2.1) with constitutive equations (2.14) in the 
nonconserved case j = O, r ,/ O. Suppose that the entropy inequality (3.1), 
(3.2) is satisfied and assumptions (3.5), (3.26) hold true. Then the following 
relations are satisfied: 

(i) Au= O; 

(ii) e = Z(F, x, Dx, 11); 

(iii) >-e = :Xe(F, X, Dx, 17) = _ (F l D ) > O; 
e.~ , X, X, 1/ 

(iv) s = S(F, x, Dx, 11) = e,F(F, x, Dx, 11); 
(v) '11 = .Xeq + x,,>-ee:ox; 

M oreover, there exists a scalar field a = a(Y~) such that 

( ) 6e _ 
vi ->.x = >-e óX - 'v' >-e · e,Dx + a; 

(vii) >-xr + 'v' >-e · q + x,,a 2 O for all variables Y~. 

• 
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4. MODELS WITH MULTIPLIERS AS ADDITIONAL INDEPENDENT VARIABLES 

4.1. A claim. Regarding Theorem 3.1 we introduce an extended model in 
which the multipliers Ax and A, are in addition to u, x and 77 treated as inde­
pendent variables. Such idea is admissible because theorem has been proved 
under no assumptions on Ax and A,. 

Our claim on the structure of the extended model is based on the following 
modifications of statements of Theorem 3.1: 
- We replace the state space Y" in (2.10)3 by 

(4.1) Z":= {F,DF,x,Dx,D2x,77 , D77,Ax,DAx,A„DA„X,t}-

This set includes all variables which will appear in the extended model. The 
higher derivatives DmF, Dkx, D 177 for m, l ?: 2, k ?: 3 are irrelevant (see Re­
mark 3.1). 
- Regarding Ax as an independent variable we set all expressions involving 
its derivatives with respect to X,t, DMF, DK77, DL77 identically equal zero and 
replace --vv• Ax by 'v Ax-

Formally, with such changes statements (i)-(iv) of Theorem 3.1 remain un­
changed, (vi) is automatically satisfied and (v), (vii), (viii) are replaced by 

(v) '1T = Axj + A,q + X,,A,e,ox; 
5~ 

(vii) -Ax = A, 0; - 'v A,· e:ox + a; 

(~i) the quantities r = r(Z"), j = j(Zry), q = q(Z") and a = a(Z") satisfy 
the inequality 

( 4.2) 

for all variables Z" in (4.1). 
In Section 4.3 it will be proved that the above modifications lead to a model 

which is consistent with the entropy principle. 

4.2. Model (M)" - formulation with interna! energy e = i(F, X, Dx, 77) 
as a thermodynamic potentia!. The extended model, referred further to 
as (M)ry, is based on the following postulates: 

(Ml)" The unknowns are the fields u, X, 77 and >-x, A, > O. 
(M2)" A thermodynamic potentia! is the interna! energy 

( 4.3) e = i(F, X, Dx, 77), 

subject to the condition 

( 4.4) e;" > O for all arguments (F, X, Dx, 77). 
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(M3), The fields u, X, TJ, >-x and >-. satisfy the differentia! equations 

(4.5) ii-'v -S=b, 

X+ 'v · j - r = r, 

->-x = >-. :: - 'v >-. · e:ox + a, 

~ + 'v -ą - s -F = g, 

>-ee,, - 1 = o, 
where S is given by 

(4.6) S=e.F, 

consistent with the condition 

(4.7) 

Moreover, the quantities r = r(Z,), j = j(Z,), q = q(Z,) and a= a(Z,) are 
subject to the dissipation inequality ( 4.2) . 
(M 4), In addition, in accordance with the principle of frame indifference, the 
constitutive equations 

e = i(F,x, Dx, TJ), s = S(F, X, Dx, TJ), 

e = f(F, X, Dx, TJ):= e:ox(F, X, Dx, TJ), 

j = j(Z,), q = q(Z,), r = r(Z,), a= a(Z,) 

are assumed to be invariant under changes in observer, i.e. under transforma­
tions (see e.g. [Gur96), Sec. 4.2) 

e-> e, S-> QS, e _, e, j -> j , q _, q, r-> r, a-> a, 

{F, DF, X, Dx, D 2x, TJ, DTJ, >-x, D>-x, >-., D>-., X.,} 
-> {QF, QDF, X, Dx, D2x, TJ, DTJ, >-x, D>-x, .X., D>-., x,,} 

for all proper orthogonal tensors Q(QQT = QTQ = I with det Q > O). This 
Ieads to the following restrictions 

(4.8) i(F, X, Dx, TJ)= i(c, X, Dx, TJ), 

S(F, x, Dx, TJ)= FS(C, x, Dx, TJ) , 

l(F, x, Dx, TJ)= l(c, x, Dx, TJ), 

j(Z,) = J(z,), q(Z,) = q(Z,), r(Z,) = r(Z,), a(Z,) = a(Z,) 

where 
Z, := {C, DC,x, Dx, D 2x, TJ, DTJ, >-x, D>-x, >-., D>-., x.t}, 

with C = FTF the right Cauchy-Green strain tensor. We note that by virtue 
of ( 4.8)2 condition ( 4. 7) is automatically satisfied (see e.g. [Gur96]). 
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4.3. Thermodynamic consistency of model (M)~- We shall prove that 
model (M)~ is consistent with the second law of thermodynamics. 

Theorem 4.1. System (4.5) with relations (4.3), (4.6) and (4.2) satisfies the 
following entropy inequality with multipliers 

(4.9) i/+ 'il· '11 - Au· (ii - 'il· S) - Ax(X +'il· j - r) 

-A>., (>-x + >-.(\'. - >-.'il. e,Dx - 'il>-•. e:Dx + a) 

-A.(Ż +'il· q - S · F)- A>..(>-.e.~ -1) - As· (S - e,F) 

= >-xr + 'il >-x · j + 'il>-. · q + xa 2 o 
for all fields u, X, 1), >-x, >-•. The multip/iers are given by 

(4.10) Au= O, 

A. = >-., 

Ax =Ax, 

A>..= -i/, 

A>.,= -x, 
As= >-.F, 

and the entropy flux is 

( 4.11) 

Proof. Let u,X,1J,Ax,>-e beany fields and Au,Ax,A>.,,A.,A>..,As be de­
fined by ( 4.10). Then, after sim ple rearrangements, we arrive at the following 
identities: 

Au· (ii - 'il· S) + Ax(X +'il· j - r) 

+A>.,(>-x + Aee:x - 'il· (>-.e,ox) +a)+ A.(Ż +'il· q - S · F) 
+A>.,(>-.e.~ -1) +As· (S - e,F) 

= >-x(X +'il. j - r) - x(>-x + >-.e,X - 'il. (>-.e,ox) + a) 

+>-.(e,F. F + e:xx + e,Dx. 'vx + e:~i/ +'il. q - s. F) 
-11( >-.e:~ - 1) + >-.F · (S - e:F) 

= i/+ 'il. (>-xj + >-.q + x>-.e,ox) - >-xr - 'il >-x. j - 'il>-•. q - xa. 

This shows the equality in (4.9). In turn, the inequality in (4.9) results by 
virtue of dissipation inequality ( 4.2). Thereby the proof is completed. • 

Corollary 4.1. Prom (4.9) it follows that the solutions of system (4.5) with 
( 4.3), ( 4.6), ( 4.2) (thermodynamic processes} satisfy the following entropy equa­
tion and inequality 

( 4.12) i/ + 'il · w = >-xr + 'il >-x · j + 'il>-. · q + xa + >-x, + A,g 2 Ax, + ,\,g, 

where the entropy flux W is given by ( 4.11). It is of interest to note that the 
structure of W remains in compatibility with assumption (3.6) postulated in 
Theorem 9.1. 
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4.4. Model (M)e - formulation with free energy f = f(F , X, D x , 0) as 
a thermodynamic potentia!. Here we present an equivalent formulation of 
model (M),, expressed in terms of the absolute temperature 0 as an indepen­
dent thermal variable and the Helmholtz free energy f = f(F, X, Dx, 0) as a 
thermodynamical potentia!. To this purpose we assume thermal stability con­
dition Co = có(F, X, Dx, 0) > O (see (2.22)) under which the duality relations 
hold true. If Co > O then 

( 4.13) the function TJ,_. e(F, x, Dx, TJ) is strictly convex, 

so the function TJ,_. e,,(F, X, Dx, TJ) is strictly increasing. 

From now on we shall assume that e satisfies (4.13) in addition to (4.4) , i.e. 

( 4.14) e = e(F, x, Dx, TJ) is strictly convex as a function of TJ, 
and such that e,, > O for all arguments (F, X, Dx, TJ) . 

Under such assumption the duality relations (2.25) are satisfied. Consequently, 
by (4.5)5 and (2.25)2 , it follows that 

(4.15) 
1 1 

Ae = - = -e., 0 

which means that the energy multiplier can be identified with the inverse 
temperature. Clearly, the assumption e,, > O is equivalent to 0 > O. Moreover, 
the requirement ( 4.13) means that the map 

(4.16) TJ,_. 0(F, x, Dx, TJ) is strictly increasing, 

so there exists a well-defined inverse map 0 ,_. TJ(F, X, Dx, 0). 

Further, in view of equalities (2.29), the strict convexity of e = e(F, X, Dx, TJ) 
with respect to TJ is equivalent to the strict concavity off = f(F, X, Dx, 0) 
with respect to 0. Hence, the assumption (4.14) expressed in terms off is 

(4.17) f = i(F, X, Dx, 0) is strictly concave with respect to 0 > O. 

In addition, recalling (2.31), we have the equalities 

( 4.18) e,F = f,F, e,X = f,x, e,Dx = f,Dx, 
oe óf 

óx óx 

with appropriate arguments. 
Let us turn to the multiplier >-x- Recalling Remark 3.2, we shall identify 

->-x with a rescaled chemical potentia] 

(4.19) ->-x = µ = ~-

Then, on account of (4.15) and (4.17), equation (4.5)3 yields 
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( 4.20) 
_ 1 óf 1 
µ = 0 ÓX - v' 0 . f,Dx + a 

ó(f /0) 
= 6x + a. 

In view of relations (4.15), (4.16) and (4.19) the state space Zry can be replaced 
by 

(4.21) z= Ze:= {F,DF,x,Dx,D2x,0,D(l/0),)1,Dµ,x,,}, 

The above considerations lead to the following formulation of model (M)ry, 
referred further as ( M)8 , expressed in terms of 0 as an independent thermal 
variable: 
(Ml) 8 The unknowns are the fields u, X,µ= µ/0 and 0 > O. 
(M2)e A thermodynamic potentia! is the free energy f = J(F, X, Dx, 0) sat­

isfying (4.17). 
(M3) 8 The fields u, X,µ= µ/0 and 0 satisfy the system of equations 

( 4.22) ii - v' · S = b, 

x + v' • j - r = T, 

_ ó(f /0) 
µ= 7x+a, 

e + v' . ą - s . F = g, 

where 

(4.23) e = e(F,x,Dx,0) = J(F,x,Dx,0) +017(F,x,Dx,0), 
17 = i)(F, X, Dx, 0) = -J,e(F, X, Dx, 0), 

( 4.24) 

( 4.25) 

( 4.26) 

ó(f /0) = f,x _ v'. (f,Dx) 
óx 0 0 ' 

and S is given by 

S = f,F, 

consistent with the condition 

SFT = FST. 

Moreover, the quantities r = r(Z), j = j(Z), q = q(Z) and a= a(Z) 
are subject to the dissipation inequality 

1 
-)lr-D)l-j +D0 -ą + x,,a 2'. O 

for all variables Z in (4.21). 
(J\,14) 8 The constitutive equations have to be invariant under changes in ob­

server (see (4.8)). 
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Remark 4.1. ft is seen that in both presented above formulations (M), and 
( M)o the fundamental problem is that of obtaining all solutions of dissipation 
inequalities (4.2) and (4.26) and thereby all possible constitutive relations for 
the quantities r, j, q and a. We address this question in Section 5. • 

By similar arguments as in Theorem 4.1 we obtain 

Theorem 4.2. System ( 4.22)-( 4.26) satisf/,es the following entropy inequality 
with multipliers 

(4.27) iJ + 'v · w - Au· (ii - 'v · S) - Ax(X + 'v · j - r) 

-A,, (-;u+ J/ - 'v · f,;x +a) -A.((J + 011) + 'v · q - S · F) 

1 
-As. (S - f,F) = -µr - 'vµ. j + 'v 0. q + xa '.::: o 

for all fields u, X,µ= µ/0 and 0. The multipliers are given by 

(4.28) Au =0, 

and the entropy fiux is 

(4.29) 

Ax = -µ, A,,= -x, 1 
A,= 0' 

F 
As= 0 , 

Now we collect some important implications of the above theorem. 

Corollary 4.2. The solutions of system (4.22)-(4.26) satisfy the entropy equa­
tion and inequality 

(4 30) . TT ff, µ nµ • TT 1 • µ g > µ g 
. 11 + V • "' = - 0r - V(} · J + V 0 · q + xa - (}T + 0 _ - 0T + 0, 

where W is given by (4.29). 

Corollary 4.3. The solutions of system (4.22)-(4.26) satisfy the following 
availability identity 

(4.31) (e + ~lu./2- 011) · + 'v - [-sr u+ q - 0w] 

= -0 (-!!.r - 'v!!_ · j + 'v ! · q + xa) +u· b + g - 0 (-!!.T + !!.) 
0 0 0 0 0 ' 

where 0 = const > O. 

Proof. Multiplying ( 4.22)i by u we obtain the balance equation for the 
kinetic energy 

(4.32) 
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Summing up (4.32), energy equation (4.22)4 and entropy equation (4.30) mul­
tiplied by -0 we obtain (4.31). • 

Corollary 4.4. The solutions of (4.22)-(4.26) satisfy the Lyapunov relation. 
In fact, integration of (4.31) over !1 gives 

(4.33) ~ 1 (e + ~lu/2 - 0ry) dx 

+ h [-(Sn) ·u+ n· q - 0n · (-~j + tJą + :/·;")] dS 

= - f0(-1!.r-'vl!.·j+'v!·q+xa)dx ln e e e 
+ 1[u-b+g-0(-~r+~)]dx 

~ 1[u•b+g-0(-~r+~)]dx, 

where n denotes the unit outward norma/ to S = /J!1 . H ence, it follows that if 
the extemal sources vanish, i. e. 

b = O, g = O, T = o, 
and if the boundary conditions on S imply that 

(4 .34) (Sn)•u=O, ~n -j=O, (1-i)n · q=O, łn·f,nx=O, 
then solutions of system (4.22)-(4.26) satisfy 

(4.35) ~ 1 (e(F, X, Dx, 0) + ~lul 2 - 0ry(F, X, Dx, 0))dx :S O. 

This is the Lyapunov relation asserting that the Junction e + ½lul 2 - 0ry, called 
equilibrium free energy, is nonincreasing on solutions paths. • 

4.5. Model (M) 9 in case of infinitesimal deformations. Here we deduce 
the corresponding model within the linearized theory appropriate to situations 
in which the displacement gradient 'vu is small. To this end it is appropriate 
to repeat considerations of Sections 2-4 assuming from the outset that the 
deformation is infinitesimal. Following arguments used in [Gur96], Sec. 4.4 
or [FriGur94], Sec. 6, we redefine F to be 'vu, and replace (2.1)2 by the 
requirement that S be symmetric 

( 4.36) S= sr. 
The steps leading to (Ml)~ - (M3)~ and (Ml)0 - (M3)o remain unchanged. 
Further, as in [Gur96], Sec. 4.4, we conclude that the invariance of the con­
stitutive equations under infinitesimal rotations (i.e., replacement of 'vu by 



30 IRENA PAWLOW 

v'u + !1 with !1 skew) implies that constitutive functions can depend on v'u 
through the infinitesimal strain e(u) = (v'u + v'uT)/2. 

Consequently, the set of variables Z in (4.21) is replaced by 

Z 1 = {e(u),De(u),x,Dx,D 2x,0,D~,µ , Dµ}, µ= f 
Within the linearized theory model (M)o is based on the following postulates: 

(Ml)~ The unknowns are the fields u, X,µ= µ/0 and 0 > O. 
(M2)~ The free energy is given by 

J = J(e(u),x,Dx,0), 

satisfying ( 4.17). 
(M3)~ The fields u, X,µ and 0 satisfy equations (4.22), where S is given by 

S = S(e(u),x,Dx,0) = f.,(e(u),x,Dx,0), 

hence consistent with (4.36). Moreover, the quantities r = r(Z1),j = 
j(Z1), q = q(Z1) and a= a(Z1) are subject to the dissipation inequality 

. 1 
-µr-Dµ-j +D0 · q + x,,a 2 O 

for all variables Z 1. 

5. GENERAL SOLUTION OF THE DISSIPATION INEQUALITY. 

APPLICATION TO MODEL (M)o 

5.1. Thermodynamical setting. Let us consider inequality (4.26). Let us 
identify the variables (µ,Dµ,D!,x.,) with the radius vector, X, of EN: 

(5.1) X:=(µ,Dµ,D~,x.,), µ=~, 

called thermodynarnic forces. Correspondingly, Jet us identify (-r, -j, q, a.) 
with the radius vector, J, of EN: 

(5.2) J := (-r, -j, q, a), 

called thermodynamic fluxes. Finally, Jet us identify the remaining variables 
from the set Z in (4.21) (not belonging to X) with the radius vector, w, of EP: 

(5.3) w= (F, DF, X, Dx, D 2x, 0), 

called state variables. 
With such notation (4.26) is transformed to the following well-known form 

of the thermodynamic inequality 
1 

(5.4) ~(X;w) := -µr - Dµ•j +D0 · q + x,,a = X-J(X;w) 2 O 

for all variables {X; w} = Z. 
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We recall two results on the representations of solutions of thermodynamic 
inequality (5.4) . 

The first, due to Gurtin [Gur96], gives a representation in terms of a linear 
transformation which satisfies in a certain sense the semi-definiteness condi­
tion. The second one is the decomposition theorem due to Edelen [Ede73] 
which represents a special case of the Helmholtz theorem in vector analysis. 
This theorem asserts a splitting of the solution of the dissipation inequality 
into a dissipative and a nondissipative part. The application of this theorem to 
problem ( M)8 allows to draw interesting conclusions regarding the structure 
of the quantities in (5.2). It turns out that the nonstationary parts of these 
quantities may in generał contribute to nondissipative thermodynamic fluxes. 
In other words, if not excluded, such anomaly fluxes are not restricted by the 
second law. In class of models we are concerned with, involving free energy 
of gradient type, the key role plays the nondissipative energy flux. The free 
choice of this flux together with a relation between energy and entropy fluxes 
(see (6.5) below) allows to enlighten a question of recent interest (see [FGM06]) 
whether in phase-field models one has to modify energy or entropy equation. 

Our answer will be that both variants are correct and arise due to particular 
choices of the nonstationary energy flux (see Section 6.3). 

5.2. Representation of solutions to dissipation inequality. 

Lemma 5.1. (see [Gur96], Appendix BJ. 
Let X be a generic element of an N-dimensional vector space EN with inner 
product X• Y, let w be a generic element of a p-dimensional vector space EP, 
and let J (X; w) := EN x EP --+ EN be a smooth Junction satisfying inequality 

(5.5) X• J(X; w)~ O for all (X; w) E EN x EP. 

Then J is given by 

(5.6) J(X;w) = B(X;w)X, 

with B(X;w), for each (X;w), a linear transformation from EN into EN, 
consistent with the inequality 

(5.7) X · B(X; w)X ~ O for all (X; w) E EM x EP. 

The mapping B(X;w) is given by 

(5.8) B(X;w) = fo 1 'J(TX)J(rX;w)dr, 

where V x denotes the gradient with respect to X . 

We remark that because of the dependence of B(X; w) on X, inequality (5.7) 
is weaker than positive semidefiniteness of B(X; w). However, w hen J(X; w) 
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is linear in X for each w, then 

(5.9) J(X;w) = B(w)X 

with B(w) positive semi-definite. 
The second lemma yields a decomposition result 

Lemma 5.2. (see [Ede73], Coro/lary p. 220). 
Let X stand for elements of an N-dimensional vector space EN with inner 
product X· Y, let w stand for an element of a p-dimensional vector space EP, 
and let J(X; w) : EN x EP -+ EN be a mapping which is continuous in w 
and of class C1 in X. There exists a scalar-valued Junction V(X; w) that is 
unique to within an added Junction of w, and a unique vector-valued Junction 
U(X; w) such that 

(5.10) J(X;w) = v'xV(X;w) + U(X;w), 

X-U(X;w)=O, U(O;w)=O. 

The mappings V(X; w) and U (X; w) are given by 

(5.11) D(X; w) = 11 X· J(rX; w)dr, 

U·(X· ) = (1 X {ćlJ,(rX;w) _ ćlJi(rX;w)} d 
' ,w } 0 

7 1 ćl(rXi) ćl(rX,) T. 

Moreover, if J(X; w) is of class C2 in X, then V(X; w) is of class C2 in X, 
and the symmetry relations 

(5.12) v'x /\ (J(X; w) - U(X; w))= O, 

where ,,/\" denotes the exterior product operation, are satisfied identically on 
EN X EP. 

We point out important implications of and interpretations of the latter 
lemma. Firstly, in view of (5.10)2, dissipation inequality (5.4) reduces to 

(5.13) E(X; w) =X· J(X; w) =X· v'xD(X; w) 2: O. 

It is thus only the part v'x D(X; w) of the thermodynamic fluxes J (X; w) that 
contributes to the rate of entropy production. The function D(X; w) can thus 
be interpreted as a dissipation potentia!. In other words, Edelen's theorem 
asserts that there exists a dissipation potentia! D(X; w) for every system of 
constitutive relations that satisfies the dissipation inequality. In fact, it follows 
directly from (5.13) that E(X; w) and D(X; w) stay in the relation 

(5.14) V(X;w) = (1 E(rX;w)dr_ 
} 0 T 

By (5.13) and (5.14) it follows that D(X; w) is nonnegative, convex and achives 
its absolute minimum of zero for X = O. 
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The vector U(X; w) can be interpreted as the nondissipative part of the 
thermodynamic fluxes J(X; w) because X• U(X; w) = O and hence U makes 
no contribution to I: for any values of X and w . 

The symmetry relations (5.12) assert that reciprocity relations are always 
satisfied by any solution of the dissipation inequality, although it is J - U 
rather than just J that satisfies them. In this sense (5.12) generalize the 
Onsager reciprocity relations of linear theory of irreversible processes to the 
nonlinear case. More precisely, it follows from (5.12) that 

'vx I\ J = O, i.e . 8J;/8X; = 8J; / 8X;, i,j = 1, ... , N, 

when and only when the nondissipative part U of the thermodynamic fluxes 
vanishes identically on EN x EP. 

5.3. Decomposition of the fluxes. According to Theorem 4.2, the entropy 
flux W contains the nonstationary term x.f.nx / 0 (see (4.29)). This suggests 
that one should look more carefully on other possible nonstationary terms 
comming from the constitutive quantities q , j and r. As mentioned before, of 
particular interest is the energy flux q. 

Let us assume, without loss of generality, the following splitting of q = q(Z): 

(5.15) q = ą0 - x,,h, 
where ą0 stands for a stationary (heat) flux which does not depend on x,, , i.e. 

qo = ąo(zo) 

with 

Z0 := Zlx.,=o = { F,DF,x,Dx,D2x,0,D~,µ,Dµ ,O}, 

and h (possibly equal zero) stands for a nonstationary flux, i.e. 

h = h(Z), z= { F , DF, X, Dx, D 2x, 0, D~, µ, Dµ, X,t} . 
Further, in accordance with Edelen's decomposition theorem, Jet us assume 
that there may exist a nondissipative ( anomaly) flux in the system and that it 
is due to nonstationary flux h. More precisely, Jet us assume that q in (5.15) 
splits into a dissipative, qd, and a nondissipative (extra), qnd , parts: 

(5.16) 

where 

(5.17) 

and 

(5.18) 
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with hd = hd(z) and hnd = hnd(Z) denoting dissipative and nondissipative 
parts of flux h ( each of them can be zero). 

Similarly, one could select nondissipative parts of the quantities r and j in 
(4.26). For simplicity we omit this, however, assuming that 

(5.19) 

With splittings (5.16)-(5.19) dissipation inequality (4.26) can be transformed 
into the following decomposed form: 

- d - •d l d d (5.20) E(X;w) = -µr -Dµ-J + D 0 · q + x,,a 

-D~ . (x,,hnd) + x,,D~ . hnd 

= X• (Jd(X; w)+ U(X; w)) 

= X- Jd(X;w) 2: O, 

where 

(5.21) 

and 

u·= (o o -x hnd D~. hnd) . , , ,t , e 
satisfies 

X· U(X;w) = O and V(O;w) = O. 

Thus, ad in (5.21) may be interpreted as a dissipative part of the quantity a, Jd 
as a dissipative part of the thermodynamic fluxes J and U as their nondissi­
pative part. 

Moreover, by virtue Lemma 5.2, the dissipative flux Jd in (5.21) is charac­
terized by 

(5.22) 

where 'D(X; w) is a dissipation potentia! which is nonnegative, convex in X 
and such that it achives its absolute minimum of zero at X = O. 

An equivalent characterization of flux Jd, according to Lemma 5.1, is: 

Jd(X;w) = B(X;w)X, 

with B(X, w), being a linear transformation from EN into EN, consistent with 
the inequality 

X· B(X;w)X 2: O for all (X;w) E EN x EP. 
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6. A SCHEME OF PHASE-FJELD MODELS 

6.1. Formulation. On account of representation (5.20)-(5.22) of dissipation 
inequality (4.26), the formulation (M) 0 presented in Section 4 leads to the 
following scheme of phase-field models with first order gradient energy: 

Let the state space be 

(6.1) { 
2 lµ µ } Z= F,DF,x,Dx,D x,0,D0, 0,D0 ,x,, . 

There are given a free energy f = f(F, X, Dx, 0) which is strictly concave with 
respect to 0, and a dissipation potentia! 7J = "D(X; w) with 

X:= (~,D~,D~,x.,), 

w:= (F,DF,x,Dx,D 2x,0), {X;w} = Z, 

which is nonnegative, convex in X and such that 7J(O; w) = O. The unknowns 
are the fields u, X,µ = µ/0 and 0 > O satisfying the following system of 
equations: 

(6.2) 

where 

(6.3) 

ii - 'v . f.F = b, 

x + 'v • j - r = r, 
!:::_ = ó(J /0) + 'v ~ . hnd + ad 
0 ox 0 ' 

e + 'v • ą - f,F · F = g, 

e=f-0f,o, q=qd-xh"d, 

-r = -rd = 1J,(µ/O), -j = -/ = 7J,D(µ/0), 

Qd = 7J,D(l/O), ad = 1J,X," 

and a nondissipative flux hnd = hnd (X; w) is an arbitrary vector field not 
restricted by the entropy principle. 

Remark 6.1. The solutions of system (6.2), (6.3) satisfy entropy inequality 
( 4.30) which on account of (5 .20) takes the form 

( ) · µ d ,.,µ •d n l d · d µ g µ g 
6.4 TJ+ '::J · 'P = - 0r - V 0 · J + v O· Q + xa - 0r + O 2'. - 0T + 0, 

where 

(6.5) 
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,r,d ·= _ł!.J•d + ~qd ,T,nd ·= f,Dx. - hnd 
. 0 0 ' "' . 0 

It is of interest to note that the extra energy term, h nd, and the extra entropy 
term, 'V nd, defined above, are linked by the Gibbs-like relation 

(6.6) hnd + 0,r,nd = f,Dx.· • 

6.2. Examples of thermodynamic potentials. To set a stage for a com­
parison with phase-field models known in literature, to be presented separately 
in [Paw06c], we collect here some typical mod eis of free energies and dissipation 
potentials. Moreover, we discuss system (6.2)- (6.3) in two extreme cases. 

A generał model of free energy describing phase transitions in solids has a 
separable Landau- Ginzburg form 

(6.7) J(F, X, Dx, 0) = f.(0) + W(F , X, 0) + 7/J(x, 0) + !a(x, Dx, 0) 

with the subsequent terms representing respectively thermal energy, elastic 
energy, chemical energy and gradient energy which corresponds to diffused 
phase interfaces. 

A typical example of J.(0), associated with constant thermal specific heat 
c,, > O, is 

(6.8) J.(0) = -c,,0log (f) + c,,0 + c 

with a positive constant 01, and some constant c immaterial from the point of 
view of differential equations. 

An example of elastic energy W(F, X, 0) for phase separation in a binary 
a - b alloy in case of infinitesimal deformations is (see e.g. [DreyMu!OD], 
[BonCDGSS02]): 

1 
(6.9) W(c(u), x, 0) = 2(c(u) - e(x, 0)) · A(x)(c(u) - e(x, 0)) , 

where c(u) = (v'u + v'uT)/2 is the infinitesimal strain tensor, A(x) is the 
fourth order elasticity tensor (in generał depending on x because of different 
elastic properties of the phases), and e(x, 0) is the eigenstrain tensor account­
ing for different thermal expansions of the phases. Tensors A(x) and e(x, 0) 
are defined by 

(6.10) A(x) = (1 - z(x))A. + z(x)Ab, 

e(x, 0) = (0 - 0n)[(l - z(x))a. + z(x)ab), 

where A 0 , Ab are constant elasticity tensors of phases a, b, 0 0 and ob are the 
matrices of thermal expansion coefficients of these phases, 0 n is a reference 
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temperature, and z(x) is a function interpolating between concentrations Xa 
and Xb of pure phases, so-called shape function, e.g. in the form 

z(x) = Xa - X_ 
Xa - Xb 

The chemical energy '1/J(x, 0) characterizes the energetic favorability of the 
individual phases and typically has the form of a double-well potentia!. A 
well-known example at 0 = const is given by 

1 
(6.11) '1/Jo(x) = 4(x2 - 1)2, 

where the values ±1 correspond to the pure phases. For nonisothermal phase 
transitions a relevant form of '1/J(x, 0), proposed by Penrose and Fife [PenFife93], 
is 

(6.12) '1/J(x, 0) = 4!0 '1/Jo(x) + ( 1 - f) (-ax2 + bx + c), 

where 00 > O is a transition temperature and a, b, c are some constants whose 
choice depends on the system under consideration. 

A typical example of an isotropic gradient energy is 

(6.13) 
1 

fa(x, Dx, 0) = 2x(x, 0)1Dxi2 

with a positive function x(x, 0) being a small interfacial pararneter. In applica­
tions to concrete systems one can distinguish two special cases of temperature­
dependence of the parameter x . 

In the first one, which we call energetic, the gradient term is fully contained 
in the interna! energy and the entropy is purely volumetric. On the contrary, 
in the second case, which we call entropie, the interna! energy is volumetric 
whereas the gradient term is fully contained in the entropy. More precisely, 
these cases can be characterized with the help of Gibbs relation (2.18) as 
follows: 

- gradient energy of energetic type x = x(x) > O 

(6.14) e,nx = (J-0f,o),Dx = f,nx = xDx {ce} 1/,Dx = -f.onx = -x,oDx = O, 

- gradient energy of entropie type x = 0x(x) > O 

(6.15) e,nx = (J- 0f,o),Dx = (x - 0x,o)Dx = O {ce} 

011,nx = -0f,onx = -0x,oDx = -xDx = -f,Dx· 

We present now some standard exarnples of the dissipation potentia! V(X; w) 
in (6.2) , (6.3). For simplicity, Jet us assume the splitting 

(6.16) V(X; w)= V 1 (~;w)+ 'D2 (n~;w) + V3 ( D~; w) + V4(x,,; w), 
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and restrict ourselves to the situation near thermodynarnical equilibrium with 
potentials Vk. k = l, 2, 3, 4, of second degree of homogeneity in variables 
~.D~,D½ and x,,, respectively. The potentia! V 1 corresponds to a non­
conserved order parameter dynamics, V2 to a conserved one. The simplest 
examples are 

(6.17) 

where a and M are positive coefficients, M representing diffusional mobility. 
According to (6.3) such potentials yield the following laws: 

- for the production term 

d V µ (6.18) r = - .(µ/0) = -ae, a> O, 

- for the mass flux 

(6.19) / = -V,D(µ/0) = -MD~ , M>O. 

The potentia) V3 corresponds to the heat conduction. A typical example which 
governs the isotropic Fourier law is 

(6.20) 1 2 1 21 11 2 
V3 = 2k/Dlog0/ = 2k0 De , 

where k > O is the heat conductivity coefficient. Then, according to (6.3), 

d 2 1 
(6.21) q = v,D(l/0) = k0 De = -kD0, k > o. 
Finally, the potentia! V 4 corresponds to viscous diffusive effects with an ex­
ample 

(6.22) 

where f3 > is a viscosity coefficient. By (6.3) such potentia) yields the following 
law 

(6.23) ad = v,x,, = f3x,,, /3 > o. 

6.3. Special forms of model equations. For further discussion we collect 
some equivalent forms of equations (6.2)3 and (6.2) 4 for the chemical potentia) 
and the energy. First, Jet us note that (6.2)3 can be rewritten as 

µ 16J l ~ d 
(6.24) e=e6x-v'e·U.ox-h )+a, 

or, using (6.6), as 
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Next, introducing the specific beat coefficient (see (2.21)) 

Co= -Bf,00, 

39 

and taking into account that 

e = (f- 0!,0),F · F + (f - 0!,0),xx + (f - Bf,0),Dx · v'x - 0J,0iJ, 

energy equation (6.2) 4 can be rewritten in the following temperature form 

(6.25) eoó+ v'. (qd - xhnd ) + (f - BJ,0),xx + (f-8!,0),Dx. v'x_-8f,0F. F = g. 

Equations (6.24) and (6.25) suggest two extreme choices of the flux h nd: 

(6.26) hnd = O, so >Itnd = J,;x (extra entropy flux), 

and 

(6.27) h nd = f,Dx, so >Itnd = O (extra energy flux). 

The corresponding schemes take then the following forms: 

(i) Scheme with extra entropy flux: h nd = O, \[Ind = f,nx/0 

(6.28) ii - v' · f,F = b, 

X + v' . / - rd = r, 
µ O(j /0) d 

0 = 8x + a ' 

eoó + y7 · qd + (f - BJ,0),xX. + (f - BJ,0),Dx. v'x 

-0f,0F·F=g, 

with rd,t, qd, ad given in (6.3). Such scheme satisfies the entropy inequality 
of the form 

(6.29) T/ + y7. [-t:/ + ~qd + Xf.Dx] 
8 0 0 

µ d µ •d 1 d · d µ 9 = -0r -v'0 ·J +v'0·q +xa -0T+0 
µ g 

~ -0T+ 0· 

(ii) Scheme with extra energy flux: hnd = f,Dx, Wnd = O 

(6.30) ii - v' · f,F = b, 

X + v' . / - rd = T, 

µ I of d 

0 = eox +a' 

eoB + y7' (qd - xf,nx) + (f - Bf,0),xX + (f - BJ,0),Dx. v'x 

-0f,0F . F = g, 
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with rd,jd, qd, ad given in (6.3). Such scheme satisfies the entropy inequality 
of the form 

(6.31) ij+v'·[-fl+~qd] 

µ d y7 µ ·d y71 d · d µ g 
= -7/ - 0 · J + 0 · q + xa - 07 + 0 

µ g 
ć -0T+0. 

We remark that, regarding the structure of the energy equation, scheme (i) 
with extra entropy flux falls into the frarne of Penrose-Fife models with con­
served and nonconserved order parameters [PenFife90], [PenFife93j, Caginalp 
model [Cag86], and severa! other models with modified entropy equation, e.g. 
models in [AltPaw92], [FGM06]. 

Scheme (ii) with extra energy flux is in turn consistent with models for non­
conserved order parameters proposed by Fried-Gurtin [FriGur93], Fremond 
[Frem02] and Miranville-:--Schimperna [MirSchim05a]. Besides, if higher gradi­
ents of deformation are admitted then scheme (ii) with modified energy equa­
tion turns out to be consistent with the theory by Falk [Falk82), [Falk90) for 
shape memory alloys and by Dunn-Serrin [DunnSer85] for higher grade mate­
rials (see [Paw00c), [PawZaj03)). 

In view of applications it is of interest to consider schemes (i) and (ii) in 
case of entropie and energetic gradient energies. If the gradient energy (6.13) 
is of entropie type 

x(x, 0) = llx(x) > o, 
then scheme (i) with extra entropy flux reduces to the form: 

(6.32) ii - v' . f,F = b, 

X + v' · l - rd = T, 

t; = fr/ - v'. (xv'x) + ad, 

C{)0 + v' · qd + (J - 0f,e),x.X - 0f,eF · F = g. 

In turn, if the gradient energy (6.13) is of energetic type 

x(x, 0) = x(x) > O, 

then scheme (ii) with extra energy flux becomes 

(6.33) ii - v' · f,F = b, 

X + v' · l - rd = T, 

µ = f,x - v' · (xv'x) + 0ad, 

C{)0 + v'. qd + xlf.x - v'. (xv'x)] - 0f,ox.X - 0f,eF. F = g. 
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A detailed cornparison of the above presented schernes with severa! rnodels 
known in literature will be presented in [Paw06c]. 

[AltPaw92] 

[AltPaw95] 

[AltPaw96] 
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