
Raport Badawczy 

Research Report 
RB/18/2006 

On the adjustment problem 
for linear programs 

M. Libura 

Instytut Badań Systemowych 
Polska Akademia Nauk 

Systems Research Institute 
Polish Academy of Sciences 



POLSKA AKADEMIA NAUK 

Instytut Badań Systemowych 

ul. Newelska 6 

O 1-44 7 Warszawa 

tel.: (+48) (22) 8373578 

fax: (+48)(22)8372772 

Kierownik Pracowni zgłaszający pracę: . 
prof. dr hab. inż. Krzysztof C. Kiwiel 

Warszawa 2006 



On the adjustment problem for linear 
programs 

Marek Libura 

Systems Research Institute 

Polish Academy of Sciences 

Newelska 6, 01-447 Warszawa, Poland 

E-mail: Marek.Libum@ibspan.waw.pl 

Abstract 

We propose a generalization of the inverse problem which we will 
call the adjustment problem. For an optimization problem with lin­
ear objective function and its restriction defined by a given subset 
of feasible solutions, the adjustment problem consists in finding the 
least costly perturbations of the original objective function coefficients, 
which guarantee that an optima! solution of the perturbed problem 
is also feasible for the considered restriction. We describe a method 
of solving the adjustment problem for continuous linear programming 
problems when variables in the restriction are required to be binary. 

Keywords: combinatorial optimization, linear programming, inverse 
optimization, adjustment problem. 

1 lntroduction 

Consider an optimization problem (P) with linear objective function and 
let F be a given subset of the set of feasible solutions of (P) . Assume that 
one wants to adjust the objective function coefficients in (P), such that an 
optima! solution of the perturbed problem belongs to F. The adjustment 
problem introduced in (Libura, 2001) seeks among admissible perturbations 
of the coefficients, one that is least costly according to some given norm. 

If for example (P) is the minimum spanning tree problem in a given graph, 
then we may look for such perturbations of lengths of edges, that there exists 
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a minimum spanning tree for the perturbed graph that is a Hamiltonian 
path. Similarly, given a (continuous) linear programming problem, we may be 
interested in such perturbations of the objective function coefficients, which 
would guarantee that there is an optima! solution of the perturbed problem, 
satisfying additional restrictions, e.g. integrality restrictions. 

When the restricted solution set F contains only a single element x 0 , then 
the adjustment problem becomes the so-called inverse problem with respect 
to x 0 • The inverse problem and some of its variants have attracted recently 
significant attention (see e.g. Ahuja and Orlin, 2001; Heuberger, 2004; Zhang 
and Liu, 2002). 

The adjustment problem appears to be more difficult than the standard 
inverse problem. The latter problem is in fact equivalent to the problem 
of finding a projection of the original objective vector on so-called stability 
region of the solution x 0 (see e.g. Greenberg, 1998; Libura, 1996). If (P) 
is a continuous or integer linear program, then the stability region of x 0 

is a polyhedral convex cone. Also the adjustment problem for IFI > 1 is 
equivalent to the problem of finding a projection of the objective vector; in 
this case onto a union of convex cones, which is not necessarily a convex 
region. 

In this paper we formulate and apply a mixed-integer linear programming 
model to salve the adjustment problem for a continuous linear programming 
problem (P), when Fis given by linear and integrality constraints, such that 
all the variables, for which we are allowed to adjust the objective function 
coefficients, are binary. 

The paper is organized as follows: Section 2 contains the forma! definition 
of the adjustment problem. In Section 3 we state the adjustment problem 
for continuous linear programming problems. In Section 4 we describe a 
reformulation of the adjustment problem in the case of zero-one variables. 
Section 5 contains examples illustrating the approach. 

2 N otation and preliminaries 

Let c E ]Rn and X <;;; JR". We will consider an optimization problem with 
linear objective function: 

v(c,X) = max{crx: x EX} 

and its restriction for a given subset F <;;; X of feasible solutions: 

max{crx: x EF}. 
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• The adjustment problem related to F and a given set b,. <;;: JR" is stated 
as follows: 

a(F,t:.)=min{llbl: v(c+ó,X)=v(c+b,F), óEt:.}, (3) 

where llbll denotes a norm of ó. In this paper we will consider mainly h 
or loo norms, i.e., llbll = lbl1 = I:~=l jb;j or llbl = llblloo = maxi=I, ... ,n IM 
Nevertheless, the described approach may be used also when llbll is a so­
called weighted 11 or 100 norm for some given vector w = ( w1 , .•• , w„)T E JR", 
w > O. In this case we have llbll = jbiJ,w = I::'.:1 jb;j/w; or 11511 = ll5lloo,w = 
maxi=l, ... ,n jo;j/w;. The set t:. <;;: JR" describes all admissible perturbations of 
the original vector of weights c. In the following we will assume that t:. = JR" 
or t:. is a bounded subset of JR". 

Given sets t:. <;;: JR" and F <;;: X we will call the optimal value a(F, t:.) of 
the problem (3), the adjustment cost with respect to F and t:.. 

When F = {x0 }, x 0 E JR", then the adjustment problem becomes the 
standard inverse problem with respect to x 0 : 

i(x0 ,t:.) = a({x0 },t:.) = min{lloll : v(c+b,X) = (c+o)Tx 0 , ó Et:.}. (4) 

If an optima! solution of the adjustment problem exists, then directly 
from the definitions of the adjustment problem and the inverse problem it 
follows, that such a solution provides also an optima! solution for the inverse 
problem with respect to some element of F. Moreover, a(F, b,.) :S i(x, t:.) for 
any x E F . Thus we have the following fact: 

Proposition 1 For F <;;: X and t:. <;;: JR", 

a(F, t:.) = min{i(x, t:.) : x EF}. (5) 

This proposition might suggest, that the adjustment problem can be 
solved in two phases: by finding an optima! solution x• of the restriction 
(2) and then by solving the inverse problem with respect to x*. But even 
if a solution of that inverse problem exists, such approach may fai! as the 
following simple example shows. 

Consider an optimization problem: max{cTx: x EX}, where c = (4, 5)!, 
X= {x = (x1,x2? E JR2 : 2x1 + x2 :S 2, O :S x1 :S 1, O :S x2 :S 1}, and 
its restriction for F = X n Z2, where Z denotes the set of integers. Thus 
the original problem is a continuous linear programming problem and the 
restriction consists in imposing integrality conditions on variables x 1 , x 2 . It 
is easy to see, that the vector x• = (O, l)T is a unique optima! solution of the 
restricted problem 

max{ 4x1 + 5x2 : 2x1 + X2 :S 2, O :S X1 :S 1, O :S X2 :S 1, Xi, X2 EZ}. 
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Solving the inverse problem with respect to x* for the 11 norm and 6. = JR2 

we obtain i(x*,JR2 ) = a({x*},JR2 ) = 4 and ó* = (-4,0jT. But this is not a 
solution of the adjustment problem with respect to F, because in this case we 
have a(F, JR2 ) = 3 with 5a = (O, -3)T as an optima! vector of perturbations. 

The optima! solutions of both these problems are shown in Figure 1, 
where S(O, O), S(O, 1) and S(l, O) denote, respectively, the stability regions 
of solutions belonging to F = {(O, o)r, (O, ljT, (1, O)r}. Solving the inverse 
problem with respect to x* = (O, ljf we obtain c* = c + ó* as a projection of 
the vector c = ( 4, 5)r on a convex cone S(O, 1). But an optima! solution of the 
adjustment problem with respect to F corresponds to the vector ca= c + óa, 
which is a projection of c anto a non-convex set S(O, O) U S(O, 1) U S(l, O). 

c, 
,...----------. 

/ 8 

I 

Figure 1: Optima! solutions of the inverse problem and the adjustment prob­
lem. 

3 The adjustment problem for linear program­
ming problems 

Let 
X= {x E ]Rn: Ax ~ b, x?: O}, 

where A E JRmxn and b E JRm. In this case the initial problem (1) is a linear 
programming problem 

max{crx: Ax ~ b, x?: O}. (6) 
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• The following lemma (see e.g. Padberg, 1995) states well known optimal­
ity conditions for problem (6): 

Lemma 1 A Jeasible solution x 0 E X is an optimal solution of problem (6) 
if and only if there exists y E !Rm such that y c=: O and 

(i) Ary c". c, 

(ii) bry= crx 0 • 

Given fi. ~ IR" and a feasible solution x 0 for (6), it follows from Lemma 1 
that the inverse problem with respect to x0 can be stated as the following 
mathematical programming problem: 

i(x0 ,łi.) = minll5j 

Ary - ó c". C 

bry - órXo = crxo 

y c". o 
ó E fi.. 

(7) 

Observe that if fi. = !Rn or fi. is a polyhedron in !Rn, then for the ł 1 and /00 

norm problem (7) can be easily stated as a linear programming problem. 

Let F = {x EX: Cx :S: d} n S, where CE JRPxn, d E ]RP and S is some 
specified subset of IR". Thus the restriction of the original problem (1) is 
defined by adding new linear constraints 

Cx :S: d 

and requiring that feasible solutions belong to the set S. In the following we 
will usually assume that S = zn or we will simply take S = !Rn. 

The adjustment problem with respect to F and fi. can be formulated now 
as the following mathematical programming problem: 

a(F, ti.) = min IIJII 
Ary-5c=:c 

bry - crx - órx = O 

Ax :S: b 

Cx :S: d 

x,y c". 0, XE S 

ó E fi.. 

(8) 

Observe that (8) is no longer easily stated as a continuous linear program, 
even when fi.= S = IR", due to the nonlinear term órx. 
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4 Adjustment problem with binary variables 

Consider now a special case of the adjustrnent problem. Namely, assume 
that F ~ {O, l}n, i.e., all the variables are binary in F. We are faced with 
such a situation if S = {O, 1 }n or when S = 'li.," and - moreover - constraints 
Ax S: b, Cx S: d, x 2: O, contain or imply bounds x S: 1, where 1 E ]Rn 

denotes a vector of ones. 

If the set of feasible solutions of the restricted problem fulfills the re­
quirement F ~ {O, l}n, then the nonlinear term oTx in (8) may be forrnally 
linearized in a standard way using additional variables and constraints. In 
the following we will describe this reformulation. 

It will be convenient to express the vector o = (o1, ... , on? E ]Rn as a 
difference of two nonnegative vectors o+, o- E JR~ = { x E ]Rn : x 2: O}. Let 

where 

o+= (ot , ... ,o,;)T, o(= max{O,o;}, i= 1, ... ,n, 
o- = (o1, ... , o;;-)r, o;= max{O, -o;}, i= 1, ... , n. 

Thus we have 
n 

OTX = I)o(x; - O;-X;). 
i=l 

We will intro duce new nonnegative variables z;, z;, i = 1, . .. , n, satisfying 
the following conditions: 

zt = o(x;, i= 1, . .. , n, 

Z;-=o;x;, i=l, ... ,n. 

Now we can replace the constraint 

in problem (8) with the following linear constraint: 

where z+ = (zt , ... , z,;)T E JR~ and z- = (z1, .. . , z;;-)r E JR~. 

(9) 

(10) 

For any new variable z;, z;, i = 1, ... , n, we have to add also constraints 
which would guarantee that equations (9) and (10) hold. Let us take for 
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example the equation z( = 8( X; for same index i E { 1, ... , n}. This equation 
is equivalent to two implications: 

X;= O = z(= O, 

X; = 1 ==? z; = ói, 
which can be modeled in a standard way (see e.g. Williams, 1993) by adding 
the following new constraints: 

z(-Mx; ::; o, 
-8t+zt ::; o, 

8; -z(+ Mx; ::; M, 

where Ma is sufficiently large constant satisfying the inequality 8; ::; M for 
any i = 1, ... , n. If the set of admissible perturbations 6. is bounded, then 
a suitable value of M can be calculated directly from the description of 6.. 
If 6. = !Rn, then we can simply take M = llcll1- Indeed, in this case y = O 
and 8 = -c provides a feasible solution of (8) for any x E F and thus there 
exists an optima! solution of (8), in which 18;1 :S llclh-
Finally, the adjustment problem may be stated in the following form: 

a(F,6.) = min IW)+ W! 
ATy - 5+ + 5- 2: c 
bTy- cTx - IT z++ IT z-= O 

z+ - Mx :SO 

-8+ +z+::; O 

5+ _z++Mx::; M 

z- - Mx :SO 

-8- +z-::; O 

5- -z-+Mx::; M 
5+ - 5- E 6. 

xEFc;;_{O,l}n 

y, z+,z-,8+,5- 2 O. 

(11) 

Thus for a linear programming problem (1) and 6. = !Rn or 6. given as 
a polyhedron in !Rn, the adjustment problem with F c;;_ {O, l}n and ł 1 or ł00 
norm in !Rn can be stated as a mixed-integer linear programming problem. 
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We will finish this section with some comments concerning the described 
approach. 

A similar approach can be used for initial linear programs with constraints 
of the equality type. Also, only slight modifications are needed when the 
problem (1) is stated as a minimization problem. 

Observe that in some cases we may relax the requirement, that all of the 
variables in the considered restriction of the initial problem must be binary. 
In fact, we want to linearize the terms 8;x; and ó;-X; only for such variables 
for which we are allowed to change the coefficient in the objective function. 
Formally, the set of these variables is determined by the set ~- Frequently, 
the considered formulation of the optimization problem contains some aux­
iliary variables, which do not appear in the objective function . Thus, it is 
quite natura! that these variables do not appear in the statement of the ad­
justment problem either, and may be omitted in the linearization step (see 
Example 2) . 

The choice of an appropriate norm in the adjustment problem (11) de­
pends on that, w hat we actually want to minimize: the sum of perturbations, 
the maximum value of the perturbation or the maximum percentage of nec­
essary changes in the objective function coefficients. For example, in the 
latter case the weighted loo,w norm with w = c is appropriate. 

In the following section we will give two comprehensive examples, which 
illustrate the described approach. An 1.133 GHz Pentium III computer and 
CPLEX 6.5 package were used to solve the MIP models arising for these 
examples. In all cases computing times for the adjustment problems were 
below 0.2 sec. 

5 Examples 

Example 1 
Consider a weighted digraph G shown in Figure 2. The following path 

of length 17 (given as a subset of arcs) is the shortest path from vertex s to 
vertex t in G: 

p = { (s, 2), (2, 4), (4, 5), (5, 3), (3, 6), (6, t) }. 

This path is indicated with bold Jines in Figure 2. 

Assume that we are interested in paths from s to t which pass through 
vertex 1 and we want to find the smallest possible modification of arc lengths 
which would guarantee that there is such a path among the shortest paths 
in the modified network. Therefore we have to solve the adjustment problem 

8 

-, 



Figure 2: Digraph G from Example 1 with indicated lengths of arcs. 

related to the original problem and its appropriate restriction requiring that 
the path from s to t contains the vertex 1. 

It is well known that the shortest path problem can be stated as a linear 
programming problem (see e.g. Nemhauser and Wolsey, 1988). 

Let V= {v1 , . . . ,v8 } = {s,1,2,3,4,5,6,t}, E = {a1, ... ,a17 } = {(s,1), 
(s,2), (1,2), . . . , (6,t), (t,6) }, C = (4, 3, 1, 7, 2, 2, 4, 4, 2, 2, 3, 1, 2, 12, 4, 6, 9)f, 
and !et A denote the incidence matrix of digraph G = (V, E, c). Then for 
b = (l, O, O, O, O, O, O, -l)T the set of vertices of the polyhedron X, where 

X = { x E JR_r : Ax = b}, 

fonns a set of characteristic vectors of paths from s to t in digraph G. Any 
vertex of X is a binary vector, because the matrix A is totally unimodular. 
An optima! solution of the original problem, which corresponds to the path 
p = {(s, 2), (2, 4), (4, 5), (5, 3), (3, 6), (6, t)}, is given by the following vector: 

x 0 = (O,l,0,0,0,1,0,0,0,0,1,1,1,0,0,1,0)~ 

If we are interested in paths from s to t passing through the vertex 1 ( observe 
that the path p does not fulfill this condition), then we are faced with a 
restriction of the shortest path problem and the new set of feasible solutions 
is formed by additional constraints. We can require for example that at least 
one arc leaving the vertex 1 belongs to the feasible path. This leads to the 
following feasible set in a restriction of the original problem: 

F = {x EX n {O, 1} 17 : x3 + x4 2: 1}. 

Assume that li.= lR.17 and Jet J+(ż,j) and J- (i,j) denote, respectively, an 
increase and a decrease of the length of arc ( i, j) E E. Solving the adjustment 
problem (11) with ł 1 norm we obtain the following optima! solution: 
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o+(s, 2) = 2 and o+(i,j) = O for (i , j) EE\ {(s , 2)}; 
ó- (i,j) = O for (i,j) EE. 

Observe that the shortest path in the modified network given by vector 

X= (1,0,1,0,Q,1,Q,0,0,Q, 1,1,1,0,0,1,0?, 

now passes through vertex 1. This optima! path in digraph G with modified 
lengths of arcs is shown in Figure 3. 

Figure 3: Digraph G from Example 1 with modified lengths of arcs and an 
optima! path from s to t indicated with bold lines. 

The optima! solution of the adjustment problem can be interpreted as 
follows: To guarantee that some shortest path from s to t in the modified 
digraph G passes through the vertex 1, it is enough to increase the weight of 
arc a2 = (s, 2) by o+(s, 2) = 2 while the lengths of all the other arcs remain 
unchanged. Moreover, this is the smallest possible (in the sense of ł 1 norm) 
perturbation of lengths of arcs to achieve this goal. 

Solving the adjustment problem with ł00 and łoo ,c norm we obtain a min­
imum adjustment cost equal to 0.5 and 3/19, respectively, but more arc 
lengths have to be adjusted. 

o 
Example 2 
Consider a weighted graph G = (V, E, c), where V = {1, 2, 3, 4, 5}, E 
{{1 , 2} , {1,3},{1,4},{2, 4},{3,4},{3,5},{4,5}} and c = (4,1 , 4,5,3,7,8)r. 
A subset of edges T = {{1, 2}, {1, 3}, {3, 4}, {3, 5}} forms the minimum 
spanning tree in this graph; its weight is equal to 15. The graph G and 
the minimum spanning tree T are shown in Figure 4. 

Our goal will be to find such perturbations ó E IR7 of the weight vector c, 
that some minimum spanning tree in the perturbed graph is a Hamiltonian 
path in this graph. We will solve an appropriate adjustment problem. 
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Figure 4: Graph G and its minimum spanning tree indicated with bold lines. 

It is well known, that the minimum spanning tree problem in graph G can 
be formulated in various ways as a continuous linear programming problem. 
In the following we will use the formulation based on the minimum cost 
multicommodity flow problem (see e.g. Magnanti and Wolsey, 1995). 

Let G = (V, E, c) be a connected weighted graph, where V = { 1, ... , n}, 
E <;; {{i,j}: i,j EV}, c E JR.IE/. We use the following notation: 

K=V\{1}, 
D={(i,j)EVxV: {i,j}EE}. 

Define for (i, j) E D nonnegative variables Xij E IR. and introduce for 
k E K and ( i, j) E D auxiliary nonnegative variables fi; E IR.. The following 
continuous linear programming problem (12) may be used to calculate the 
minimum weight spanning tree T* in graph G = (V, E, c). Namely, given an 
optima! solution x•, f* of problem (12), the optima! tree T* is composed of 
the edges { i, j} E E for which x;1 + xj; > O. 

min L Cij • (x;1 + x1i) 
{i,j}EE 

L x;1 n-1 
(i,j)ED 

I: ff1 - I: ftj -1, 
(j,l)ED (l,j)ED 

I: fA- I: f!j 1, 
(j,k)ED (k,j)ED 

I: ff;- I: f;; o, 
(j,i)ED (i,j)ED 

X;j - fi; 2'. o, 
Xij 2'. o, 
fi; 2'. O, 

11 

kE K 

kE K 

i, k E K, i -f k 

kEK, (i,j)ED 
(i,j)ED 
k E K, (i,j) E D. 

(12) 



Let ł E IR, vt E IR for k E K, v: E IR for k E K, vf E IR for i, k E 
K, i =I k, and wt 2: O for k E K , (i,j) E D, denote dual variables for 
consecutive groups of constraints in problem (12). Then the dual problem of 
linear program (12) can be stated as follows: 

max 'I)v! - v~) + (n - 1) • ł 
kEI( 

k k k vi - V; - wij ::::: o, kEK, (i,j)ED 

I>t+ 1 ::::: Cij, {i,j} EE 
kEK 

I>;;+ł ::::: Cij, {i,j}EE (13) 
kEK 

wt 2: o, kEK,(i,j)ED 
Vk 

' 
E IR, i EV, kEK 

ł E IR. 

Consider now this restriction of the problem (12): the obtained spanning 
tree should also be a Hamiltonian path. This may be achieved by requiring 
that Xij E {O, 1} for (i, j) E D, and by ad ding the following set of constraints: 

2)xij + Xji) ::::: 2, 
jEV 

i EV (14) 

Now we may state the adjustment problem (11). Observe, that we will 
need to linearize only nonlinear terms for variables X;j, ( i, j) E D. 

Let 5+(ż,j) and 5-(i,j) denote, respectively, an increase and a decrease 
of the weight C;j of edge {i,j} EE. Solving the adjustment problem with 11 

norm and L':, = JR.7 we obtain the following optima! perturbations of weights 
of edges in graph G: 

5+(3,5) = 1 and 5+(ż,j) = O for {i,j} EE\ {3,5}, 
5-(i,j) = O for {i,j} EE. 

Thus, the adjustment cost is equal to 1 and only a weight of the single edge 
has to be perturbed. Figure 5 shows the graph G with modified weights of 
edges and the minimum spanning tree in this graph, which is now a Hamil­
tonian path. 

If we solve the adjustment problem with 100 ,c norm, then we obtain a 
minimum adjustment cost equal to 1/15. Thus, modifying in an appropriate 
way weights of edges in the original graph G by no more than approximately 
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Figure 5: Graph G with modified weights of edges and its minimum spanning 
tree indicated with bold lines. 

6.7% we can guarantee that the perturbed graph has the minimum spanning 
tree which is also a Hamiltonian path. 

• 

6 Conclusions 

The adjustment problem is a straightforward generalization of the inverse 
problem. Nevertheless it leads to rather different optimization problems. For 
example in case of a linear optimization problem, the inverse problem (for a 
given feasible solution x) can be stated as a convex optimization problem due 
to the convexity of the stability region of any feasible solution. In contrast to 
this , the adjustment problem (for a given subset of feasible solutions F, such 
that !FI > 1) confronts us with a nonconvex optimization problem. which 
may lead to substantial difficulties. 

The paper has presented a solution method for the adjustment prob­
lem when applied to a continuous linear program and its restriction given by 
additional linear and integrality constraints, such that all the adjustable vari­
ables are binary. In this case the adjustment problem can be formulated as a 
mixed-integer linear programming problem. Such a solution method for the 
adjustment problem has appeared quite satisfactory for small examples, but 
the computational efficiency of this MIP reformulation for larger instances 
requires further investigations. 
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