





A THERMODYNAMIC APPROACH OF PHASE-FIELD
MODELLING OF THERMOELASTIC MATERIALS
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ABSTRACT. The goal of this paper is to work out a thermodynamical set-
ting for phase-field models with conserved and nonconserved order para-
meters in thermoelastic materials. Our approach consists in exploiting the
second law in the form of the entropy principle according to I. Miiller and
1. S. Liu which leads to the evaluation of the entropy inequality with mul-
tipliers.

As the main result we obtain a general scheme of phase-field models which
involves an arbitrary extra vector field. We explain the presence of such a
field in the light of Edelen’s decomposition theorem asserting a splitting of a
solution of the dissipation inequality into a dissipative and a nondissipative
part. For particular choices of this extra vector field we obtain known
schemnes with either modified entropy equation or modified energy equation.
A detailed comparison with several known phase-field models, in particular
Cahn-Hilliard and Allen-Cahn models in the presence of deformation and
heat conduction, will be presented in a forthcoming paper [Paw06c].
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1. INTRODUCTION

Phase-field approaches to modelling of phase transitions in various conserved
and nonconserved systems have gained a lot of popularity during the last years.
Among the mostly known and broadly investigated we mention the Caginalp
mnodel of solid-liquid phase transitions [Cag86], Penrose-Fife models with con-
served and nonconserved order parameter {PenFife90], [PenFife93], models due
to Fried-Gurtin [FriGur93], [FriGur94], Gurtin [Gur96], Frémond [Frem02],
|[FremMi96], and Falk [Falk82], [Falk90] for phase transitions in solids, in par-
ticular phase separation, ordering in alloys, damage and shape memory prob-
lems.

The phase-field models postulate one or more order parameters as indicators
of the state of the material, in addition to the usual ones such as temperature,

elastic strain etc. In models of this type — ou the contraty to sharp interface
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elastic strain etc. In models of this type — on the contraty to sharp interface
ones — the order parameters vary continuously in the medium, including the in-
terfacial regions between the phases. This is due to the fact that the phase-field
models are governed by a potential of Landau~Ginzburg type which depends
on the order parameter and its gradient.

In most of the literature the derivations of phase-field models are based on
variational arguments and adapt concepts from classical equilibrium thermo-
dynamics in nonequilibrium situations.

Having in mind several objections to variational derivations, in particular
not sufficient generality of postulated constitutive equations, E. Fried and M.
E. Gurtin have developed in a line of their papers [FriGur93], [FriGur94),
[FriGur99], [Gur96) a thermodynamical theory of phase transitions based on
a microforce balance in addition to the basic balance laws and and a mechan-
ical version of the second law. Parallel to that theory M. Frémond {Frem02],
|FremMi96] has proposed a theory based on microscopic motions as a tool of
modelling of various phase transitions, specifically shape memory and damage
problems. Despite of different ideas Frémond’s approach bears some resem-
blance to the Fried—Gurtin theory.

Another approach to modelling phase transitions has been proposed in
[AltPaw95], [AltPaw96] and applied in [Paw00a], [Paw00b], [Paw00c]. This
approach consists in exploiting the second law in the form of the entropy prin-
ciple according to I. Miiller [Mul85], complemented by the Lagrange multipliers
method suggested by I. S. Liu [Liu72]. Such method leads to the evaluation of
the entropy inequality with multipliers, known as the Miiller-Liu inequality.
Recently the multipliers-based approach was applied for deriving generalized
Cahn-Hilliard and Allen-Cahn models coupled with elasticity (see [Paw06a)).
A comparison with the Fried~Gurtin theory based on a microforce balance
showed coincidence of results and several interesting connections.

We point out that all the above mentioned thermodynamical approaches
allow to obtain models with much more general structure than those introduced
by variational arguments.

The goal of the present paper is to work out a general thermodynamical
setting for phase-field models with conserved and nonconserved order param-
eters in thermoelastic materials by means of the multipliers-based approach.
Our ultimate aim is to obtain a general class of thermodynamically consistent
schemes for Cahn-Hilliard and Allen-Cahn models ~ two central equations in
materials science — in the presence of deformation and heat conduction. This
will be presented in a separate paper [Paw06c} where we discuss the general
thermodynamic scheme in several special situations and compare the results
with the mentioned above well-known phase-field models. In particular, we
shall consider there the Cahn-Hilliard and Allen—Cahn models coupled sepa-
rately either with elasticity or with thermal efects. The latter case allows
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to enlighten a general question of particular interest in phase-field modelling
whether to modify the energy or the entropy equation (for related discussion
see e.g. [FGMO6)). In this respect the answer given by the present paper is
that both variants of the schemes with extra energy or extra entropy flux are
thermodynamically consistent and arise in dependence on whether there ap-
pears or not a nondissipative (anomaly) thermodynamical flux in the system.
More precisely, in the present paper we show that one can choose a nonsta-
tionary part (depending on the time derivative of the order parameter) of the
energy flux in an arbitrary way not restricted by the entropy principle. This
property, characteristic for models governed by gradient-type potentials, was
observed firstly in {AltPaw96]. Here we explain this freedom in the light of
Edelen’s decomposition theorem [Ede73], {Ede74] which asserts a splitting of
a solution of the dissipation inequality into a dissipative and a nondissipative
part. Clearly, a final selection of this flux must follow from an additional
analysis of the resulting model equations.

Prior to presenting a general scheme of phase-field models we describe briefly
the Miiller-Liu multipliers-based approach. The application of this approach
to phase transition models requires a special procedure which consists of three
main steps.

In the first step we consider the system of balance laws with a set of constitu-
tive variables relevant for the phase transition under consideration. Distinctive
elements in this set are variables representing higher gradients of the order pa-
rameter and its time derivative. The presence of such variables is characteristic
for theories involving free energies of Landau-Ginzburg type. In accordance
with the principle of equipresence we assume that all quantities in balance laws
are constitutive functions defined on this set of variables.

In the second step we postulate the entropy inequality with multipliers con-
jugated with the balance laws. Again, we assume that all quantities in this
inequality, including multipliers, depend on the same constitutive set. Next,
making no assumptions on the multipliers, we exploit the entropy inequality
by using appropriately arranged algebraic operations. As a result we conclude
a collection of algebraic restrictions on the constitutive equations.

In the third step we presuppose that the multipliers associated with the
equations for the order parameter and the energy are additional independent
variables. Then, regarding algebraic restrictions obtained in the previous step,
we deduce an extended system of equations including in addition to the balance
laws the equations for the multipliers. Moreover, we require the resulting
system to be consistent with the principle of frame indifference.

We present now the main result of the paper which yields a general scheme
for phase-field models with conserved and nonconserved order parameters, gov-
erned by a first order gradient free energy in the presence of deformation and

heat conduction.
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We use the following notation: y — order parameter, u — displacement, F -
deformation gradient, u — chemical potential, § > 0 — absolute temperature,
f — free energy, e — internal energy,  — entropy, q ~ energy flux, ¥ - enropy
flux, j — order parameter flux, r — order parameter production, v — external
source of the order parameter, g — external heat source.

We assume that there are given a free energy f = f(F, X, Dy, 8) which is
strictly concave with respect to 8, and a dissipation potential D = 5(X;u)
with

X:= (4 Dp4Dly,) —th ical f
=3P E’X" thermodynamical forces,
w := (F,DF, x, Dx, D%, 0) - state variables,

which is nonnegative, convex in X and such that D(0;w) = 0. Here Dx, D?x;, x,:,
etc. denote variables corresponding respectively to Vy, V2, x; superimposed
dot denotes the material time derivative.
The unknowns are the fields u, x, 41/60 and 0 > 0 satisfying the following
system of equations:
(1.1) U-V-fr=Db,
x+V-.j-r=m,
w_8(5/0) 1 d d
S =—-""4V--h"
8= o Vg T
é+V.q-frF=g
The subsequent equations in (1.1) represent respectively the linear momentum
balance, the mass balance, a generalized equation for the chemical potential
{equivalent to a microforce balance in Gurtins theory, see {Paw06a]) and the
energy balance. Equation (1.1); combines various types of dynamics of the
order parameter: — mixed type if j # 0, r 5 0; — conserved if j # 0, r = 0; ~
nonconserved if j = 0,7 5 0.
The expression 6(—‘{@ denotes the first variation of the rescaled free energy

f/0 with respect to x:

5(f/6) f fipx
1.2 ={< L v AR AL
(1.2 2= (5) v (5)
the internal energy e = e(F, x, Dy, ) is given by
(1.3) e=f—0fq,

and the energy flux q splits into a dissipative, q% and a nondissipative, ~yh™
(possibly zero), parts:

(1.4) a=q'—xn
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The dissipative quantities

(1.5) r=ri=F (X w), j=jl=7Xw),

denoting respectively the order parameter production, the order parameter
flux, the heat flux, and a dissipative part of the rescaled chemical potential

1/0, are given by

oD aD
1.6 P O
(16) "= T D)
. oD , oD

“ =

The nondissipative flux h™ = h"d(X w} is an arbitrary vector field which is
not restricted by the entropy principle. It should, however, like all other consti-
tutive quantities in (1.1), be consistent with the frame indifference principle.
This principle resiricts the dependence on F. In particular, the free energy
should satisfy

F(F,x,Dx,6) = f(C, x, Dx, 9)
where C = FTF is the right Cauchy-Green strain tensor; other quantities

should transform appropriately (see Section 4).
It will be shown (see Corollary 4.2) that solutions of system (1.1) satisfy the

following entropy equation and inequality

. i B 9o b8
1.7 o= = CAS 7y
(1.7) n+V-¥ €r V€J+V9q+xa+gf+€ AR
with the entropy flux ¥ given by
#d 1 4 -ﬁDx-h"d
1. == - ==
(1.8) AR T U
The quantity
1
E(X;w):=—%rd—Dg~jd+D§~qd+x,tadZO

on the right-hand side of (1.7) represents a dissipation.

Another important property of system (1.1) is the Lyapunov relation (see
Corollary 4.4) which asserts that if the external sources vanish, i.e. b=0, 7 =
0, g = 0, and if the boundary conditions on S imply that

(1.9) (fpn) =0, %n-j:O, (1—g>n-(qd—xh"d)=o,

X
gn'vax::Ow
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then solutions of (1.1) satisfy the inequality
d 1 =
(110) 4 [ (e(F,x.Dx.0) + gl ~ Fn(F, x, Dx,0))de < 0
Q

for some constant # > 0. This provides the Lyapunov relation.

The distinguishing elements of system (1.1) are nonstandard energy and
entropy fluxes, q and W, which contain extra nonstationary terms. As seen
from (1.4), (1.5) and (1.8), the fluxes ¥, q and j are related by the condition
. f)Dx

g, 1
111 T+Lj-—q=
(1.11) +gi-ga=%7

This condition shows that in phase-field models with first-order gradient en-
ergy (i.e. f,py # 0) at least one of the fluxes must include an extra nonstation-
ary term with x. We point on the two extreme choices of the nondissipative
flux hnd:
(i) h* =0
leading to models with extra entropy flux
d B 1 g fibx
= T = L Z JoDx.
a=q, 6"] + 0(1 +Xx q '
(ii) h*? = f,py
leading to models with extra energy flux

. un, 1
a=a*~x/x, ‘1’:—'§Jd+§qd-

With the akove special choices of h™?, assuming standard forms of the free
energy f = f(F,x, Dx,0) and the dissipation potential D = D(X;w), we
can derive from system (1.1) several known phase-field models, in particu-
lar Penrose-Fife models {corresponding to h™* = 0), and Fried~Gurtin and
Frémond models (corresponding to h™ = f,p, ), see [Paw06c|.

The paper is organized as follows. In Section 2 we introduce basic physical
quantities, the balance laws, the entropy principle, the entropy inequality with
multipliers and the state spaces relevant for phase field models under consi-
deration. Moreover, we present the duality relations generalizing the classical
Legendre transformations to the case of gradient type potentials. These rela-
tions allow to formulate equations equivalently with respect to temperature,
entropy or energy as independent variables, thus are of general importance in
phase-field modelling.

In Section 3 we evaluate the entropy inequality with multipliers to select a
class of thermodynamically consistent models. To this purpose it is convenient
to use the state space with entropy (or energy) as an independent variable. The
obtained restrictions are stated in Theorems 3.1 and 3.2.
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In Section 4 we introduce an extended model with the multipliers corre-
sponding to mass and energy balances as additional independent variables.
The model combines various types of dynamics of the order parameters and
is expressed in terms of entropy as an independent variable. Next, making
use of the duality relations, we give its equivalent formulation in terms of
temperature as an independent variable. The thermodynamic consistency of
both formulations is stated in Theorems 4.1 and 4.2. Besides, we present the
formulations of the model within the linearized elasticity theory.

In Section 5 we are concerned with solutions of a thermodynamic inequality.
‘We recall two results on representations of such solutions, one due to Gurtin
[Gur96] and the second one due to Edelen [Ede73]. The application of Edelen’s
decomposition theorem to our system yields the splitting of the thermodynamic
fluxes into a dissipative and a nondissipative part with extra nonstationary
term.

In Section 6, taking into account the decomposition of the fluxes, we present
a final scheme of phase-field models outlined above. We give also some stan-
dard examples of free energies and dissipation potentials. Besides, we present
some equivalent forms of the model equations and discuss them for particular
choices of the nondissipative energy flux. This way we prepare a stage for a
comparison with phase-field models known in literature, to be presented in
[Paw06c].

‘We list now the notation used in the paper.

We generally follow the notation in [Gur00]. Vectors (tensor of the first
order), tensors of the second order (referred simply to as tensors) and tensors
of higher order are denoted by bold letters. Tensors of the second order are
linear transformations of vectors into vectors. The unit tenser 1 is defined by
Iu = u for every vector u; ST,trS, S~ and det S, respectively, denote the
transpose, trace, inverse, and determinant of a tensor S.

A dot designates the inner product, irrespective of the space in question:
u - v is the inner product of vectors u = (u;) and v = (v;),S - R = tr(S8”R)
is the inner product of tensors S = (§;) and R = (R;;), A™ - B™ is the inner
product of the m-th order tensors A™ = (A7 , ) and B™ = (BT , ).

In Cartesian components,

(Su),- = S,'J’U,j, (ST)ij = SJ',', irS = S,',', u-v=uv;,
§5-R=S8;Ry;, A™-B"=A7 , BI. .
Here and throughout the surmmation convention over repeated indices is used.
The transpose of a tensor is defined by the requirement that
u-Sv = (STu) - v for all vectors u and v.

By A = (Ai;u) we denote the fourth order elasticity tensor which represents a
symmetric linear transformation of symmetric tensors into symmetric tensors.
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We write (Ag)i; = Aijuen-

The term field signifies a function of a material point x € R* and time t. The
superimposed dot, e.g. f, denotes the material time derivative of the field f
(with respect to t holding x fixed), V and V- denote the material gradient and
the divergence (with respect to x holding ¢ fixed). For the divergence we use
the convention of the contraction over the last index, e.g. (V-8); = 85;;/8z;.
We write f4 = 0f/0A for the partial derivative of a function f with respect
to the variable A (scalar or tensor). Specifically, for f scalar valued and A™ =
(AT ;.) a tensor of order m, fam is a tensor of order m with components

f’A:".,.{ °
Finally, for a function f = f(x, V) we denote by 4 f /8y its first variation
with respect to x:
5f
I Fx(06VX) =V fox 06 VX)-

2. THERMODYNAMIOCAL FOUNDATIONS

2.1. Basic quantities. Let 8 C R® be a bounded domain with a smooth
boundary S, occupied by a solid body in a fixed reference configuration. Let
x € 1 be the material point. The motion (deformation) of the body is denoted
by y(x,t) = x + u(x,t), where u is the displacement. Further, let

F=Vy=1+Vu,

subject to detF > 0, be the deformation gradient, and C = FTF, in com-
ponents Ci; = (0Ym/0;:)(Oym/8z;), be the right Cauchy-Green strain tensor
corresponding to F.

We use an order parameter to characterize the notion of a phase and iden-
tify phase interfaces with thin transition zones within which the strain and the
order parameter exhibit large gradients. To this end we consider the following
fields in material representation: p — mass density, assumed constant normal-
ized to unity, p = 1;

S = (8y;) — first Piola—Kirchhoff stress tensor; b = (b;) - external body force;
x — scalar order parameter; j = (j;) — order parameter flux;

r ~ order parameter production (scalar);

7 ~ external source of the order parameter;

e — internal energy; q = (g;) — energy flux; g — external heat source;

# > 0 — absolute temperature, ¥ = 1/6 — inverse temperature;

# — chemical potential, I = u/60 — rescaled chemical potential;

n — entropy, f = e — 6n — Helmholtz free energy.

Moreover, depending on the choice of thermal variable (see Section 2.5), we

denote:
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e, € ¢ — internal energy respectively as a function of 6,9 and 7,
7,7, 77 — entropy respectively as a function of 8,9 and e.

2.2. Balance laws and the entropy principle. Letting p = 1, the balance
laws for the linear momentum, the angular momentum, the order parameter
and the internal energy read as follows (see e.g. {Silh97]):

i-V-S=b,
(2.1) SFT = psT,
X+V-j—~r=r,
é+V-q—-S - F=y.
We point out that equation (2.1); combines various types of dynamics of
the order parameter:
— mixed conserved-nonconserved (mass balance with production term) j £ 0
and 7 # 0,
— conserved (mass balance without production) j # 0 and r =0,
~ nonconserved (evolution law for the order parameter) j = 0 and r # 0.
Balance laws (2.1) are closed by constitutive equations for the quantities

S,j,reand g:

(22) S=8(Y), j=jY), r=fY), e=&Y), a=4g),
where Y denotes a set of independent constitutive variables (so-called state
space) and S, j, 7, €, are smooth functions of their arguments. The set Y has

to be chosen so that to reflect properly the material properties (see Section

2.3). As common we do not assume constitutive equations for the external

sources b, 7 and g.

The entropy principle is used to derive restrictions on constitutive equations

(2.2) and this way to select a class of thermodynamically consistent models.
We apply the entropy principle due to I. Miiller [Mul85]. This principle

states that there exists an entropy 7 and an entropy flux ¥ given by the

constitutive equations

(2.3) n=ay), ©=%m),

with smooth functions 7, ¥ depending on the same set Y, such that for all

solutions of the system of balance laws (2.1} with constitutive equations (2.2)

(called thermodynamic processes) defined in a space-time domain Q% = 2 x

(0,%0) the following implication holds

(2.4) b=01=0 g=0inQ%=0:=7+V -¥2>0in NP

Remark 2.1. We recall two stronger versions of the Miller entropy principle
introduced in [AltPaw96]. They can be useful in the proofs of the ezistence
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of the multipliers in the ezploitation of the entropy principle by means of the
Lagrange multipliers method due to I. S. Liu [Liu72].

In a slightly stronger version (2.4) is replaced by the following postulate: For
all thermodynamic processes and all points (x,t) € Q% it holds

(2.5) b(x,t) =0, 7(x,t) =0, g(x,t) = 0= o(x,t) > 0.
An even stronger version asserts that there ezists a scalar field oy with a con-

stitutive equation op = 0o(Y, b, T, g), such that for all thermodynamic processes
defined in Q% the following two conditions are satisfied

(2.6) o > ag in O and 5y(Y,0,0,0) =0.

for all variables Y. This version of the entropy principle describes the way
it is used by Coleman and Noll [ColNol63] where, however, in contrast to the
entropy principle formulated above it is assumed that ¥ and oy are given by
explicit formulas. m

2.3. The Muller-Liu entropy inequality. The main step in the exploita-
tion of the entropy principle is based on introducing the Lagrange multipliers
with the purpose to replace the inequality in (2.4), which holds for all ther-
modynamic processes, by an inequality (called entropy inequality) which is
satisfied for arbitraty fields. This idea is due to I. S. Liu [Liu72].

For system (2.1} the entropy inequality reads as follows: There are multi-
pliers
(2.7) Ay = A (Y), =2(Y), A= A(Y)
conjugated respectively with balances (2.1), (2.1); and (2.1)4, such that the
inequality
(28) A4V T =X, (i~V-8) =M\ (x+V-j—r)—A(e+V-q~S-F) >0
is satisfied for all fields corresponding to the state space Y.

Remark 2.2. Entropy inequality (2.8) implies the entropy principle with the
strongest property (2.8), that is for solutions of (2.1) it holds

(29)  o=0+V-¥>X,(Y) b+ A (Y)T +X(Y)g = 5o(Y,b,7,9).
Hence, entropy inequality (2.8) implies all three versions of the entropy prin-
ciple. m

Remark 2.3. In a rigorous approach it has to be proved that entropy principle
(2.4) implies entropy inequality (2.8). The proof reguires a characterization of
admissible sets of the system of partial differential equations under considera-
tion and the verification of the Liu lemma [Liu72]. For particular systems this
question has been addressed in [Liu72], [AltPaw96] by means of the Couchy-
Kowalevsky theorem. Another approach to this question is to admit arbitrary
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sources in balance equations and postulate stronger version (2.5) of the entropy
principle (see [AltPaw86], Sec. 4). m

As common in the literature (see e.g. [Wilm98|) in the present paper we do
not prove the entropy inequality (2.8) but take its validity for granted.

2.4. State spaces for phase-field models. For phase-field models governed

by a first order gradient free energy f = f(F,x, Dx, #) the appropriate are the
following state spaces which differ only by thermal variables:
(2.10) Ys={F,DF,...,DMF,x,Dx,...,D¥x,6,D6,...,D%,x.},

Y.:= {F,DF,...,D™F x,Dx,...,D¥x,¢,De,..., D, x,},

Y, :={F,DF,...,D¥F,x,Dx,...,D"x,1,Dn,..., Dn, x.}
with integers M, K, L satisfying conditions M,L > 1 and K > 2. Here x,
denotes a variable corresponding to the time derivative y,

D*x = (Xuroia)ir,ix=123 0< k<K,

is the k-th order tensor of variables corresponding to the k-th order gradient

ak
ka = (a——-xa——> ’
Tiy - - OL4; iy,enie=1,2,3

similarly D*¢, D*e, Dn. Further,
D™F = (Fijiyim )i, im=1,23

is the (2 + m)-th order tensor of variables corresponding to the m-th order
gradient of tensor F

A (_a_F_> .
Oz, ... 0z, ji1yeim=1,2,3

We use the convention D%y = x.

Remark 2.4. Tensor F and its gradients represent mechanical properties, x
and its gradients — chemical properties due to material heterogeneity, 6,e, n and
their gradients - thermal properties, and x; - viscous effects due to material
heterogeneity.

The distinguishing elements in (2.10) are variables corresponding to higher
order space derivatives and the nonstationary variable x ;. In [Paw00a] it has
been shown that in order to admit the free energy depending on DPx,p € N,
the set of constitutive variables has to include DP~ 1y .. Since our goal here is
to construct models with free energy depending at most on Dy we must admit
X, 68 a constitutive variable.
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The higher gradients of F, x, 8 (or e,n) arise due to the first variation §f/6x

which appears in the model. In particular, in case f = f(F,x, Dx,#), we have

of
X x— V- fpx

3 3
= fx— Z(f,x,ir Fut fooXs+ fxeebi) — Z Fxax s Xt

i=1 fg=1

which generates the variables DF, Dy, D%y, D0 in the state space Ys. For the
clarity of further presentation we admit in (2.10) M|\L>1and K > 2. m

Remark 2.5. The arbitrariness in the choice Yy, Y. or Y, results from the
duality relations (Legendre transformations) presented in Section 2.5. We have
found the choices of the state spaces Y. and Y, more straightforward for the
ezploitation of the entropy inegquelity in comparison with the space Y. We
mention that in some particular situations the state space Y. has been used in
[Paw00b), Y;, in [Paw00c] and Y, in [AltPaw95]. m

Remark 2.6. From the point of view of the aziom of frame indifference the ap-
propriate measure of the strain is for instance the right Cauchy-Green strain
tensor C. However, as underlined in [Gur96] the ezploitation of the second
principle is simpler using deformation gradient ¥ as the constitutive variable.
The restrictions imposed by the frame indifference are accounted for after de-
riving consegquences from the second principle. &

Let us choose here the state space
(2.11) Y=Y,

In such a case the internal energy € = ?(F, X, Dx,n) expressed as a function
of the entropy n will play the role of a thermodynamical potential. In view
of the duality relations such potential is equivalent to the free energy f =

f(F,x,Dx,8) (see Section 2.5). For later purposes let us split the state space

(212) ¥, ={v" v}
into two subsets
(2.13) v?.= {F,DF,...,D™F, x,Dx,...,D¥x,n,Dy,...,Din}
and
Y= {X,t},

which dinstinguish between stationary variables and the nonstationary one
vanishing at equilibrium. According to (2.2) the constitutive equations are

(214)  S=8(Y,), i=i), r=fY), E=e,), a=al),
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where §,,7, 8§ are smooth functions of their arguments and @ denotes the
internal energy expressed as a function of the entropy 7.

Because of the presence of tensors of order higher than one we supplement
(2.14) by the following convention: Any constitutive function defined on the

set Y, say j{Y,), is understood in the sense of the following extension:

H(Fgy o AT + (AR, x,
Bk + (Bk:)srkewy Tl Cl + (Cl)skew’ . )
= 3(Fyy o ALV X BY L),

where A7 with 2 < m < M, i,j = 1,2,3, stands for the m-th order ten-
sor corresponding to D’"E-]-,B’c with 2 < k& < K for the k-th order tensor
corresponding to D¥y, and C' with 2 < ! < L for the I-th order tensor cor-
responding to D'), and where (A7), (BF)*ke», (C!)***¥ denote respectively
the skew parts of AT}, B* and C.

Such extension is used for all other constitutive functions. Consequently, for
instance in case of D%y, we can treat the variables y;; and X ji as independent
despite of the equality 0%y /0x;0z; = 8%x/0z;0x;. This fact is used in applying
the chain rule in Theorem 3.1.

2.5. Basic thermodynamical relations. We present here some basic rela-
tions for continua characterized by a first order gradient free energy density

(215) f = J(F,x, Dx,6).
In particular, we recall from [AltPaw96] the duality relations generalizing the

classical Legendre transformations to the case of gradient energy (2.15). Let

1
(2.16) 9=7>0

denote the inverse temperature, and
(217) #(F, x, Dx, 9) = 2 /(F, x, Dx, )
be the rescaled free energy, known as the Massieu function (see e.g. [Silh97],
Sec. 10.2.2). The equivalent statements of the Gibbs relation in terms of f
and ¢ are given by
Lemma 2.1 (see [AltPaw96]). The Gibbs relation
(2.18) e(F,x, Dx, 6) — f(F, x, Dx, 6) = 6n(F, x, Dx. 0),
n(F, x, Dx, 0) = —f(F,x, Dx, 6)
15 equivalent to
(2.19) #(F,x, Dx, ) + 7(F, x, Dx, ¥) = v&(F, x, Dx, ),
&(F, x, Dx, ) = ¢o(F, x, Dx, ?),
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where
o, D) =e (P D3 ).
7P D) =1 (FouDxg). 9=

In accordance with the classical definition, the specific heat coefficient (heat
capacity) at constant volume is given by

(220) Co = EO(FrX!DX16) = E,G(Fa X:DX’G)‘
Then, by (2.18),
(2:21) co(F, x, Dx,8) = —6f(F, x, Dx, 8) = 616(F, x, Dx, 6),

or equivalently, by (2.19),
1
EO(Fr X DX: 19) = CO(Fv X DX; 5) = —ﬁZE,W(Fa X DXv 19)
~5*¢9.9(F, x, Dx,9).
Let us assume now the standard thermodynamical condition

(2.22) co(F,x, Dx,6) >0

which is known as a thermal stability. In such a case the duality relations hold
true which allow to use alternatively the absolute temperature 6, the entropy
n or the internal energy e as independent thermal variables.

Under assumption (2.22) it follows from (2.21) that 8 — — f(F, x,Dx, 60} isa
strictly convex function and 9 +— ¢(F, x, Dy, d) is a strictly concave function.
Therefore the following conjugate functions are well-defined: The conjugate
convex function
(223)  &F,x,Dx,n):= sup {fn+ f(F,x,Dx,8)} < +oo,

0<f<+o0
which is a lower semicontinuous convex function of 7 € R, and the conjugate
concave function

(2.24) 7i(F,x,Dx,8) = inf {Jg— ¢(F,x,Dx,0)} > —o0,
O<d<+00

I

which is an upper semicontinuous concave function of € € R.
In view of (2.21); the map 6 — 7(F, x, Dy, 6) is strictly increasing. There-
fore there exists an inverse map
71— 8(F, x,Dx,n),

and the property 0 < 6 < +oco is equivalent to 7, < n < n* with n. =
7(F, x, Dx) = ~co and n* = 7°(F,x,Dx) < +oco. If , < < 5* then the
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supremum in (2.23) is uniquely attained at
§=0=08(F,x,Dx,n),
and the following relations are satisfied
(2.25) &(F,x,Dx,n) — f(F,x,Dx,0) = én,
€q(F,x, Dx,m) = 6.
In view of Gibbs relation (2.18) it follows from (2.25) that

(226) E(Fw X5 DX,H) :E(FYXIDX7TI(F)X7 DX,G)),
which shows that € is the internal energy expressed as a function of the en-
tropy 7.

Similarly, by (2.21);, the map ¥ — e(F,x,Dx,?) is strictly decreasing.

Therefore there exists an inverse map
g J(F,x,Dx, 2),
and the property 0 < 9 < +oo is equivalent to e, < € < e* with e, =
& (F,x,Dx) = —oo and e* = €*(F, x,Dx) < +o0. Moreover, ife, <€ < e*
then the infimum in (2.24) is uniquely attained at
9 =9 = 9(F,x, Dx, %),
and the following relations are satisfied
(2.27) 7(F,x,Dx, &) + ¢(F, x, Dx,9) = vg,
ﬁE(Fa X DXv é) =4.

Then, on account of (2.19),
(2.28) 7i(F, x, Dx,9) = i(F, x, Dx, &(F, x, Dx, 9)),
that is 77 is the entropy expressed as a function of the internal energy e.

We note that in view of (2.25) and (2.27) the specific heat coefficient ¢, can

be equivalently expressed as
1 72
(2.29) co=~0fg0 = 9.6,— =

o TNee

For further use we recall also the formulas which relate the first variations
of the thermodynamic potentials f(F, x, Dy, 8), ¢(F, x, Dx, ), &(F, x,Dx,n)
and 7(F, x, Dx, &) with respect to x.

Lemma 2.2. The following relations are satisfied

& se
(2.30) é(F,x, Dx,D?x,6,D8) = 2= (F, x, Dy, D, 7, D),

(FY X1 DXY DZX’ E'l DE)Y

§¢ 2 on
~—(F, x,Dx,D*x,J,D¥) = ——
5X( » X VX, DX ) 5x
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where 8, D8 and 1, Dn are related by the formulas

¢ = 6(F,x, Dx,n),
O;=08p Fi+0,x:i+0px Dx;+0,m

and ¥, DY and € De by
9 = 3(F, x, Dx,?),
V=99 Fi+95x:+ 9Dy Dx,:+9:8;

Proof (see [AltPaw96], Sec. 11). We use duality relations (2.25). From
(2.25),
f(F, x,Dx,0) = —0n(F, x, Dx, ) + &F, x, Dx, n(F, x, Dx, 6}).
Hence, using (2.25),, we infer the equalities

(2.31) frp=-Onp+er+emr==¢p,
Fx = —0nx+ex +Eqmx =€y
Fpox = ~0npx + €px + E4NDx = Epx
with appropriate arguments. From (2.31), s we deduce that
6f be

6_>2=f,x‘v'f,Dx=g,x“v'g,Dx=6_X':

which shows (2.30);.
In the same way, from duality relations (2.27) we conclude that
¢(F,x, Dx,9) = 9&(F, x, Dx,9) — 7(F, x, Dx, &(F, x, Dx, ),
and
(2.32) $r=—7r, ¢x=-Tx, SDx=—TDx
with appropriate arguments. This shows (2.30)2. m
3. EVALUATION OF THE ENTROPY INEQUALITY

3.1. The entropy inequality. Let us consider balance laws (2.1) with con-
stitutive equations (2.14), where Y; is the state space defined by (2.10)3. To
select a class of thermodynamically consistent models we impose the entropy
inequality with multipliers (2.8) which in case of state variables Y, reads as

follows:

(1) AH+V- T (1-V-8) = M(x+V-j—r)=A(+V-q-5-F) =0
for all fields u, x and 7, where

(32 T=0(), A=A() A=), A=A(Y)

are respectively the entropy flux and the multipliers conjugated with the bal-
ance laws for the linear momentum, order parameter and energy.



A THERMODYNAMIC APPROACH OF PHASE-FIELD 17

3.2. AAlgebraic preliminaries. We prepare some simplifying notations. For
f = f(Y;) a smooth scalar function of its arguments and the set Y, given
by (2.10)3, we denote by a,.Y"f,i = 1,2, 3, the algebraic version of the spatial
derivative 0 f /3, restricted to the set of variables Y'Y (applying differentiation
by the chain rule):

M K L

s = Z fpmp-D7F; + Z Fory - DFxs + Z fpt - Dy,
m=0 k=0 =0

and by vY* f= (63/“ f)iz1,2,3 the corresponding gradient V f restricted to the

set V0.
Sirilarly, for a smooth vector-valued function ® = ®(Y;) with values in R?

we denote by V¥’ . @ the algebraic version of the divergence V - & restricted
to the set YO, viz.

3 M K L
LT 9] ) SIS SUMNE S 2t s )
i=1 Lm=0 k=0 =0

Moreover, we introduce the following subset of Y
(3.3)  Y%:= ¥°\ {DMF,D¥x,Din}
= {F,DF,...,D"7'F,x,Dx,...,D¥'x,n,Dy,...,D*'n}.

For a function f = ]"\(Yn) we denote by 57 f/6x the algebraic version of the
first variation & f/8x restricted to the subset Y:

§Y°f

0
ox :'f,x_vy 'f.Dx
3 M-1 K-1 L-1
=fx= [Z fxomr DEi+ Y frme Dixa 4 Y Frnty- D’"“] '
i=1 m=0 k=0 =0

Let us note that V¥° . f Dy does not exceed the set Y.
In case the constitutive dependence of f is restricted to f = f(F, x, Dx,7)
the above definition coincides with the algebraic version of the first variation

of [ox:

6{/0]( 3 3
(3.4) T Ik > ]jfyx,ap Fit Y FxansXoi + f.x.m’?,iJ =

of
i=1 j=1 dx

Moreover, in such a case it holds

v f=vy.
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3.3. The restrictions. We impose the following two structural assumptions:
- nondegeneracy condition for the internal energy

(3.5) €n(¥y) >0 forall V.
- relation between stationary entropy, energy and mass fluxes
(3.6) 20 = A%10 + A\ )q°

where ¥°, §°, ¢®, A} and A{ are stationary quantities defined by setting y,, = 0
in Y, that is ¥° := $(v°, Y1)|y1<(0}, and similarly for other quantities.

We underline that assumption (3.5) expresses the strict positivity of the
absolute temperature 8 (see (2.25);). The relation (3.6) is standard in the
classical thermodynamic theory without gradients (see e.g. [Mul85]).

We prove the following

Theorem 3.1. (Consistency with the entropy inequality).

Let us consider balance laws (2.1) with constitutive equations (2.14). Suppose
that entropy inequality (3.1), (3.2) is satisfied and assumptions (3.5), (3.6)
hold true. Then the following relations are satisfied:

(1) multiplier of the linear momentum X, = 0;

(ii) internal energy € = ?(F,x, Dy, n);
(i41) energy multiplier

~ 1
3.7 Ae = M(F, %, Dx,n) = =———n—— > 0;
37 (F.% D) €,(F,x, Dx,mn)
(iv) stress tensor
(3.8) S =S(F, x,Dx,7) = €x(F, x, Dx,n);

(v) entropy fluz
1
(3.9) P =Ag+ Aea+ x; [)\EZDX — / (’\x.x,gj)(yox TX't)dTJ ;
0
(vi) compatibility conditions

1
610 xef= [Ounrdr]  bhi=o,
0 ,DMF

1
Xt [— / (Ax,x,gji)(yo’ TX.l)dT:I + /\X,DKxji =0,
0 DEy
1
Xe [— / (Ax,x,j.-)(v",rx,tdr] e di =0
0 ’DL,.’
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fori=1,2,3.
Moreover, there ezists a scalar quantity a = a(Y;) such that
(vir) multiplier A\, = A, (Y,,) satisfies the equation

6€ ~ go [! 0
(3.11) ~Ay = /\66—)2 — VA -€py+ V" - , (z\x‘m_])(Y ,TX.)dT + a;
(viii) the quantities r = 7(Yy), § =3(Y,,), q = §(Y;) and a = a(Yy) satisfy the
residual inequality

(3.12) A+ VA G+ VA gt xea > 0

for all variables Y7,.

Remark 3.1. By assertion (it), 6¢/6x depends on the variables {F, DF, x,
Dy, D%, n, Dn}. For that reason it was assumed in (2.10) that M, L > 1
and K>2. m

Remark 3.2. In view of thermodynamical relation (2.25), assertion (ii) im-

plies that the energy multiplier A\, corresponds to the inverse of the absolute

temperature
1

Ae & —.

4

Moregver, in view of thermodynamical relation (2.30);, equation (3.11) for
— Ay resembles the ezpression for the chemical potential in the classical Cahn-
Hilliard theory which for 8§ = const is given by u = §f/6x. Thus, the form
(3.11) suggests that the negative of the multiplier — ), corresponds to a gener-
alized, rescaled chemical potential

—)\X HII =

7
The above correspondences will be precised in Section 4. m

Proof of Theorem 3.1. By inserting constitutive equations (2.14), (3.2) into
entropy inequality (3.1} and applying the chain rule we arrive at the following

algebraic inequality
(3.13) M+ ¥, Dxe+ VY ¥ — Ay, Uy + Ay (Sy D)
Fau - (V78) = Axs = Adiws - Dxe = M VY i Ay
M K L
—Ae Z epmp-D"F;— A, ZED"X : DkX,e - Zg,]:ﬂn 'Dlﬁ,t

m=0 k=0 =0

_’\egyx,ex,tt - /\zq,x,e . DX,t - /\evyu 'q + /\eS : F,t Z 0
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for all variables {W,Y,}. Here
W = {Wa, X0, (D™F ocment, (DEx i<rere, (D'Me)ocicr, DYTIF, DF Hy,
DL+1,,7}
denotes the set of variables (called higher derivatives) in which the left-hand
side of (3.13) is linear. The evaluation of (3.13) consists in deriving conse-
quences from the linearity in the variables belonging to W. The linearity per-
mits to conclude that the coefficients preceding these variables have to vanish
identically. We proceed stepwise in the following order:

Step 1. By the linearity of the left-hand side of (3.13) in u, it follows that
the corresponding coefficient has to vanish, that is A,, = 0. This shows (i).

Step 2. By the linearity in the variables (D™F )i cm<nr, (D¥xi)ochex,
(D' )1<1<r, X, We read off that €pmp = 0 for 1 < m < M, €ps, = 0 for
2<k<K,€p,=0forl1<1!<Landg,, =0. Hence, the constitutive
dependence of ¢ is restricted to é = &(F, x, Dx,7) which shows (ii).

Step 3. The linearity in 5, implies that
1—- )A€, =0,
50, in view of assumption (3.5) and (i) we infer (iii).
Step 4. By the linearity in F,,
AS - AEp=0.
Hence, since ), > 0, assertion (iv) follows.

Step 5. From the linearity in Dx . we deduce that

(3.14) Ui = Mdos = Ac€Dx — Aely, = 0.
Let us define the vector
(3.15) T =T - A\j— Aa
By virtue of assumption (3.6),
{3.16) B0 = 0.
From (3.15), using (3.14) and (iii), we get
(3.17) {Iv’,x,: =W, - ’\x.x_,j ~ Adixe = Aelxs = A€Dy — ’\X.x,:j'
Hence, in view of (3.16) and (ii), (iii), it follows that
—~ Xt
(318) T = Ao [ O )OO
0

1
= [Aeanx -/ (Ax.x,,jxv",rx,t)dr] .
[}
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From (3.15) and (3.18) we conclude (v).

Step 6. It remains to examine the linearity in the variables DM+1F D +1y,
DZX+1p. In view of the results obtained in the previous steps, inequality (3.13)
is reduced to

(319) —( FAE X+ VY W AT AV gt A >0

for all variables {DMHF, D+ y, DI*1,V,}. We rearrange now the sum of
the second, the third and the fourth term on the left-hand side of (3.19) to the
form
(3.20) Vw0V A VY g

=SV (W - A - Aq) + VN jH VY q

=V B+ iV N g
Further, in view of (3.18), using the definition of the restricted divergence
VY’., we obtain

- 1
(321) V7 .¥ =y, [vY“' “Oefpy) = VY- / M j)(YO,TX,t)dT} )
0

Consequently, by combining (3.20) and (3.21), inequality (3.19) is transformed
to

1
(3.22)  xy [—;\x — 28+ VY (AEDpy) - V- / ) et TX‘t)dT]
g
ATV VN g 20
for all variables {DM*!'F, D¥+1y DI+1p ¥, }.

From (3.22), performing differentiation by the chain rule in terms involving
VY. and V° (restricting now to the subset ¥°), the linearity in the vari-
ables DM+1F, D% +1y and DL*1y implies that the coefficients preceding these
variables have to vanish. Hence, recalling (ii) and (iii), we conclude (vi).

Step 7. We shall derive conclusions from inequality (3.22) which remains
after taking into account (vi). It reads

~ ~ 1
(3:23)  Xu|=Ax— Alx + v {Ae€px) — v / (’\x.x,ej)(yoi TX")dT]
0

A+ VA VA g2 0
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for all variables Y,. Now, let us define a scalar quantity a = @(Y;) given by
the squared parenthesis in (3.23), viz.

- - 1
(3.24) @ = —Ay = AEx+ VY (Afpy) - V¥ / Q)Y mx)dT
o

= ~Ax— /\E(E,x - v?ﬂ . E,Dx) + V?DA'& : EDX

N 1
—vYe. / P Y, X )dr.
0
Let us note that on account of (ii) and (iii) it holds
(3.25) V7 (ABpy) = V- (Apy), V7A=Y,
so that, recalling (3.4),
s 8¢
x e
Using these equalities we conclude from (3.24) assertion (vii). Finally, owing
to (3.24), inequality (3.23) takes the form of the residual inequality (3.12).
This shows assertion (viil) and thereby completes the proof. =
3.4. The restrictions in the nonconserved case. The statement of The-
orem 3.1 simplifies greatly in case of the nonconserved dynamics of the order
parameter. Then assumption (3.6) reads
(3.26) o0 = 22,
and we have

Theorem 3.2. (Consistency with the entropy ineguality in the nonconserved
case).
Let us consider balance laws (2.1) with constitutive equations (2.14) in the
nonconserved case j = 0,7 # 0. Suppose that the entropy inequality (3.1),
(3.2) is satisfied and assumptions (3.5), (3.26) hold true. Then the following
relations are satisfied:

(i) A =0;

(il) € =&(F, x, Dx, n); .

ifi) Ao = Ae(F, X, Dy, ) = s r——— >

( ) ) e.ﬂ(F’XyDXa W)

(iv) 8 = 8(F,x, Dx,n) = &r(F,x, Dx;n);
(V) m = Ae(l + X,tAEe,DX;
Moreover, there exists a scalar field a = a(Y,) such that
55
(vi) —Ay = )\ei ~ VA Epy +a;
(vil) Ayr + VA, -+ x,.a > 0 for all variables Yy,
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A detailed comparison of the above presented schemes with several models
known in literature will be presented in [Paw06c].
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