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Abstract 

We give a proximal bundle method for constrained convex optimization. It only 
requires evaluating the problem functions and their subgradients with an unknown 
accuracy E. Employing a combination of the classic method of centers' improvement 
function with an exact penalty function, it does not need a feasible starting point . 
lt asymptotically finds points with at least E-optimal objective values that are E
feasible. When applied to the solution of LP programs via column generation, it 
allows for E-accurate solutions of column generation subproblems. 

Key words. Nondifferentiable optimization, convex programming, proximal 
bundle methods, approximate subgradients, column generation. 

1 Introduction 

'vVe are coucerned with the solution of the following convex prograrnming problem 

f. := inf{ f( ·u): h(u) '.,'. O, u EC}, (11) 

where C is a closed convex set in the Euclidean space IR.m with inner product (·, ·) and 
norm I· I, f and h are convex real-valued functions, and there exists a Stater point 

u EC such that h(tt) < O. (1.2) 

Furt.her, we assume that for fixed (and possibly unknown) acrnracy tolerances Ej, E1, 2 O, 
for each u EC' we can fine! appro:i:imate vulues j~, hu and approximate subgradients g'j , g,: 
that produce the approximate linearizations of f and h: 

fu(·):= fu+ (g'j, · - ll) '.,'. f(·) with fu(u) = fu 2 f(u) - Ej, 

hu(-):= hu+ (gi:, · - u)'.,'. h(·) with hu(ll) = hu 2 h(u) - E1,. 
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Thus J„ E [f(u) - Ej, f(u)] estimates f(u), while gJ E 8,1 f(u), i.e., g'j is a member of 

8,J(u) := {g: f(·) 2 f(u) - Ej+ (g, · - u)}, 

the E rsubdifferential of f at u; si mil ar relations hold for f replaced by h. 
This paper modifies the phase 1 - phase 2 met.hod of centern of [Kiw85, §5. 7] and 

ext.en ds it to approximate linea.rizations. \lve first discuss the exact case of Ej = E1i = O. 
For a.n infea.sible sta.rting point, in pha.se 1 this met.hod reduces the constra.int viola.tion 
while keeping the objective increase as small as possible; this is rea.sona.ble especially if 
the sta.rting point is close to a. solution. Once a feasible point is found, in phase 2 the 
met.hod reduces the objective while maintaining feasibility. Both phases employ the same 
improvement function, and each itera.te solves a subproblem with f and h a.pproximated 
via. accumulated linearizations, stabilized by a. qua.dra.tie term centered at the best point 
found so far. For phase 1, the ana.lysis of [Kiw85, §5.7] established optimality of all cluster 
point.s of the itera.t.es, without discussing their existence. A nontrivial sufficient condition 
for their existence was recently given in [SaS05, Prop. 4.3(ii)] for a modified variant. We 
show tha.t t.his condit.ion may be expected to hold only if problem (1.1) has a Lagrange 
multiplier p.::; 1 (cf. Rem. 3.ll(ii)), and we ext.end this condition top.> 1 by combining 
the standard improvement function with an exact penalty function for penalty parameters 
c 2 p.- l. In effect, our results (cf. Thms. 3.6, 3.7 and 3.10) ext.end the main convergence 
results of [Kiw85, Thm. 5. 7.4] and [SaS05, Thms. 4.4- 4.5]. It is crucial for large-scale 
implementations that our results hold for various aggregation schemes that control the 
size of each quadra.tic progra.mming (QP) subproblem, including the schemes of [Kiw85, 
§5.7] and [SaS05] (see Rem. 4.1). 

Our combination of improvement and penalty functions with suitable penalty para
meter updat.es seems to be necessary for our extension to inexact evaluations (otherwise, 
the met.hod could jam at phase 1 when the standard improvement function can't be re
duced by more than max{ Ej, E,,} for the tolera.nces EJ, E1i of (1.3)). Our met.hod generates 
itera.tes in the set C, having !-va.lues of at most J. + EJ and h-values of at most Eh asymp
totica.lly (cf. Thms. 3.6- 3.8), without any additional boundedness assumptions (such as 
boundedness of the feasib le set, or the sufficient conditions discussed above). In a sense, 
this is the strongest convergence result one could hope for. Our algorithmic constructions 
and a.nalysis combine the inexact linea.riza.tion fra.mework of [Kiw06c] (in a simplified ver
sion that highlights its crucial ingredients; cf. [Kiw06d]) with fairly intricate properties of 
improvement and penalty functions which have not been used so far in bundle methods. 

As for ot.her bundle methods, we note that the exa.ct penalty function methods of 
[Kiw87, Kiw91] require additionally tha.t the set C be bounded, and ma.y converge slowly 
when their penalty pa.rameter estimates a.re too high. The level methods of [LNN95] (a.lso 
see [Kiw95, Fab00, BTN05]) need boundedness of the set C as well. Similar boundedness 
assumptions are employed in the fil ter methods of [FlL99, KRSS05]. Except for [Fab00], all 
these methods work with exact linearizations. v\/e show elsewhere how to handle inexact 
linea.rizations in an exact penalty method [Kiw06b] and a filter method [Kiw06a.], the lat.ter 
being ba.sed on the present paper. 

Our work was partly motiva.ted by possible applications in column generation ap
proaches to integer progra.mming problems [Li.iD04], which lead to linea.r programming 
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(LP) problems with huge numbers of columns. When the dual LP problems can be fornrn
lated as (1.1) (cf. [BLM+o5, Li.iD04, Sav97]), our approach allows for E1i-accurate solutions 
of column generation subproblems, as well as for recovering approximate solutions to the 
prima! problems. (See [IGw05] for related developments and numerical results.) 

The paper is organized as follows. In §2, alter reviewing basie properties of penalty 
and improvement functions, we present aur bunclle method. Its convergence is analyzed 
iu §3. Severa! modifications are given in §4. Applications to column generation for LP 
programs are stuclied in §5. 

2 The proximal bundle method of centers 

2.1 Lagrange multipliers and exact penalties 

We first recall some basie clualit.y results for problem (1.1) (cf. [Ber99, §§5.1 and 5.3]). 
Consicler the Lagrangian L(-; ,t) := }'(-) + ,th(-) with /ł E JR, the dual function q(1i) .

infc L(·; µ) and the dual problem q. := supR+ q of (1. 1). Under aur assumptions, J, = q,. If 
J, > -oo, the dual optima/ set M := Arg maxR+ q is nonempty and compact, and consists 
of Lagrange multipliers /l 2 O such that q(µ) = J.; if J. = -oo, M := 0. Thus, the 
quantity P, := infµEM µ is the minimal Lagrange multiplier if f, > -oo, µ = oo otherwise. 

For a pena/ty param.eter c 2 O, the exact pena/ty Junction 

1r(-;c) =J(-)+ch(-)+ wit.h h(-)+:=max{h(·),O} 

satisfies infc w(-; c) = J, > -oo iff c 2 p (cf. [Ber99, §5.4.5]). 

2.2 Improvement functions 

We associate with problem (1.1) the improvement functions clefined for r E JR by 

(2.1) 

e(•; r) := max{!(-) - r, h(·)}, ee(·; r) := e(-; r) + ie(-), E(r) := inf ee(-; r), (2.2) 

where -ie is the ind-icator function of C (-ie(-u) = O if u E C, oo if u (/: C). In our cant.ext, r 
will be an asymptot.ie estimate of J, generatecl by our method, and to prove that r ~ f„ 
we shall need the main property of the function E given in part (vi) of the lemma below. 

Lemma 2.1. (i) The Junction E defined by (2.2) is nonincreasing and convex. 
(ii) ff Eis im.proper, then E(-) = f, = -oo for J. given by (1.1). 

(iii) ff E is proper, then E is Lipschitzian with modu/us 1. 
(iv) ff E is proper and J. = -oo, then E(-) = infe h E (-oo, O). 
(v) ff f. > -oo, then E(r) > O for r < f, , E(f.) = O, and E(r) < O for f. < r. 

(vi) ff E(r) 2 O for same r E JR, then r ~ f,. 

Proof. (i) Monotonicity is obvious, and convexity follows from [Roc70, Thm. 5.7]. 
(ii) Since clomE = JR, E(-) = -oo by [Roc70, Thm. 7.2] and theu f. = -oo by (1.1). 
(iii) Eis finite on clomE = JR, and e(-;r') ~ e(-;r) + jr- r'I for a.ny rand r'. 

3 



(iv) Since/, = -oo implies E(-) :','. O, E(-) is constant and finit.e by [Roc70, Cor. 8.6.2], 
i.e., E(·) = a E IR. Then, on the one hand, a 2 infc h by (2.2). On the other hand, for 
u EC and T 2 f(u) - h(u), the fact that e(u; T) :','. h(u) yields a:','. infc h <Oby (1.2). 

(v) We have E(J.) :','.Oby (1.1), and E(J.) 2 O (otherwise /(11) < /, and h(u) < O for 
some u E C would contradict (1.1)); thus E(J,) = O. By (1.2), for f := f(ti) - h(ti) > 
J(ti) 2 /., e(ti; f) = h(ti) < O implies E(f) < O, so by convexity, we have E(T) > O for 
T < J., E(T) < O for TE (f„f], as well as E(T) < O for T > f by monotonicity. 

(vi) Eis proper by (ii), /, > -oo by (iv), and (v) yields the conclusion. O 

Let U:= {u EC: h(u) :','. O} and U, := Argminu f denote the feasible and optimal 
sets of problem (1.1). We shall need the following extension of [Kiw85, Lem. 1.2.16]. 

Lemma 2.2. Let u E C, c 2 O, f := ir(u; c) ( cf. (2.1)). Then the following are equivalent: 
(a) ii EU, (i.e., ii solves problem (1.1)); 
(b) E(f) = ec(ii; f) (i.e., ii minimizes e(·;f) over C); 
(c) OE 8ec(ii; f) (i.e., OE f}4!(ii), where i/;(·):= ee(-; f)). 

Proof. First, (a) implies f = /(ii) = J., e(ii; f) = O, E(f) = O by Lemma 2.l(v), and 
hence (b). Since (b) means u E Argminec(·;f), (b) and (c) are equivalent. Next, note 
that 

{ 
8/(ii) if /(ii) - f > h(u), 

8ec(u;f) = 8ic(u) + co{8J(u) U8h(11)} if f(u)- f = h(u), 
8h(fi) if /(fi) - f < h(fi). 

(2 .3) 

Finally, (c) implies h(fi) :','. O (otherwise h(fi) > O 2 /(fi) - f and O E 8ec(ii; f) = 
8h(fi) + 8ic(fi) would give minc h = h(ii) > O, contradicting (1.2)), so the facts that. 
f = /(ii) and E(f) = e(fi; f) = O yield f = /, by Lemma 2.l(v), and hence (a). O 

Lemma 2.2 suggests the following algorithmic scheme: Given the current iterate u E C 
and the target f := ir(u; c) for a penalty parameter c 2 O, find an approximate minimizer 
u of ee(-; f), replace u by u, and repeat. Note that if ec(u; f) < ec(11,; f), then u is better 
than 1i: either J(u) < J(u) and u E U if u E U, or h(u) < h(u) if u (/: U. To progress 
towards the optima! set U„ it helps if ec(u; f) ::; ec(u; f) for any optima! fi E U,; the 
sufficient condition given below employs the minimal multiplier p of §2.1. 

Lemma 2.3. Let u E U,, u E C', c 2 O, f := ir(u; c). Then e(u; f) = h(ii)+, and 
e(ii.; f)::; e(ii; f) iff /(ii):','. ir(ii; c + 1). In partiwlar, f(u) :','. 7r(u; c + 1) i/ c 2 p - 1. 

Proof. First, f = /(u) and e(u; f) = O if h(fi) ::; O, e(u; f) = h(u) if h(u) > O. Next, 

e(u; f) - e(u; f) = max{J(u) - ir(ii; c + 1), h(fi) - h(u)+} 

is nonpositive iff /. = /(fi) :','. ir(ii; c + l); the latter holds if c + 1 2 p (see §2.1). O 
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2.3 An overview of the method 

Our method generates a sequence of trial points {uk}~1 C C for evaluating the approx-
. J Jk f / k / b d" k u• k u• I 1· · t· nnate va ues 11 := u•, iu := i,.•, su gra 1ents gf := gf , g,. := g„ anc meanza 1ons 
fi. := !,,. , hk := li". off and h at lł', respectively, such that 

fk(-) = 1: + (gj , · - u'' )'.':'. f(·) with fk(llk) = 1: 2 f(llk) - Ef , 

hk() = ht + (gt , · - llk) :':'. h(-) with hk(llk) = h~ 2 h(uk) - E1,, 

(2.4a) 

(2.4b) 

as stipulated in (1.3). At iteration k, the polyhedral rntting-plane models off and h 

A(·):= maxf1(·) :':'. /(-) with k E Jfk C {l, ... , k}, 
JEJ} 

fik(-):=maxh1(·):':'.h(·) with kEJ1~C{l, ... ,k}, 
JEJ,~ 

(2.5a) 

(2.5b) 

which stem from the accumulated Jinearizat.ions, yield the relaxed version of problem ( 1.1) 

J; := inf{lk(ll): lł E fis n C} with fis:= {u: Tik(ll) :':'. O}, (2.6) 

in which f-{k is an outer approximation of H := {ll: h(ll) :':'. O}. The current prox (or 
stability) center ilk := llk(l) EC for some k(l) :':'. k has the values ff= f~(I) and ht = JitUl, 

ff E [/(ilk) - Ef, f(ilk)) and h~ E [h(i/) - E1,, h(ilk)). (2.7) 

As in (2.2) and Lemma 2.2 , our improvement function for subproblem (2.6) is given by 

(2.8) 

for some penalty coefficient ck 2 O and [·J+ := max{·, O}. We salve a proximal version of 
the relaxecl improvement problem Ek := inf e~ with e~ := ek + ie by finding the trial point 

(2.9) 

where tk > O is a stepsize that controls the size of llłk+l - ukl- For deciding whether lłk+l 
is better than ·uk, we use approximate values of the improvement function e(·;Tk). Thus, 
e(it'; Tk) is approximated by [htJ+, and e(il\ Tk) - ek(llk+I) by the predicted decrease 

(2.10) 

When ff < A(uk) or ht < Tik(ilk) due to inexact evaluations, vk may be nonpositive; 
if necessary, we increase tk, as well as ck in (2.8) if ht > O, and recompute lłk+l to 
decrease ek(llk+1 ) until vk 2 llłk+l - ilkl 2/2tk (as motivated below). Of course, e(uk+1; Tk) 
is approximated by max{J:+1 - Tk, h~+I }. A descent step to u,k+l := lłk+l occurs if 
max{ft+1 - Tk , 1it+1} '.':'. [htJ+ - r.:vk for a fixed r.: E (O, 1). Otherwise, a null step uk+ 1 := ilk 
improves the next models fk+l, Tik+ 1 with the new linearizations A+1 and hk+I (cf. (2.5)). 
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2.4 Aggregate linearizations and an optimality estimate 

Extending the approach of [Kiw06c], we now use optimality conditions for subproblem 
(2.9) t.o derive aggregat.e linearizations (i.e., affine minorant.s) of the problem functions at 
uk+ 1, as well as an optimalit.y estimate (see (2.22) below) related to Lemma 2.l(vi). 

Lemma 2.4. (i) There exist s11bgradients pj, Pt Pt and a multiplier vk such that 

(2.11) 

VkP7 + (1 - vk)P~ + p~. = -(1/+1 - il)/tk, (2.12) 

Vk E [O, l], vk[ek(uk+I) - Jk( ·uk+1 ) + Tk] = o, (1 - vk)[ek(1/+1) - hk(uk+l)] = o. (2.13) 

(ii) These subgradients determine the following aggregate linearizations 

Jk(·) := }k(1/+l) + (p;, · - 1/+l) :S }k(·) '.S f(-), (2.14) 

hk(-) := hk(1/+1) + M, · - 1/+1) '.S hk(-) '.S h(·), (2.15) 

rt(-) := ie(1/+1) +(Pt,· - 1/+1) :S ie(·), (2.16) 

et(-) := vdfk(-) - Tk] + (1 - vk)hk(-) + ~(-) :S et(-) :S ee(-; Tk)- (2.17) 

(iii) For the aggregate subgradient and the aggregate linearization error given by 

pk := vkp} + (1 - vk)P~ +Pt= (i./ - 1/+1)/tk and ck:= [h7.J+ - et(i.l), (2.18) 

and the optimality measure 

we have 
et(-)= ek(uk+ł) + (pk,. - 'llk+l) , 

[h~J+ - Ck+ (p\. - i./)= et(·)::; et (-)::; ee(-; Tk), 

ec(u; Tk) 2: et(u) 2: [h7.J+ - Vi(l + !ul) for all u. 

(2.19) 

(2.20) 

(2.21) 

(2.22) 

Proof. (i) Use the optimality condition OE a<fik(uk+ 1 ) for (2.9) and the form (2.8) of ek. 
(ii) The first inequalities in (2 .14)- (2.15) st.em from (2.11), and the finał ones from 

(2.5). Similarly, (2.11) gives (2.16) with ie( uk+ 1 ) = O. Then (2.17) follows from the facts 
that v E [O, l] (cf. (2.13)) yields vk(fk -Tk) + (1- vk)hk '.Sek by using Jk '.S Jk and lik '.S hk 
in (2.8), and that et := ek + ie '.See(·; Tk) by using Jk '.S J and hk S h in (2.2). 

(iii) For (2.20), use (2.12)- (2 .13) and the definitions in (2.14)- (2.18); since et is affine, 
its expression in (2.21) follows from (2.18). Finally, since by the Cauchy-Schwarz inequality, 

in (2.21), we obtain (2.22) from the definit.ion of Vi in (2.19). O 

Observe that Vk is indeed an optimality measure: if Vk = O in (2.22), then E( Tk) 2: O 
gives Jk '.S Tk '.S J. by Lemma 2.l(vi); similar relations hold asymptotically. 
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2.5 Ensuring sufficient predicted decrease 

In view of the optimality estimate (2.22), we would like Vk to vanish asymptotically. Hen ce 
i t. is cru ci al to bo und Vi via the predicted decrease vk, since nonnally bundling and descent. 
steps drive vk to O. The necessary bounds a.re given below. 

Lemma 2.5. (i) In the notation of (2.18) , the predicted decrease vk of (2.10) satisfies 

'Uk = tk1Pkl 2 + Ek, 

(ii) We have vk 2 -Ek <c=> tk1Pkl 2/2 2 -Ek <c=> vk 2 tk1Pkl 2/2 = luk+I - ukl/2tk. 
(iii) For the maxima! evaluation error Emax := ma,'<{ EJ, Eh}, we have 

(2.23) 

(2.24) 

(iv) The optimality rneasure of (2.19) satisfies Vi ~ max{jpkj, Ek}(l + ji?j). Moreover, 

Vi ~ max{(2vk/tk) 112 ,vk}(l + łuki) if vk 2 -Ek, 

Vi < (2Emax/tk}112 (1 + łuki) if 'Uk < -Ek, 

Proof. (i) We have (p\ uk+ 1 - uk) = -tk1Pkl 2 by (2.18), whereas by (2.20), 

ek(uk+ 1 ) = e~(uk+ 1) = e~(uk) + (pk,uk+i - uk), 

so vk := [h~J+ - ek(uk+I) = Ek + tdpkj 2 by (2.18). Note that vk 2 Ek· 
(ii) This follows from (2.23) and the first part of (2.18). 

(2.25) 

(2.26) 

(2.27) 

(iii) By the definitions of et and Ek in (2.17)-(2.18), we may express -Ek as follows 

-Ek = vk[/k(ftk) - rk] + (1 - vk)hk(uk) + ~(uk) - [h~J+, 

where vk E [O, 1] by (2.13), Jk(uk) :s::; f(uk) :s::; fi.+ EJ, hk(ftk) :s::; h(uk) ~ h~ + Eh and 
Tt(ftk) :S:::: ic(uk) =Oby (2.14)- (2.16) and (2.7), and rk 2 fi, by (2.8). Therefore, we have 

-Ek ~ VkEJ + (1 - vk)h(uk) - (1 - vk)[h~l+ ~ VkEJ + (1 - vk)Eh ~ €max· 

(iv) Since Vi ~ max{jpkl,Ek}(l + jftkl) by (2.19) and the Cauchy-Schwarz inequality, 
the bounds follow from the equivalences in statement (ii), using vk 2 Ek and (2.24). O 

The bound (2.27) will imply t.hat if rk > f. (so t.hat E(rk) < O and Vi can't vanish in 
(2.22) as tk increases), then vk 2 -Ek and the bound (2.26) hold for tk large enough. 
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2.6 Linearization selection 

For choosing the sets lj+ 1 and 1,~+1, note that (2.4)- (2.5) and (2.11) yield the existence 
of multipliers a; for the pieces /1, j E lj, and /3] for the pieces h1, j E lk, such that 

( k ) ~ k("f ) k Q k[f- ( k+I) f ( k+l)j Q · lk Pt , 1 = L °'J V j, 1 °'J 2 , °'1 ku - j u = ' JE /> (2.28a) 
JEJJ 

(p~, 1) = L /3]('vhj, 1) /3] 2 O, /J][hd·1/+1) - h1('l/+ 1 )) = O, j E 1;. (2.28b) 
jEJ,~ 

Denote the indices of linearizations iJ and h1 that are "strongly'' active at uk+ 1 by 

Jj := {j E lj: aj ie O} and J,~ := {j E 11~ : /3j ie O}. (2.29) 

These linearizations embody all the information contained in the aggregates Jk and hk 
(which are actually their convex combinations; cf. (2.14)- (2.15) and (2.28)). To save 
storage and work per iteration, we may clrnp the remaining linearizations. 

2.7 The method 

We now have the necessary ingredients to state our method in detail. 

Algorithm 2.6. 
Step O (Initialization). Select u1 E C, a descent param.eter ;;, E (O, 1), an infeasibility 
contraction bound ;;,h E (O, lj, a stepsize bound t 111 ;,, > O, a stepsize t1 2 t 111 ;,, and a penalty 
coefficient c > O Set ti 1 ·- u1 / 1 ·- / 1 ·- 1· g 1 ·- gu 1 h1 ·- h1 ·- h g1 •- g" 1 (cf · 1 - • .- 1 1i .- ·u .- u 1 , / .- j , 'tt .- u .- tt 1 , h .- h · 

(2.4)), 1} := 11; := {l}, i/:= O, k := k(O) := 1, ł := O (k(L) - 1 will clenote the iteration 
of the łth clescent step). 

Step 1 ( Trial point finding). For ek given by (2.8), fine! uk+l (cf. (2.9)) and multipliers 
a7, /3; such that (2.28) holcls. Set vk by (2.10), pk := (uk -uk+ 1)/tk and Ek := vk - tk1Pkl 2 . 

Step 2 (Stopping criterion). If Vi = O (cf. (2.19)) and hi :SO, stop (ff :S /.). 

Step 3 (Phase 1 stepsize correction). If hi :S O or E111ax = O or vk 2 ;;,hht go to Step 4. 
Set tk := lOtk, if := k. If ck > O, set ck := 2ck; otherwise, pick ck > O. Go back to Step 1. 

Step 4 (Stepsize correction). If vk 2 -Ek, go to Step 5. Set tk := lOtk, if := k. If ht > O, 
set. ck := 2ck if ck > O, pick ck > O otherwise. Go back to Step 1. 

Step 5 (Descent test). Evaluate fk+ 1 and hk+ł (cf. (2.4)). If the descent test holds: 

(2.30) 

set ·uk+ 1 := uk+ 1, /,~•+ 1 := J,~+ 1, h~+i := ht+1, if+1 := O, k(l + 1) := k + 1 and increase łby 
1 (descent step); else set. uk+ 1 := f,k, f,~+I := Jk, h~+ł := hi and if+ 1 := if (null step). 
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Step 6 (Bundle selection). For the active sets J7 and J,~ given by (2.29), choose 

Jj+ 1 :> Jj U {k + l} and J,~+l :>],~U {k + l}. (2.31) 

Step 7 (Stepsize updating). If k(l) = k+ 1 (i.e., aft.er a descent step), select tk+ł 2 tk and 
Ci,+ 1 2 O; ot.herwise, set ck+! := ck and either set tk+ł := tk, or choose tk+l E [tmin , tk) if 
iz+l = 0. 

Step 8 (Loop). Increase k by 1 and go to Step 1. 

Severa! comments on the met.hod are in order. 

Remarks 2.7. (i) When the set C is polyhedral, Step 1 may use the QP met.hod of 
[Kiw94], which can solve efficiently sequences of related subproblems (2.9). 

(ii) Step 2 may also use the test inf e~ 2 O and ht :S: O (see Lemma 2.8(i) below). 
(iii) Step 3 is needed in phase 1 (for ht > O) when inaccuracies occur (Emax > O); it 

increases tk and Tk (via ck) to obtain Vk 2 K.1iht so that eventually a descent step (cf. 
(2.30)) will reduce the constra.int violation significantly: h~+I :::; (1 - K.K.1i)ht. 

(iv) In the case of exact evaluations ( E111ax = O), Step 4 is redundant, since vk 2 Ek 2 O 
(cf. (2.23)- (2.24)). When inexactness is discovered via vk < -Ek, tk is increased to produce 
descent or confirm that il is almost optima!. Na.mely, when uk is bounded in (2.27), 
increa.sing tk drives Vi to O, so that jf :::; Tk :S: J. asymptotically. Whenever tk is increased 
at Steps 3 or 4, the stepsize indicato, i~ f- O prevents Step 7 from decreasing tk after null 
steps until the next descent step occurs (cf. Step 5). Otherwise, decreasing tk at Step 7 
a.ims at collecting more loca! informat.ion about f and h at null steps. 

(v) When Emax := max{ EJ, E1i} = O, our met.hod employs the exact function values 

(2.32) 

(cf. (2.7), (2.1), (2.8) and Lem. 2.3), and the aggregate inequality (2.21) means that 

(2.33) 

Thus, if Vk = O in (2.19), then IPkl = Ek = O imply that O E 8ec(uk; Tk) and hence that 
uk EU. by Lemma 2.2; in particula.r, in this case we ha.ve ht = h(uk) :::; O. 

(vi) At Step 5, we have 'Uk > O (using (2.26) and Vi > O a.t Step 2 if ht '.::'. O; otherwise 
'Vk 2'. r;.,Jit >Oby Step 3 if Emax > O, Vi > O by item (v) if Emax = O). When a descent step 
occurs, the descent test (2.30) with the target Tk given by (2.8) implies that 

h~+l :::; h~ - ;;,vk if ht > O, (2.34a) 

1:,+1 :S: ft - r;.vk and ht+ 1 :S: O if h~ :S: O. (2.34b) 

Thus at phase 1 (i.e., when ht > O), we ha.ve reduction in the constraint violation, whereas 
at phase 2 the objective value is decreased while preserving (approximate) feasibility. 

(vii) An active-set met.hod for solving (2.9) (cf. [Kiw94]) will produce iJJl+/J,~/:::; m+l 
(cf. (2.29)). Hence Step 6 ca.n keep /Jj+ 1 / + /J,~+1/:::; 111 for any given bound 111 2'. m + 3. 

(viii) Step 7 ma.y use the procedure of [Kiw90, §2] for updating the proximity weight 
1/tk , with obvious modifications. 
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We now show that, in phase 2, the loop between Steps 1 and 4 is infinite iff O :S: inf e~ < 
ek(fik), in which case fik is approximately optimal: f(fik) :S: J. + Ef and h(itk) :S: E1i. 

Lemma 2.8. Assuming h~ :S: O, recall that Ek := inf e~ with e~ := ek + ie. Then: 
(i) ff Ek 2'. O, then f(fik) - EJ :S ft :S J. and h(iik) :S: E1i. 

(ii) Step 2 terminates, i.e., Vi := rnax{IPkl, Ek + (pk, itk)} = O, iff O :S: Ek = ek(uk). 
(iii) ff the loop between Steps 1 and 4 is infinite, then Ek 2'. O and Vi -, O. 
(iv) ff Ek 2'. O at Step 1 and Step 2 does not te·rm.inate (i.e., Ek < ek(fik); cf. (ii)), 

then an infinite loop between Steps 4 and 1 occurs. 

Proof. (i) We have E(Tk) 2: Ek and Tk = ff. (cf. (2.2), (2.8), (2.14)- (2.15)), so ff :S: f. 
by Lemma 2.l(vi), whereas f(uk) :S: ft+ Ef and h(uk) :S: h~ + Eh by (2.7). 

(ii) "•": Since IPkl = O 2: Ek, (2 .18) and (2.21) yield uk+l = itk, e~(fik) :S: e~(·) and 
O :S: e~(fik), whereas by (2.20), e!.(il) = ek(1/+ 1 ) = ek(uk). "<:=": Since e~(uk) = minet, 
using c/Jk(uk) = min et :S: efJk(uk+1) :S: cpk(ftk) in (2.9) gives uk+1 = uk, so again e!.(tik) = 
et(frk) by (2.20), and (2.18) yielcls pk = O and Ek = -e!,(iik) :S: O. 

(iii) At Step 4 during the loop the facts that Vi < (2Emax/tk)112 (1 + !tiki) (cf. (2.27)) 
and tk T oo as the loop continues give Vi-, O, so e~(-) 2: O by (2.22). 

(iv) We have ek(uk+1) 2: inf e~ 2: O. Thus vk = -ek(uk+1) :SO (cf. (2.10)) and (cf. 
(2.23)) vk = tk1Pkl 2 + ck yield ck :S: -tk1Pkl 2 at Step 4 with pk =I O (since max{jpkl, ck+ 
(p\tik)} =: Vk > O at Step 2). Hence ck< -~1Pkl 2 , so vk < -ck (cf. (2.23)) and Step 4 
loops back to Step 1, after which Step 2 can't terminate due to (ii). O 

3 Convergence 

In view of Lemma 2.8, we may suppose that the algorithm neither terminates nor loops 
infinitely between Steps 1 and 4 at phase 2 (otherwise tik is approximately optima!). For 
phase 1, our analysis will imply that any loop between Steps 1 and 3 or 4 is finite. We shall 
show that the algorithm generates points that are approximately optima! asymptotically 
by establishing upper bounds on the values ff. and h~. We first bound ft via Vi. 

Lemma 3.1. Let KC IN be such that Vi ___I!__, O. Then limkEK ft :S limkEK Tk :S J •. 

Proof. Pick I<' C I< such that Tk 3.:...., f := limkEK Tk. Since ff. :S: Tk by (2.8), we need only 
show that f :S: f. when f > -oo. Note that f < oo, since otherwise for Tk 2'. f(l't) - h(i°t), 
the fact. that e(u; Tk) = h(1°t) < O (cf. (2.2), (1.2)) and the bound (2.22) would yield 

O> h(i°t) = ec(i°t;Tk) 2: -Vi(l + j1°tl) ~ O, 

a contracliction. Thus fis finite. Since ec(u; •) is continuous, letting k ~ oo in (2.22) 
gives ec(·;f) 2: O. Therefore, we have E(r) 2: O, and hence f :S: J. by Lemma 2.l(vi). O 

The upper bo und of Lemma 3.1 is complementecl below with a !ower bo und ( which is 
highly useful for the "dual" applications in §4.3 and §5). 
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Lemma 3.2. ff limk ht :SO, then for the minimal multipliff µ := infµEM /J (cf. §2.1), 

limk f,~ + EJ 2': limk f('[l) 2': f, - P,E1i and limk h(il) :S E1t- (3.1) 

Proof. For all k, f(ftk) :S fk+E1, h(uk) :S ht+E1i by (2.7), L(u\µ) = f(uk)+p,h(uk) 2': f, 
with -fik E C and O :S p, < oo if f, > -oo, µ = oo if f, = -oo; the conclusion follows. O 

vVe first consider t.he ca.se where only finitely many descent steps occur. After the 
last descent step, only null steps occur and { tk} becomes eventually monotone, since once 
Steps 3 or 4 increase tk , Step 7 can't decrease tk; thus the limit t00 := limk tk exists. Aft.er 
showing that t00 = oo may occur only at phase 2 in Lemma 3.3 below, we deal with the 
cases of t00 = oo in Lemma 3.4 and t00 < oo in Lemma 3.5. 

Lemma 3.3. Suppose there exists k such that hi > O and only null steps ocwr for all 
k 2': k. Then Steps 3 and 4 can increase tk only a finite number of tim.es. 

Proof. For contradiction, suppose tk ---> oo. Since rk ---> oo (cf. Steps 3, 4 and (2.8)), we 
may assume rk 2': f := f(u) - h(u) for the Slater point ii of (1.2) and k 2': k; then using 
the minorants jk :S f and hk :S h (cf. (2.4)) in the definitions (2.8) and (2.2) yields 

ek(u) :S max{jk(u) - f, fik(u)} :S e(u; f) = h(u) < O with u EC. (3.2) 

At Step 1, (2.9) gives the proximal projection property for the level set of e~ := ek + -ie 

(3.3) 

whereas before Step 3 increases tk, vk < r;,,Jit yields ek(uk+ 1 ) > (1 - K1i)ht 2': O by (2.10) , 
so for k 2': k, (3.2) and (3.3) give juk+1 - fiki :S 1· := lu - fiki and hence IPkl :S r/tk by 
(2.18). Therefore, if Step 3 increases tk at infinitely many iterations, indexed by J{ say, 

then tk ---> oo yields pk Ł O, and by (2.21), (2.20) and Cauchy-Schwarz, we get 

o> h(ti) 2': e~(u) 2': e~(u) = ek(uk+1) + (p\ i'i - ,/+1) 2': (p\ ,°i - uk+i) Ł o, 

a cont.radiction. Similarly, if Step 4 is entered with vk < -Ek for infinitely many iterations 
indexed by J( (say), then tk ---> oo and (2.27) give Vk Ł O, and we get from (2.22) 

o> h(ti) 2: e~(u) 2: -Vi(l + l,°il) Ł o, 

another contradiction. The conclusion follows. O 

The case where the stepsize tk keeps growing at a fixed prox center is ąuite simple. 

Lemma 3.4. Suppose tlie-re exists k such that only 1mll steps occur for all k 2': k, and 
too := limk tk = oo. Let J( := { k 2': k : lk+I > tk}. Then Vi _!!_, O and hŹ :S O. 

Proof. vVe have hi :S O (otherwise Lemma 3.3 would imply t00 < oo, a contradiction). 
For k E J(, before tk is increased at Step 4 on the last loop to Step 1, we have Vi < 
(2Ema,jtk) 1f2 (1 + łuki) by (2.27), SO tk---> oo gives Vi _!!_, o. 0 
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The case where the stepsize tk doesn't. grow at a fixed prox cent.er is analyzed as in 
[Eiw06c]. Alter showing that the optima! value 1/Jk(uk+i) of subproblem (2.9) is nonde
creasing and bounded above, uk+1 is bounded and uk+2 - 1/+1 -> O, we invoke the descent 
test (2.30) to get vk-> O; the rest follows from the bounds (2.25)- (2.26). 

Lemma 3.5. Suppose there exists k such thai for all k 2 k, only null steps ocwr and 
Steps 3 and 4 don't increase tk. Then Vi -> O and hi S O. 

Proof. Fix k 2 k. We first show that the aggregat.e e~ minorizes the n ext model e~;r 1: 

(3.4) 

Consider the selected model ]k := max1Ejk /1 of Jk := maxjEJk /1; then ]k < A. Using 
I I -

(2.29) in the expression (2.28a) of PJ gives ]k(1/+ 1 ) = Jk(1/+ 1 ) and PJ E 8]k(1/+1) (cf. 
[HUL93, Ex. VI.3.4]). Thus Jk S ]k by (2.14), so the choice of JJ C 1J+1 implies that 

fk S ]k S fk+I· Similarly, for hk := max1Ejk h1 , (2.28b) yields hk S hk S hk+I· Then, 
I, 

using the definition (2.17) of e~ with vk E [O, l] (cf. (2.13)), the minorization i~ S ie of 
(2.16) and the fact that rk+ 1 = rk (by (2.8) and Steps 3 and 4) gives the required bound 

e~. S vdfk+1 - rk) + (1 - vk)iik+1 + ie S max{]k+1 - rk+1, hk+1} +ie= et+1. 

(Note that this bound only needs the minorizations Jk S A+1 + ie and hk S hk+I + ie; 
t.his will be important when selection is replaced by aggregation in §4.2.) 

Next, consider the following partia! linearization of the objective <Pk of (2.9): 

J..() -k() 11 -k12 '+'k . := ee . + 2tk • -u . (3.5) 

We have e~(uk+1) = ek(uk+1) by (2.20) and 'vr/>k(uk+I) = O from 'ile~= pk = (uk-uk+ 1)/tk 

(cf. (2.20), (2.18)); hence r/>k(uk+ 1) = rpk(uk+ 1) by (2.9), and by Taylor's expansion 

To bound r/>k(uk) from above, notice that (3.5), (2.18) and (2.24) imply that 

4>k(uk) = et(uk) = [h~l+ - Ek s [h~J+ + Emax· 

Then by (3.6), 
,I-, ( k+l) l I k+I -k12 ,~ (-k) [hk) 
'l'k U + 21, U - 1l = 'l'k 1l S ,1 + + Emax · 

(3.6) 

(3.7) 

Now, using the fact.s that t/+1 = ·uk and tk+ł S tk and the model minorization property 
(3.4) in the definit.ions (3.5) of J>k and (2.9) of <Pk+I gives 4>k S </Jk+I· Hence by (3.6), 

(3.8) 

Thus the nonclecreasing sequence { rpk( 1/+1) h>i:, being bounded above by (3. 7) with uk = 
1/' for k 2 k, must have a limit, say </;00 S [h~J+ + Emax· Moreover, since the stepsizes 
satisfy tk St;: for k 2 k, we deduce from the bounds (3.7)- (3.8) that 

(3.9) 
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and the sequence { uk+I} is bounded. Then the sequence {gj+ 1} is bounded as well, sin ce 
9j E 8,J(·uk) by (2.4), whereas the mapping 8,J is locally bounded [HUL93, §XI.4.1]; 
similarly, the sequence {g~+I} is bounded, since 97. E 8,Ji(uk) by (2.4). 

For vk := [h~J+ - ek(uk+ 1 ) (cf. (2.10)) and the following linearization of e(·; Tk) at 1ik+l 

( ) ·- k+l ' - Tk, l u - TJ;, - tt , { I ( ) 'f Jk+I > hk+I 
ek+I · .- hk+i (-) otherwise, 

the descent test (2.30) reads ek+i(uk+ 1) :S [h~J+ - ;;,vk or equivalent.ly 

Ek := ek+1(1/+1)- ek(uk+I) :S (1- n:)vk, 

(3.10) 

(3.11) 

We now show that this approximation error Ek -+ O. First, note that the linearization 
gradients 9;+ 1 := 'vek+I are bounded, since /9;+ 1 / :S max{/gj+ 1/, lg~+ 1/} by (2.4). Further, 

t.he minorizations fk+ 1 :S fk+i and hk+I :S hk+I due tok+ 1 E Jj+1 n 1t+1 (cf. (2.5)) yield 
ek+I :S ek+I by (2.8), since Tk+J = Tk. Using the linearity of ek+i, the bound ek+ 1 :S ek+1, 
the Cauchy-Schwarz inequality and (2.9) with itk = tł' for k 2 k, we estimate 

Ek := ek+ I (-1i+ 1) - ek(uk+I) = ek+I (1/+2) - ek(1/+ 1 ) + (9;+1, uk+I - 'llk+2) 

:S ek+1(uk+2) - ek(·1/+I) + /g;+1111/+l - 1/+21 

= 4'k+1(1/+2) - q,k(uk+I) + !::.k + /9;+111,/+I - uk+21, (3.12) 

where !::.k := /uk+ 1 - itk/ 2/2tk - /1/+2 - ,i/2/2tk+I· We have l::.k -+ O, since tmin :S tk+I :S tk 
for k 2 k (cf. Step 7), /1/+ 1 - itk/ 2 is bounded, uk+2 - 1/+1 -+Oby (3.9), and 

Hence, using (3.9) and the bonndedness of {9;+1} in (3.12) yields limk Ek :S O. On the 
ot.her hand, for k 2 k, the descent test written as (3.11) fails: (1- n:)vk < Ek, where n:< 1 
and vk > O; it follows that Ek -+ O and vk -+ O. 

Since vk -+ O, tk 2 tmin (cf. Step 7) and itk = i} for k 2 k, we have Vi-+ O by l2.26), 
tk -+ O and /pk/ -+Oby (2.25). It remains to prove that h~ :S O. If Emax > O, but h~ > O, 
then the facts that vk -+ O with vk 2 n:hh~ (cf. Step 3), Kh > O and ht = h~ for k 2 k 
give in the limit hi :S O, a contradiction. Finally, for E111ax = O, recalling Remark 2.7(v) 
and using _ Ek, IPkl -+_ O in (2.21) yields ec(ii.\ Tf) :S _ee(·; 'kl· In other words, we have 
OE 8ec(fi\ Tr.), so fik E U. by Lemma 2.2 and thus ht = h(ii.k) :SO. O 

\~le may now finish the case of iufinitely many consecutive null steps. 

Theorem 3.6. Suppose there exists k such that only null steps ocrnr for all k 2 k. Let 
J( := {k 2 k: tk+i > tk} if tk-+ oo, J( := {k: k 2 k} otherwise. Then Vi _!!__. O, Jl :S /. 
and h~ :S O. Moreover, the bounds of (3.1) hold. 

Proof. Steps 3, 4, 5 and 7 ensure that { tk} is monotone for large k. We have Vi _!!__. O 
and hi :S O from either Lemma 3.4 if t= = oo, or Lemma 3.5 if t= < oo. Then J.f :S /. by 
Lemma 3.1 (since Tk = Jk = J,f for k 2 k). The finał assertion stems from Lemma 3.2. O 
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N ext, we analyze the case of infinitely many descent steps in phase 2. 

Theorem 3.7. Suppose infinitely many descent steps occur, and hi :S O for same k. 
Let ff' := limk ff. and K := { k 2 k : /t.+ 1 < /i}. Then either ff' = f. = -oo, or 
-oo < ff' :S /. and limkEK Vi = O. Moreover, the bounds of (3.1) hold. In partiwlar. if 

{uk} is bounded, then /,';' > -00 and vk ...!i_, o. 

Proof. For k 2 k, we have h~ :SO, rk = Jl (cf. (2.8)) and /,t+ 1 :S ff., since the descent 
test (2.30) becomes max{J!+ 1 - ff., ht+ 1} :S -1wk. First, suppose that /,';' > -oo. 

We have O< 1wk :S ff.- f,f+ 1 if k E K, /t.+ 1 = ff. otherwise, so 'Z,kEK KVk :S IE- ff' < 

oo gives vk .!i... O and hence Ek, tk1Pkl 2 Ł O by (2.25), as well as IPkl Ł O, using tk 2 tmin· 

Now, for the descent iterations k E K, we have ii,k+ 1 - ·ftk = -tkpk by (2.18) and therefore 

Sum up ami use the facts that ii,k+l = uk if k (/; K, 'Z,kEK tk 2 L,keK tmin = oo to get 

(since otherwise jukj 2 _, -oo, which is impossible). Combining this with tk1Pkl 2 Ł O 

gives limkeK (pk, uk) :S O. Since also Ek, IPkl Ł O, we have limkeK Vi = O by (2.19). 
Then using limkef{ Vi = O and Tk _, ff' in Lemma 3.1 shows that t,r :S f •. 
For the case of fa'= -oo and the assertion on (3.1), invoke Lemma 3.2. 
For the finał assertion, if {·ftk} C C' is bounclecl, then infk f(uk) > -oo U is closed on 

C) implies that ff'> -oo by (3.1), so we have Ek, IPkl Ł O as above. Combining this 

with the fact that Vi :S max{IPkl, Ek}(l + juki) by Lemma 2.5(iv) gives Vi Ł O. O 

We now deal with the case of infinitely many descent steps at phase 1 for Emax > O. 

Theorem 3.8. Suppose infinitely many descent steps occur, ht > O for all k, and Emax > 
O. Let J( := { k : h~+l < hi}. Then we have the following statements. 

(i) ht l O. 
(ii) limkef{ Vi = O. 

(iii) Let J(' C lN be such that Vi JS O. Then limkeK' ff. '.S limkeI(' Tk '.S f •. 
(iv) ff { uk} is bounded, then Vi Ł O, and we may take J(' = J( in (iii) above. 
(v) The bomids of (3.1) hold, and limkrk 2 f. - EJ - j],E1,. 

Proof. (i) We have O < KVk :S hi - h~+l by (2.30) if k E I<, h~+l = hi otherwise, so 

'Z,kEK KVk :S h,\ gives vk Ł O; hence the fact that uk 2 K1ihi ( cf. Step 3) yields hi l O. 

(ii) Use uk .!i... O as in the proof of Theorem 3.7 to get limkeK Vi = O and Ek, IPkl Ł O. 
(iii) This follows from Lemma 3.1. 

(iv) Invoke Lemma 2.5(iv) and the relations Ek, IPkl Ł O from the proof of item (ii). 
(v) This follows from item (i) , Lemma 3.2 and the fact that rk 2 ff. for all k. O 

It is instructive to examine the assumptions of the preceding results. 
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Remarks 3.9. (i) Inspection of the preceding proofs reveals that Theorems 3.6-3.8 re
quire only convexity and finiteness off and h on C, and /ocal boundedness of the approx
imate subgradient mappings 9J off and g;, of h on C. In particular, it suffices to assume 
that J and h are finite convex on a neighborhood of C. 

(ii) Using the evaluation errors E7 := f(uk) - f,~ and Et := h(uk) - ht, aur results are 

sharpened as follows; cf. [Kiw06d, §4.2]. In generał, f(iik) = Jf+E~(l) and h(iik) = h~+E~(l), 
where k(l) - 1 denat.es the iteration number of the 1th descent step. Hence EJ and Eh in 
the bounds of (3.1) for Theorems 3.6-3.8 may be replaced by the asymptotic errors E'j' 

and E'f:', where E'j' equals the finał E~(I) if only finitely many descent steps occur, lim1 E~(I) 

otherwise, and c'f:' is defined analogously. 
(iii) Concerning Theorem 3.8(iv), note that the sequence {iik} is bounded if the feasible 

set U is bounded. Indeed, h(iik) ::; h~ + Eh (cf. (2.7)) with hi::; hl imply that {{/} lies in 
the set {u EC: h(u)::; hl+ E1,}, which is bounded, since such is U. 

Finally, we analyze infinitely many descent steps in the exact case of E111 ax = O. 

Theorem 3 .10. Suppose infinitely many descent steps ocwr and Emax = O. Let I< := 

{k(l) - lH'.; 1 index the descent iterations (cf Step 5), and Zet k := inf{k: h(iik) s; O} (so 
that phase 2 starts at iteration k = k ifj' k < oo). Then we have the f ollowing statements. 

(i) ff k < oo, then f(iik) -, J„ Tk -, f„ h(iik)+ -, O and each cluster point of the 
sequence {-frk} ( if any) lies in the optima/ set U.; moreover, limkEK Vi = O if J. > -oo. 

(ii) ff infk f(i/) > -oo ork= oo, then L-wc Vk < oo, Ek _!!__, O and pk _!!__, O. 
(iii) ff the sequence { iik} is bounded, then all its cluster points lie in the optima/ set 

U,, and we have f(iik)-, f, > -oo, Tk-, /,, h(iik)+-, O and Vi _!!__, O. 
(iv) ff the sequence { uk} has a clmter point u, then u E U„ h(iik)+ -, O and limk Tk 2'. 

limk f('[ik) 2'. /, > -oo; moreover, if I<' c I( is such that uk ~ u, then Vi ~ O. 
(v) The sequence {·frk} has a cl'llster point if the set U. is nonempty and bounded. 

(vi) The sequence {iik} is bounded if such is the feasible set U:= {u EC: h(u) ::; O}. 
( vii) Suppose thai u E U, and there e:1:ists an iteration index k' siich that 

f(u) ::; 1r(ii\ Ck+ 1) for all k ?: k', k E K (3.13) 

In partiwlar, (3.13) holds if tF E U for same k', or ck ?: µ - l for all k?: k', k E I(. 
F'llrther, suppose limkEK tk < oo. Then the sequence {t/} converges to a point in U,. 

(viii) Suppose {-ii.k} is bounded. but we only have LkEK tk = oo instead of infkEK tk ?: 
t 111 ; 11 • Then {·frk} has a cl'llster point in U,. Moreover, assertion (vii) stili holds. 

Proof. First, recalling the basie "exact" relations (2.32)-(2.33), note that Ek ?: O and 

(3.14) 

By Remark 2.7(vi), the descent test (2.30) ensures that O < h(uk+ 1 ) s; h(i'l) for all k if 
k = oo, f.::; f(uk+ 1)::; J(iik) and h(iik) s; O for all k?: k otherwise. 

(i) Use ft''= limk f(iik) = limk Tk in Theorem 3.7 and the closedness of C', f and h. 
(ii) Use the proof of Theorem 3. 7 if k < oo, or of Theorem 3.S(i,ii) otherwise. 
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(iii) First, suppose that /;; = oo, i.e., consider phase 1 with h(uk) > O for all k. 
Let u be a cluster point of {uk}. Then u E C', since {uk} c C and Cis closed. 

Pick J(' C !( such that i'Lk ~ u. Then J(i'Lk) ~ J(u), h(il) ~ h(u) 2'. O (/, h are 

continuous on C). Since Ek, jpkj _!!....., O by (ii), Lemma 2.5(iv) yields Vi ~ O. Let f be 

any cluster point of { T,,}kEI<'· Pick !(" C f(' such that Tk ~ f. We have f 2'. J(u) 
(Tk 2'. J(iik)) and f < oo, since ot.herwise for large k E K", Tk 2'. J(u) - h(ti) would give 

e(u; Tk) = h('u) <Oby (2.2) and (1.2), and (3.14) with Ek, IPkl _!!....., O would yield 

o> h({i) = ec(u; Tk) 2'. h(il)+ + (p", 'U - i./) - Ek ~ h(u)+ ?'.: O, 

a contradiction. Since ee is continuous on C x JR, letting k ~ oo in (3. 14) gives ee(·;f) 2'. 
ec(u; f), i.e., OE aec(u; f). Since h(u) 2'. O and f 2'. J(u), O E 8ee(u; f) in (2.3) implies 
f = f(u) and h(u) = O (otherwise for he := h + -ie, O E 8he(u) would give minc h 2'. O, 
contradicting (1.2)). Hence, u EU. by Lemma 2.2 (using f = 1r(u;c) for any c 2'. O) and 
J(u) = J •. Since h(u) = O and {h(-f/)} is nonincreasing, we obtain that h(uk) -+ O. 

By considering any convergent subsequences, we deduce that Vi _!!....., O, and that /. is 
the unique cluster point of { Tk}kEI( and {J(il)}kEI<· Hence, lim, Tk(l)-I = lim, J (i,k(l)-t) = 
/ •. Since J(uk(L)) ::; Tk '.::'. Tk(l+ l )-I for k(l) '.::'. k < k(l + 1) by Steps 3, 4 and 7, we obtain 
limk J(i'Lk) = limk Tk = J •. Finally, for the remaining case of/;;< oo, use the monotonicity 
of {Tk = f(i'Lk)h >r. and the relations f = J(u), h(u)::; O in the preceding arguments. 

(iv) Use the proof of (iii ), getting limk f(,ik) 2'. J. from h(uk)+ -+ O as in Lemma 3.2. 
(v) If k < oo, the set {u EC: f(u)::; f(u"), h(u)::; O} is bounded (such is U.) and 

contains {[ikh >T.· Suppose k = oo. By the proof of Thm. 3.8(ii,iii), there is JC C !( such 
that limkEI<' J(itk) ::; / •. Hence, for infinitely many k, uk lies in the set {u EC': /(u) ::; 
J. + 1, h(u) ::; h( u I l+}, which is bounded ( such is U.). Therefore, { uk} has a cluster point. 

(vi) The set {u EC': h(u)::; h(u1J+} is bounded (such is U) and contains {uk}. 
(vii) If /;; < 00, then for k 2'. k, uk E U implies f(u) = J. '.:ó'. J(uk) = ir(uk; Ck+ l); 

together with Lemma 2.3, this validates our claim below (3.13). Let k E K, k 2'. k'. Since 
(3 .13) implies ec(u; Tk)::; ec(uk; Tk) by Lemma 2.3, (3.14) yields (pk, u - uk)::; Ek- Then, 
using the facts that ,ik+1 - uk = -tkpk by (2.18) and vk = tk1Pkl 2 + Ek by (2.23), we get 

Ji/+1 - ul2 = luk - ul2 + 2(uk+1 - uk, uk - u) + li/+1 - ukj2 

::; luk - uj 2 + 2tkEk + 2tl1Pkl 2 = luk - ul 2 + 2tkvk. 

Therefore, since limkEI< tk < oo, LkEI( vk < oo by (ii), and juk+1 - uj 2 = luk - uj2 if 
kr/: K, we deduce from [Pol83, Lem. 2.2 .2] that t.he sequence {luk - ul} converges. Thus 
the sequence { uk} is bounded, and using (iii) we may choose u E U. as a cluster point of 
{uk}, in which case the sequence {luk - ul} must converge to zero, i.e., uk _, u. 

(viii) Argue as for (ii ) to get LkEI< vk < oo. Since vk = tk1Pkl 2 + Ek (cf. (2.23)) and 
Ek 2'. O, we have limkEI< IPk 12 = O ( using LkEI< tk = oo) and limkEI( Ek = O. Thus, there is 

RC K such that Ek, IPkl _!!__,, O. Let u be a cluster point of {ukhEI<· To see that u EU., 
replace !( by R in the proof of (iii). Hence, this point u may be used in the finał part of 
the proof of (vii) . O 
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Remarks 3.11. (i) The condition Emax = O in Theorem 3.10 means that the linearizations 
are exact and Step 3 is inactive. If we drop this condition in Step 3, so that Step 3 ensures 
vk 2 ;;,hh~ when h~ > O in the exact case as well, then for Emax = O, both Theorem 3.10 
and Theorem 3.8 hold with EJ= E1i = O in the bounds of (3.1). 

(ii) Condition (3.13) was used in [SaS05, Prop. 4.3(ii)] with ck= O. Since in this case, 
J. = infc1r( -, ck + 1) iff p, ~ 1 (cf. §2.1), we conclude that at phase 1 (k = oo) condition 
(3.13) with ck= O may be expected to hold only if P, ~ l. (Also see §4.4.) 

4 Modifications 

4.1 Alternative descent tests 

As in [Kiw06c, §4.3], at Steps 4 and 5 we may replace the predicted decrease vk = tk1Pkl 2+Ek 
(cf. (2.23)) by the smaller quantity wk := tk1Pkl 2/2 + Ek- Then Lemma 2.5(ii) is replaced 
by the fact that 

wk 2 -Ek = tk1Pkl 2/4 2 -Ek = wk 2 tklPkf/4. 

Hence, wk 2 -Ek at Step 5 implies wk ~ vk ~ 3wk and vk 2 -Ek for the bounds (2.25)
(2.26), whereas for Step 4, the bound (2.27) is replaced by the fact that 

Vi < (4Emax/tk) 112 (1 + li/I) if Wk < -Ek. 

The preceding results extend easily (in the proof of Lemma 3.5, ek+i(uk+ł) > [h~J+ - K:wk 
implies ek+i(1/+1) > [htJ+ - ;;:uk, whereas in the proofs of Theorems 3.7 and 3.8(i), we 
have LkEKvk ~ 3'2:,kEKwk < oo). We add that [SaS05, Alg. 3.1] uses Wk instead ofvk. 

As in [Kiw85 , p. 227], we may replace the descent test (2.30) by the two-part test 

ht+ 1 ~ h~ - ;;,vk if ht > 0, ( 4. la) 

j~+i ~ J,~- ;;,vk and h~+i ~ O if h~ ~ O. (4.lb) 

Since (2.30) implies ( 4.1), the lat ter test may prod u ce faster convergence. In particular, at 
phase 2 (ht ~ O) the additional requirement h~+I ~ -Kvk of (2.30) may binder progress of 
{ iik} towards the boundary of the feasible set. The preceding convergence results are not 
affected (since if (4.1) fails at a null step, then so does (2.30), whereas the requirements of 
(4 .1) suffice for descent steps). 

In connection with (4.lb), we add that if hA ~ O, i.e., the starting point is approxi
mately feasible, then the objective linearizations needn't be defined at infeasible points. 
Specifically, if 1it+1 > O in (4.lb), then a null step must occur, so we may skip evaluating 
J,~+ 1 and choose 1J+1 ::i J; at Step 6 (without requiring 1J+1 3 k + 1). In the proof of 
Lemma 3.5, using vk = -ek(·uk+ 1 ) (cf. (2.10)) and replacing (3.10) by 

() ·- { fk+l(·) - Jk if h~+I ~ o, 
ek+i · .- hk+I ( ·) otherwise, (4.2) 

we see that (4.lb) can be expressed as ek+i(uk+ 1 ) ~ -;;,vk or equivalently by (3.11); this 
suffices for the proof. Similarly, if ht+ 1 ~ O, then we may skip fin ding the subgradient 
gt+1, and choose 1,;'+ 1 ::i J,~ at Step 6 (omitting h.k(·) := -oo in (2.8) if 11~ = 0). 
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4.2 Linearization aggregation 

To trade off storage and work per iteration for speed of convergence, one may replace 
selection wit.h aggregation, so that only in 2: 4 subgradients are stored. To this enci, we 
note that the prececling results remain valicl if, for each k, A+i and Tik+I are closed convex 
functions such that OE O</Jk(uk+ 1) implies (2.11)- (2.13) for k increased by 1, and 

max{lk(u), fk+1(u)} ~ fk+i(u) ~ J(u) Vu EC, 

max{lik(u), hk+i(u)} ~ lik+i(u) ~ h(u) \/u EC. 

( 4.3a) 

(4.3b) 

The nw.x terms above are needecl 011ly after null steps in the proof of Lemma 3 5, Jk is 
not 11eecled if vk = O, and lik is not needed if vk = 1. The aggregate linearizations may 
be treat.ed like the oracle linearizations. Indeed, letting f-j := /2, h_j := Iii for j = 1: k, 
to ensure that Jk ~ A+1 and lik ~ Tik+!, we may work with Jj+1, Jt+ 1 C { -k: k + 1} in 

(2.31), replacing the set Jj or J,~ by { -k} w hen Jj or J,~ is "too large". 
To illustrate, consider the following scheme with minimal aggregation. First, suppose 

[Jj[ + [J1~[ = in. If [Jj[ + [],~[ ~ in - 2, remove from Jj or J1~ two indices in Jj \ Jj 
or J1~ \ J,: If []j[ + [],:[ = iri - 1, set Jj := Jj, J,: := Jt if [),~[ 2: 2, remove two 

inclices from H and set J1~ := J,~ U {-k}, otherwise remove two indices from Jj and 

set Jk ·= Jk U {-k} If /Jk[ + [Jk[ = 111 remove four indices from Jk or Jk and set f · f · f h ' f h> 

Jj := Jju{ -k}, J1~ := J,~u {-k }. N ext, suppose [Jj[ + [J1~[ = 111- l. If I Jj[ + [],~[ = ih-1, 

proceed as in the second case above. If [Jj[ + [ J,~/ ~ in - 2, remove from Jj or J1~ one 

index in Jj \ Jj or J,~ \ Jr At this stage, [Jj[ + [J,~I ~ in- 2, SO set 1;+1 :== Jj U {k + 1}, 

J,7+ 1 := J1~ U { k + l}. This scheme employs aggregation only where needed; for 111 2: m +3, 
it reduces to selection (cf. Rem. 2.7(vii)). 

In practice, without st.oring the points ui for j 2: 1, we may use the representations 

!;(-) = !;(uk) + (V f1, · - uk) and hj(,) = hj(uk) + (Vhj, · - uk), 

since after a descent step, we can update the linearization values 

J;(uk+l) = !;(uk) + (V li, uk+I - uk) for] E Jj+ 1, 

h; ( f/+I) = hj ( t1k) + (V hj' uk+I - uk) for j E J,7+1. 

( 4.4a) 

( 4.4b) 

Let us now consider a variant with total aggregation, in which only two linearizations 
need be storecl. Let J} := {l} , define e1 by (3.10) with k = O and To:= T1, and replace ek 
in (2.8) by the "overall" model 

(4.5) 

of e(,; Tk); thus we no longer maintain separate models off and h. Then the optimality 
condition OE 8cpk(uk+ 1 ) yielcls the existence of a subgradient p~ E 8ek(uk+l) such that p~ 
replaces vkpj + (1 - vk)p~ in (2.12) and (2.18), and using the aggregate linearization 

(4.6) 
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we may replace the definition (2.17) of the linearization e~ and its expression (2.20) by 

et(·):= ek(-) + 'R;(·) = ek(1/+ 1) + (p", • - ,/+1) (4.7) 

For linearization selection, we may use multipliers 1J of the pieces ej, j E J;, such that 

( k ) _ ~ k(n ) k Q k[- ( k+I) ·( k+I)] _ Q · Jk Pe, l - 0 "/j v ej, 1 , 'Yj 2 , "/j ek 11 - e] 11 - , J E e , ( 4.8) 
jEJ~ 

to choose the set J;+ 1 :::> J; U { k + l} with J; := {j E J; : 1J -=f O} and ek+t given by 
(3.10). For aggregation (cf. (4.3)), after a null step the next model ek+t should satisfy 

( 4.9) 

and it suffices to choose J;+ 1 :::> { -k, k + l} with e_k := ek. Note that ( 4.6) and the 
minorization ek+i(·)::; e(-;rk) (cf. (3.10)) yield ek+i(·)::; e(-;rk). To ensure that e(-;rk) is 
stili minorizecl by each ej(·)= e)(i't") + ('ve1, · - uk) after a clescent step, we may update 

ej(Uk+ 1) := ej(-uk) + (<Jej, 'Uk+l - 'Uk) - (Tk+J - Tk)+, (4.10) 

since e(-; Tk+i) 2 e(-; Tk)- (Tk+I -Tk)+ (cf. (2.2)). Similarly, when Tk increases to T{ say, at. 
Steps 3 or 4, the update ej ( ftk) := ej ( ftk) - T{ + Tk provides the minorization eJ (·) ::; e( ·; r{). 

Although total aggregation needs only in 2 2 linearizations, whereas separate aggre
gation describecl below ( 4.3) needs in 2 4, in practice this difference is immaterial, since 
larger va.lues of in are required for fa.ster convergence anyway. On the other hand, total 
aggregation has a serio us clrawback: its update ( 4.10), being basecl on a crude pessimistic 
estimate, tends to make the linearizations e1 !ower than necessary when h+i =I Tk- In con
trast, separate aggregation is not sensitive to changes of Tk, since it employs the natura! 
updates of ( 4.4) and accounts for the current Tk explicitly in its modelek of (2.8). In other 
words, it pays to maintain separate models of/ and h instead of ignoring the structure of 
e(•, Tk) in the overall model (4.5); thus, total aggregation is of theoretical interest only. 

Similar techniques can be applied to the com.posite model 

(4.11) 

For instance, ( 4. 9) holds if Jj+ 1 3 k + l, J,~+ 1 3 k + l, J;+ 1 3 -k, but many other choi ces 
are possible. We skip the details, because in practice separate selection or aggregation of 
the linearizations of/ and his more efficient, due to avoiding the update of (4.10). 

Remark 4.1. We acid that [SaS05, Alg. 3.1] employs the composite model (4.11) with 

Jj := {j Ef:/!, - Tk 2 h;,} and J1~ := {j E Jk: /;. - Tk < h~} (4.12) 

for an aclclitional "oracle" set Jk C { 1: k}; the n Jk and J; are reducecl if necessary so that 
2jJkl + IJ;'I :'o 111 - 3 for a given 111 2 3, and Jk+ 1 := Jk U {k + l}, J;+ 1 := J; U {-k}. 
First, this scheme is quite unusual: although jJkl "original" linearizations of/ and h are 
maintained (21Jkl in total), only half of them are selectecl via (4.12) for the model (4.11) 
(this selection is unnecessary in the sense that even for Jj = Jk = Jk, the model (4.11) 
stili satisfies ek(·)::; e(•, Tk)). Second, its storage requirement of 111 2'. 3 places it between 
total aggregation and separate aggregation. Thircl, and most importantly, this scheme 
employs the crucle update of ( 4.10), and hence is less efficient than separate aggregation. 
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4.3 Estimating Lagrange multipliers 

Suppose f. > -oo, so that the dual optima! set M := Argma,"'<R+ q is nonempty (cf. §2. 1). 
For i' 2 O, the set of E-optimal dual sol-ations is defined by 

M, := {µ E lR+: ą(ii) 2 f, -E}. (4. 13) 

We now develop conditions under which the Lagrange rnultiplier estimates 

(4. 14) 

converge to the set/',,[, for a suitable E 2 O. where vi- is the mult.iplier of (2.12)-(2.13). 
Since vk E [O, l] by (2.13), (214)- (2.19) y ield the sharper version of (2.22) 

vk[f(u) - -rk] + (1 - vk)h(u) 2 [h~J+ - Vk(l + lul) for all u EC'. (4.15) 

lf vk > O (e.g., Vi < - h(u) /( l + lul)), then (4.14) with {lk E lR+ and (4.15) give 

f(u) + µkh(u) 2 •k - Vi(l + lul)/vk for all u EC'. (4.16) 

I<' Lemma 4.2. (i) Suppose f, > -oo. Let !(' C lN be such that Vi --. O and 

( 4.17) 

- J<' 
where P, := infµEM {t (cf. §2.1). Then limkEI<' {Lk < oo and Vi/vk --> O. Moreover, the 
sequence {µk}k EI<' converges to the set M, given by (4.13) for if :=EJ+ jj,Eh-

(ii) ff f, > -oo, then a set !(' satisfying the requirements of (i) exists under the 
assumptions of Theorems 3.6, 3.7 or 3.8, or those of Theorem 3.10 if additionally either 
inf{k: h(il) '.S O} < (X) or li),kl r (X) (e.g., the optima/ set u. is nonempty and bounded). 

Proof. (i) By ( 4.17), r 00 := limkEI<' rk 2 f, - E. If we had limkEI<' vk = O, for u = u, 
(4.15) would yield in the limit O > h(u) 2 O, a contradiction. Hence , limkEI<' vk > O, so 

that. Vi/vk ~ O and limkEK' {lk < oo by (4.14). Let 1i00 beany cluster point of {ltk}kEK'i 

then 1i00 E lR+· Passing to the limit in (4.16) bounds the Lagrangian values as follows 

L(u; {t00 ) := f(u) + µ 00 h(u) 2 r 00 for all u E C'. 

Hence, q(1i00 ) 2 r 00 2 f, -E implies {L00 E AI, by (4.13). Since {Loo was an arbitrary cluster 
point of {lidkEW C lR+ U { oo} and limkEI,' {lk < oo, the conclusion follows. 

(ii) In Theorem 3.6, rk = ff for all k 2 k (and we may take K' = K). In Theorem 3.7, 
rk ---, ft:' E [f. - EJ - P,E1t, f.] and limkEK 1/k = O. For the rest, see Theorem 3.S(ii,v) and 
Theorem 3.lO(i,iv,v), noting that łuki f-, oo iff {uk} has a cluster point. O 
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4.4 Updating the penalty coefficient in the exact case 

V,/e first show how to choose the penalty coefficient ck by using the Lagrange multiplier 
estimate f-lk of (4.14) to ensure the "convergence" condition (3.13) of Theorem 3.lO(vii). 

Lemma 4.3. Under the ass1tmptions of Theorem 3.10, s1tppose liikl -f, oo. S1tppose for 
all large k, ajter a descent step, Step 7 chooses ck+1 2 max{f-tk, ck} if f-lk < oo, ck+! 2: ck 
otherwise. Then there exists k' s1tch that condition (3.13) holds for any ft E U •. 

Proof. By Theorem 3. lO(iv), the assumptions of Lemma 4.2(i) hold for some I<' C I<, 
Ej = t1i = i'= O; thus, {1-tk}kEI{' converges to A1o = /o.i[, and limkEI<' tLk 2 µ, := inf,,EM f-t 
implies f-lk 2 µ, - 1 for all large k E I<'. Hence, sin ce { ck} is nondecreasing for large k, we 
have ck 2 µ, - 1 for all large k, and the conclusion follows from Theorem 3.l0(vii). O 

Remark 4.4. Variations on the strategy of Lemma 4.3 are possible. For instance, if {i/} 
is bounded (e.g., U is bounded) , Step 7 may choose ck+I 2: f-lk after each descent step when 
ttk < oo; this tiuffices for the proof of Lemma 4.3 with !(' = l( by Theorem 3.lO(iii). 

We shall exploit the following elementary property of the exact penalty function (2.1). 

Lemma 4.5. ff c 2 µ, then 1r(u; c) 2: f. + (c - µ)h(u)+ for all u EC. 

Proof. By (2.1) , 1r(u; c) = L(u; µ) + (c- µ)h(1t)+ + tt[h(u)+ - h(u)) for each u E C, where 
L(u;µ) 2 q(p) = f. (cf. §2.1), P, 2: O and h(u)+ 2 h(u). O 

For phase 1 in the exact case (when Step 3 is inactive), the main difficulty lies in 
ensuring h(iik) l O. Complementing Theorem 3.10, we now show that it suffices if the 
penalty parameter ck majorizes strictly the minimal Lagrange multiplier µ, asymptotically, 
and we give a specific update of ck, based on a simple idea: increase the penalty coefficient 
if the constraint violation is large relative to the optimality measure (cf. [Kiw91]). 

Lemma 4.6. Under the assmnptions of Thm.. 3.10, suppose h(i'/) > O for all k. Then: 

(i) There e:iists !(' C l( such that Vi .!!.:_. O and limkEW f (-ilk) ::; limkEW Tk ::; f •. 
(ii) ff c00 := limk ck > µ, then h(i'tk) l O. 

(iii) S1tpposefor all large k, after a descent step, Step 7 chooses ck+I 2 2ck if h(uk+1) > 
Vi , ck+1 2: ck otherwise, ck+1 > O when h(uk+1) > O. ff f. > -oo, then h(iik) l O. 

(iv) ff h(iik) l O, then limk Tk 2 limk f(t/) 2 f„ and limkEI{' f(iik) = f. in (i) above. 

Proof. (i) This follows from the proof of Theorem 3.S(ii,iii), using Tk = 1r(1i\ ck). 
(ii) By (i) and Lemma 4.5, f. 2 limk Tk 2 f. + (c00 - µ,) limk h(i'tk)+ with c00 > j1 yield 

limk h({tk)+ = O. Hence, h(ftk) l O, using O< h(1ik+1) ::; h(iik) for all k. 

(iii ) If c00 := limk ck < oo, then h(uk+I) ::; Vi for all large k E /(, so by (i), Vi .!!.:_. O 
yields h(-iik) l O. Otherwise, c00 = oo > µ, (from f. > -oo) and assertion (ii) applies. 

(iv) Invoke Lemma 3.2 with Ej = E1i = O, and use the fact that Tk 2 f(11k). O 
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5 Column generation for LP programs 

In this section we consider the following primal-dual pair of LP problems 

min CA s.t. AA 2': b, A 2': O, 

max ub s.t . 11.4 ::; c. 'Il 2': O. 

(5.1) 

(5.2) 

where c E IR" , A E IR""", b E IR111 • We assume that c > O. Let A; den o te column i of 
A for i E I := {l: n}. When the number of columns is huge, problems (5.1)-(5.2) may 
be solved by column generation, provided that for each u 2': O, one can solve the column 
generation subproblem of finding i„ E Arg max;Ef( uA; - e;), We show that this subproblem 
may be solved inexactly when our method is applied to the dual problem (5.2) formulated 
as (1.1), and that approximate solutions to (5.1) can be recovered at no extra cost. 

To ease subsequent notation , Jet us rewrite the LP programs (5,1) - (5.2) as follows 

max 'lj;0 (A) := -CA s.t. 1/J(A) = AA - b 2': O, AE IR~ , 

min f(u) := -ub s,t. uA::; c, u E IR~'-

(5.3) 

(5.4) 

The dual problem (5.4) is formulated as (1.1) with C' := IR';.' and the constraint function 

h(·) := max((A;, •) - c;). 
•El 

(5.5) 

Since c > O, 1"t := O may serve as the Slater point. For our method applied to (Ll), we 
assume that f is evaluated exactly (i.e., EJ = O and fk = !), whereas the approximate 
linearization condition (2.4b) boils down to finding an index ik EI such that 

(5.6) 

By duality, f, is the common optima! value of (5.3) and (5.4), In view of Lemma 4.2, 
I<' we assume that f, > -oo and Jet I<' C lN be the set such that Vi --> O and ( 4.17) 

holds: t,hen lik > O and flk := (1 - lik)/lik < oo for large k E I<'. We shall show that 
the corresponding subsequence of the multipliers {ftk/3j} JEJ! of (2.28b) solves the prima! 
problem (5.3) approximately; thus , below we consider only k E !(' such that lik > O. 

The multipliers {ftk /31k} JEJk define an approximate primal solution )-k E IR~ via 
h 

Let l := (1, ... , 1) E IR". In this notation, using the form (5.6) of the linearizations h1 in 
(2.28b) and the fact that ftkiik(uk+I) = ftkek(uk+ 1) (cf. (2.13)) yielcls the relations 

flkJJ~ = AA\ flk = l>-\ 5-k 2': O, (uk+ 1A - c)Ak = ftkek(uk+ 1). (5.7) 

We first clerive useful expressions for the prima! function values 'lj;0(>-k) and ·I/J(Ak). 

Lemma 5.1. 'lj;0(Ak) = rk + ([h~J+ - Ek - (pk, uk) )/lik , 'lj;(Ak) = (pk - p~) /lik 2': pk/lik, 
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Proof. Since pj = 'v f = -b (cf. (2.11), (5.4)), /LkP~ = AJk by (5.7), and Vkflk = 1 - vk 
by (4.14), the definitions of,/;(>-.) in (5.3) and of pk in (2.18) give 

vk1/J(>-k) = vk(AJk - b) = VkP~ + (1 - vk)P~ = pk - p~, 

where p~ E ćhn;• (uk+I) implies p~ :SO and (p~, uk+1) = O. N ext, by (5.7) and (2.18), 

vkcJk + (1 - vk)ek(1/+1) = (VkflkP~, 1/+1) = ((1 - vk)P~ + P~, 1/+1 ) = (pk - VkP~, 1/+ 1), 

where vk(pj,uk+ 1) = vkjk(uk+ 1 ) = vke,,(uk+ 1) + vkTk by (2.13); hence, by (2.20)-(2.21), 

-IJkcJk - vkTk = ek(uk+ 1) - (p\ 1/+ 1) = e~(O) = [h~l+ - (p\ il) - Ek

Dividing by vk gives the required expression of 1/Jo(>-k) := -c>-\ for ·,f; (>-k), see above. O 

In terms of the optimality measure Vi of (2.19), the bounds of Lemma 5.1 imply 

Jk 2: O with ·t/Jo (>-k) 2: Tk -Vi/vk, t/;;(>-k) 2: -Vi/vk, i= l:m. (5.8) 

We now show that {>-khEI<' converges to the set of t-optimal prima/ solutions of (5.3) 

A,:= {).. E IR~ : lf,o(>-.) 2: J. - t, ·,/; (>-.) 2: O}, (5.9) 

where E := ilE1i, with il being the minimal Lagrange multiplier of (1.1); in aur context, we 
may as well take (a possibly larger) il:= lA for any prima! solution A of (5.3). 

I(' 
Theorem 5.2. Suppose J. > -oo. Let 1(' C lN be such that Vi --, O and ( 4.17) holds 
(see Lem. 4.2(ii) for sufficient conditions). Then the following statements hold. 

(i) The seq·uence {>-khEw ·is bounded and all its cluster points lie in IR~. 
(ii) Let Joo be a cluster point of {Jk}kEI\'· Th en Joo EA,. 

(iii) dA,(Jk) := inf-1EA, l>-k - >-.i ~ O. 

Proof. By Lemma 4.2, limkEK' /lk < oo and Vk/vk ~ O. Since limkEK' Tk 2: J, - t by 
(4.17), the bounds of (5 .8) yield limkEK' fo(>-k) 2: f, - t and limkEK' min;~ 1 1/J;(Jk) 2: O. 

(i) This follows from limkEK' l>- k = limkEK' /lk < oo ( cf. ( 5. 7)) and { 5- k hEK' C IR:. 
(ii) We have Joo 2: O, ·lj;0 (>-00 ) 2: f, - t and ·lj; (>- 00 ) 2: O by continuity of lj;0 and ·,/J . 
(iii) This follows from (i), (ii) and the continui ty of the distance function d,1,. O 

Remarks 5.3. (i) By Remark 3.9(ii), we may use E := ilEh in (5.9) for Theorem 5.2. 
(ii) By Lemma 2.8(iii ) and the proof of Theorem 5.2, if an infinite loop between Steps 

1 and 4 occurs, then Vi -+ O yields dA,(Jk ) -+ O. Similarly, if Step 2 terminates with 

Vi = O, then Jk E A,. In both cases, we may take E := ilE~(IJ by Remark 3.9(ii). 
(iii) Given two tolerances EF, Eto! > O, the method may stop if h~ :S EF, 

1/Jo(>-k) 2: J(i/) - Eto! and 1/Ji(>-k) 2: -Eto! , i= 1: m. 

Then if,o(>-k) 2: J, - P,(c1i + er) - Eto! from f(tt'") 2: J. - il(Eh +EF), so Jk is an approximate 
solution of (5.3). This stopping cr iterion will be met when Vi/vk :S Ew! in (5.8). 
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