
Raport Badawczy

Research Report
RB/1/2006

Developing a model agent-base
E-commerce system

C. Badica, M. Ganzha,
M. Paprzycki

Instytut Badań Systemowych
Polska Akademia Nauk

Systems Research Institute
Polish Academy of Sciences

POLSKA AKADEMIA NAUK

Instytut Badań Systemowych

ul. Newelska 6

O 1-44 7 Warszawa

tel.: (+48) (22) 8373578

fax: (+48) (22) 8372772

Kierownik Pracowni zgłaszający pracę :

dr Marcin Paprzycki

Warszawa 2006

Developing a Model Agent-based E-commerce System

Costin Biidica1, Maria Ganzha2•4 , and Marcin Paprzycki3•4

1 University ofCraiova, Software Engineering Department, Bvd.Dccebal 107, Craiova, RO-200440, Romania,
badica_cost in@software. ucv. ro

' Elbląg University of Humanities and Economy, ul. Lotnicza 2, 82-300 Elbląg, Poland,
3 Computer Science Institute, SWPS, ul. Chodakowska 19/31, 03-815 Warsaw, Poland,

• System Research Institute Polish Academy of Science, ul. Newelska 6, 01-447 Warsaw, Poland, {Haria .Ganzha,
Harc in. Paprzycki}@ibspan. waw. pl

Abstract

It is easy to realize thai goals set behind a large class of agent systems match these put f01ward

for systems defined as e-service intelligence. In this chapter we describe a model agent-based

e-commerce system thai utilizes rule-based approach for plice negotiations. Furthermore, the

proposed system attempts at mediating the apparent contradiction between agent mobility and

intelligence.

1 Introduction and Overview

Recently an increasing interest in combining Internet-based electronic services (e-services) with

"intelligent" functions can be observed (these new e-services are often called e-service intelli

gence). While this particular trend is relatively new, creation of intelligent distributed systems

in form of software agents can be traced back a least to the seminal paper of P. Maes [29].

While her main concem was development of an infrastructure dealing with information over

load, further research concemed applications of software agents in a number of areas including

e-govemment, e-learning, e-shopping, e-marketing, e-banking, e-logistics etc. There, software

agents are to facilitate much higher quality information, personalized recommendation, deci

sion support, quasi-direct user participation in organizational planning, knowledge discovery

etc. When developed and implemented, agent systems are to be adaptive, personalized, proac

tive and accessible from a broad variety of devices [40]. It is therefore easy to see how software

agents, and agent systems in generał, can be viewed as an incamation of e-service intelligence.

While there exist a large number of attempts at developing agent-based systems, they are

mostly small-scale demonstrator systems-later described in academic publications. Separately,

some applications utilize the agent metaphor, but not existing agent tools and environments. Fi

nally it is al most impossible to find out if actual agent systems exist in the industry; e.g. the true

role of the Concordia agent system within the Mitsubishi Corp, or the extent to which software

agents are used within Daimler-Chrysler. While a number of possible reasons for this situation

have been suggested (for instance see [3 I, 32]), one of them has been recently dispelled. lt was

shown that modern agent environments (e.g. JADE [21]), even when running on an antiquated

hardware, can easily scale to 2000 agents and 300,000 messages (14, 15]. Thus it was experi

mentally established !hat it is possible to build, and experiment with, large-scale agent systems.

Therefore, it is extremely important to follow the positive program put forward by N wana and

Ndumu [31 J and focus on developing and implementing such systems.

One of the well-known applications where software agents are to play an important role is

e-commerce. Modern agent environments (such as JADE) can support implementation of quasi

realistic model e-commerce scenarios. Moreover, advances in auction theory have produced a

generał methodology for describing price negotiations. Combination of these factors gave new

impetus to research on automating e-commerce. In this context, autonomous, and sometimes

mobile, software agents are cited as a potentially fruitful way of approaching e-commerce au

tomation [25].

Since autonomy is a broad concept that can be defined in many ways, we would like to

narrow it down and focus on adaptability viewed as ability to update the negotiation "mecha

nisrn" to engage in unknown in advance forrns ofprice negotiations. Obviously, another aspect

of autonomy is decision autonomy that can be understood as capability to reason over past ex

periences and domain knowledge in order to maximize "utility" (making it very closely related

to "intelligence").

Finally, the notion of agent mobility refers to its capacity to migrate from one computer to

another. While the goal of such a migration is typically related to acting on behalf of some soft

ware or human entity, it does not depend on the intelligence that agents are possibly equipped

with. However, to be able to facilitate e-service intelligence, we have to be able to combine the

two-as mobile agents have to be able to dynamically adapt to situations found within visited

sites. Therefore, agent mobility requires transfer of code, data, process and authority between

machines. This makes mobile intelligent agents very heavy [40] and later in this chapter we

discuss a partia! solution of this problem.

In our work we have been developing a skeleton system in which autonomous agents interact

in a way that models realistic scenarios arising in an e-marketplace (for a summary of our early

results see [19) and references collected there). Here, we have two long-term goals in mind. The

first one is to broaden understanding of technical aspects of developing agent systems, such as

agent functionali ties, their interactions and communication, agent mobility etc. We are also con

cerned with the fact that without agents systems being actually implemented using tools !hat are

apparently designed to do this, agent research will never be able to reach beyond academia. Suc

cess in achieving the first goal will allow utilization of our systems as a tool-box for modeling

processes occurring in an e-marketplace. For instance, it will be possible to apply it to study: ef

fects ofpricing strategies, ofnegotiation protocols and strategies, flow of commodities etc. Due

to agent flexibility it will be relatively easy to experiment with various e-commerce scenarios.

In this chapter we proceed as follows. In the next section we provide background informa

tion and follow with the description of our system formalized through a complete set of UML

diagrams. We then discuss in some detail (including implementation specifics) how rule based

engine can be used to facilitate autonomous price negotiations.

2 Background

2.1 Agent Systems in E-Commerce

While there ex.is! many definitions of agents, for the purpose of this chapter we will concep

tualize them as: encapsulated computer programs, situated in an environment, and capable of

flexible, autonomous actions focused on meeting their design objectives [40]. For such agents ,

e-commerce is considered to be one of the paradigmatic application areas [25].

Proliferation of e-commerce is strongly related to the explosive growth of the Internet. For

example, the lota! number of Internet hosts with domain names was estimated at 150 millions in

2003, while in the same year, Web content was estimated at 8000 millions of Web pages ([26)).

At the same time, e-commerce revenue projections were estimated to reach in 2006 up to $0.3

trillions for 82C e-commerce and up to $5.4 trillions for 828 e-commerce ([26]).

E-commerce utilizes (to various degrees) digital technologies to mediate commercial trans

actions. As a part of our research we have modified slightly Laudons approach ([26]) and con

ceptualized a commercial transaction as consisting of four phases:

- pre-contractua/ phase including activities like need identification, product brokering, mer

chant brokering, and matchmaking;

- negotiation where participants negotiate according to the rules of the market mechanism and

using their private negotiation strategies;

- contract execution including activities Iike order submission, logistics, and payment;

- post-contractual phase that includes activities like collecting managerial infomrntion and

product or service evaluation.

White there exist many scenarios of applying agents in e-commerce, automated trading is one

of the more promising ones. In particular, we are interested in using agents to support all four,

outlined above, phases of a commercial transaction, by addressing questions like: how is an

e-shop to negotiate price with e-buyers, what happens before negotiations start and after they

are finished, which e-store is the purchase actually made from etc, thus going beyond the phase

ofnegotiation itself.

Unfortunately, our research indicates that most existing automated trading systems are not

yet ready to become the foundation of the next generation of e-commerce. For example, the Kas

bah Trading System ([12]) supports buying and selling but does not include auctions; SILK.ROAD

((30]), FENAs ([23)) and Inter-Market ([24]) exist as "frameworks" but lack an actual imple

mentation (which is typical for most agent systems in generał (311).

2.2 Automated and Agent-based Negotiations

In the context ofthis chapter we understand negotiations as a process by which agents come to a

mutually acceptable agreement on a price ([28]). When designing systems for automated nego

tiations, we distinguish between negotiation mechanisms (protocols) and negotiation strategies.

Protocol defines "rules of encounter" between negotiation participants by specifying require

ments thai enable their interaction. The strategy defines the behavior of participants aiming at

achieving a desired outcome. This behavior must be consistent with the negotiation protocol,

and usually is specified to maximize "gains" of each individual participant.

Auctions are one of the most popular and well-understood forms of automated negotia

tions ([41]). An increased interes I has been manifested recently in attempts to parameterize the

auclion design space with the goal of facilitating more flexible automated negotiations in multi

agent systems ([41, 28]). One of the first attempts for standardizing negotiation protocols was

introduced by the Foundation for Intelligent Physical Agents-FIPA ((17]). FIPA defined a set

of standard specificalions of agent negotiation protocols including English and Dutch auctions.

Authors of (9, I OJ analyzed the existing approaches to formalizing negotiations (including

FIPA protocols) and argued that they do not provide enough structure for the development

of truły portable systems. Consequently, they outlined a complete framework comprising: (1)

negotiation infrastructure, (2) a generic negotiation protocol and (3) taxonomy of declarative

rui es. The negotiation inji-astructure defines rol es of negotiation participants and of a host. Par

ticipants negotiate by exchanging proposals and, depending on the negotiations type, the host

can also become a participant. The generic negotiation protoco/ defines the three phases of

a negotiation: admission, exchange of proposals and formation of an agreement, in terms of

how, w hen and what types of messages should be exchanged between the host and participants.

Negotiation ru/es are used for enforcing the negotiation mechanism. Rules are organized into

a taxonomy: rules for admission of participants to negotiations, rules for checking the valid

ity of negotiation proposals, rui es for protocol enforcement, rules for updating the negotiation

status and informing participants, rules for agreement formation and rules for controlling the

negotiation termination. Finally, they introduce a negotiation temp/ale that contains parameters

that distinguish one form of negotiations from another, as well as specific values characteriz

ing given negotiation. In this context it should be noted that rule-based approaches have been

indicated as a very promising technique for introducing "intelligence" inio negotiating agents

((9, 11, 16, 27, 37, 41, 42, 20]). Fu1ihermore, proposals have been put forward to use rules for

describing both negotiation mechanisms ((9, 38]) and strategies ((16, 37]).

With so much work already done in the area of agents and agent systems emerging in the

context of autonomous price negotiations, let us underline what makes our approach unique.

- In most, if not all, papers only a "single price negotiation" is considered. Specifically, ne

gotiations of a single item or a single collection of items is contemplated. Once such a

negotiation is over, a group of agents (agent system) that participated in it completes its

work. We are interested in a ditforent (and a considerably more realistic) scenario when a

number of products of a given type are placed for sale one after another. While this situation

closely resembles what happens in any Internet store, it is practically omitted from research

considerations. In this chapter, for clarity of enclosed UML diagrams, we depict situation

where an almost unlimited number of items is to be sold. However, this assumption has only

aesthetical reasons.

- Fact that multiple items are to be sold has also an important consequence for the way that

price negotiations are organized. In the literature it is very often assumed that agents join

an ongoing negotiation process as soon as they are ready (see for instance [9]), while agent

actions that take place after price negotiation is completed are disregarded. Since we sell

multiple items one after another, we have decided to treat price negotiations as a "discrete

process." Here, except of a specific case of fixed price mechanism, buyer agents are "col

lected" and released in a group to participate in a given price negotiation. While the negoti

ation takes place, buyer agents communicate only with the seller agent-e.g. the host (they

can be envisioned as being placed in a closed negotiation room). At the same time the next

group ofbuyer agents is collected (as they arrive) and will participate in the next negotiation.

- Fact that multiple subsequent auctions (involving the same product) take place allows us to

go beyond one more popular "limitation" ofknown to us agent systems. While sometimes

they involve rather complicated price negotiations, e.g. mixed auctions (see for instance [35,

36]), sin ce only a single item or a single collection of items are sold, it is only that given price

negotiation mechanism that is taken into account. In our case, since multiple negotiations

are used to sell items of the same product we conceptualize situation in which price nego

tiation mechanism changes. For instance, first 25 iterns may be sold using English Auction,

while the next 37 using fixed price with a deep discount.

- Furthermore, we consider the complete e-commerce system, which means that after nego

tiation is completed we conceptualize subsequent actions that may, or may not result in an

actual purchase. In the case when purchase does not take place, we specify what should

happen to all involved agents.

- While agent mobility is often considered to be important in the context of e-commerce sys

lems, above described conflict between agent mobility and intelligence is rarely recognized.

In our work we address this question by designing modular agents and clearly delineating

which modules have to be sent, when, by whom and where.

- Finally, the complete system is being implemented using JADE; an actual agent environ

ment.

3 Code Mobility in an Agent-Based E-Commerce System

Code mobility has been recognized as one of key enablers of large scale distributed applica

tions, while its specific technologies, design pattems and applications have been systematically

analyzed ([I 8]). Furthem1ore, recent research results suggest that blending mobility and intel

ligence can have imporlant benefils, especially in advanced e-commerce; by providing applica

tion components with automated decision-making capabilities and ubiquity as required in net

worked environments ((25]). At the same time it has been argued thai, as a generał feature, agent

mobility is unnecessary. Therefore, we asked a basie question: why, in the case of e-commerce,

should one use mobile agents instead of messaging? To answer it, Jet us consider someone who,

behind a slow Internet cormection (which is not an uncommon situation), tries to participate in

an eBay auction. In this case it is almost impossible to assure thai this persons bid (1) reaches

eBay server in time, (2) is sufficiently large to outbid opponents thai have been bidding simulta

neously (information about auction progress as well as user responses may not be able to reach

their destinations sufficiently fast). As a result, network-caused delays may prevent purchase of

the desired product. Obviously, this would not be the case if an autonomous agent representing

that user was co-Iocated with the negotiation host. In this context, one can obviously ask about

the price of moving buyer agents across the network. Naturally, it may happen that an agent may

not be able to paiiicipate in an auction because it does not reach the host in time. In response lei

us observe that: (I) if it is a particular single auction that the user is interested in, then agent not

reaching the host has exactly the same effect as not being able to win because ofbid(s) being

late and/or too small; (2) therefore, it is only an agent that reaches the host in time that gives

its user any chance to effectively participate in price negotiations; (3) furthermore, if an agent

reaches its destination, it will be able to effectively participate in all subsequent negotiations

within !hat host (and we assume across this paper that multiple negotiations involving items of

the same product take place), while delays caused by network traffic may permanently prevent

user from etfective participation in any of them. For an extended discussion of the need for

agent mobility in e-commerce see [7].

Let us now sketch proposed resolution of an above mentioned obvious contradiction be

tween agent mobility and adaptivity. In our work, we utilize the negotiation framework in

troduced in (9, IO], where the negotiation protocol is a generic set of rules that describes all

negotiations, while the negotiation temp/ate is a set of parameters that establishes the form of

negotiation and its details. Finally, there is the negotiation strategy defining outcome optimizing

actions of individual negotiation participants. It should be obvious that the negotiation protocol

is generic and public- all agents participating in all negotiations have to use it. Therefore buyer

agent can receive it upon its arrival at the host; similarly to the negotiation template which has

to be "loca!" as it describes currently used form of negotiations (and which can change over

time). It is only the strategy that is "private" and has to be obtained from the client agent (we

name client agent agents representing User-Clients) . At the same time, it has to be assumed that

depending on the form of negotiation, different strategies will be used, and thus strategy is not

known in advance. Therefore, since the protocol and the template can be obtained within the

e-store, carrying them across the network is unnecessary. Unfortunately, it is not possible to es

tablish the negotiation fom1 in advance and send buyers with the negotiation strategy pre-loaded.

Recall that in our system we assume that e-stores respond to the flow of commodities by actively

changing fonns of price negotiations. This being the case, by the time the buyer agent reaches its

destination its strategy module may be useless, as the form of negotiations has already changed.

We thus propose two network-traffic minimizing approaches to agent mobility. In the first case

(named thereafter agent mobility) only an agent skeleton is sent across the network and upon

arrival it obtains the negotiation protocol and the template and then requests the strategy mod

ule from the client agent. In the second case (named thereafter code mobility) buyer agents are

created by the host (on the bas is of a request from the client cgent) and assembled including (I)

protocol, (2) actual template, and (3) infomrntion who they represent. Then, again, they request

an appropriate strategy module from their designated client agent. Observe, that since only the

.., .

strategy module is "secret," while the remaining parts of the buyer are public and open to any

scrutiny at any time, this latter solution should not directly result in an increased secuńty ńsk.

Purchaslng slde

~
User_Cllent

Admlttlng to
negotlatlons

~~
Gatekeo r A ent

Fig. 1. Use case diagram

4 Description of the System

4.1 Conceptual Architectu1·e

Creatlng List of
Particlpants

~
Usar_Selłer

In our description of the system we utilize its UML-based formalization. Due to lack of space we

have decided to present a set of UML diagrams of the system, rather than lengthy descriptions of

its features and underlying assumptions. Interested readers should consult ([6, 7, 19]) for more

details. In Figure I we present the use case diagram of our system thai depicts all of its agents

and their interactions. We can distinguish three major parts of the system: (I) the information

center where white-page and yellow-page type data is stored-this is our current solution of the

matchmaking problem [38), (2) the purchasing side where agents and activities representing

User-Client reside, and (3) the seller side where the same is depicted for the User-Seller. Let

us now describe in detail each of the agents (except the CIC agent thai plays only an auxiliary

role; see [I 9]) found in Figure I.

4.2 UML Models of Agents in the System

one mon1 ad dr W~ [nol lillll ao<irus.:.] i tll.ld noXI addrllSS

Asl<logloi;reilLII

fneedsiralegy)

fig. 2. Clienl Agent Stalecharl diagram

Client agent On the purchasing side, we have two agents. The Client agent, represented in

Figures 2 and 3 exists in a complex state. On_ the one hand it listens for orders from the User

Client and, to ful fi Il them: (I) queries the CIC agent which has access to inforrnation which

stores sell the requested product and ifthey create Buyer agents locally (or ifsuch agent has to

be sent to them), (2) then it dispatches or requests creation of Buyer agents to/ by each such

e-store (identified by its Ga1ekeeper agent). At the same time, it directly manages the process of

making purchases on behalf of the User-Client (Figure 3), on the basis of Buyer agent messages

in forming about results of price negotiations (Jet us note that in the case of multiple orders sepa

rate groups of Buyer agents-corresponding to separate products-will be managed in the same

fashion). For a certain amount of time the C/ient agent collects reports sent by Buyer agents.

When the wait-time is over (or when all Buyer agents have reported back), Client agent enters

a co mp lex state. On the one hand it continues listening for messages from Buyer agents (obvi

ously, if all have reported already then none will be coming). On the other hand it goes through

a multi-criteria decision making procedure (the "MCDM" box) that has one of three possible

outcomes: (i) to attempt at completing a selected purchase, (ii) to await better opportunity, or

(iii) to declare the purchase impossible and notify the User-Client accordingly. Note that, in a

realistic system, the MCDM analysis should be truły multi-criteria and include factors such as:

price, history of dealing with a given e-shop, delivery conditions etc.

Oi!lńlg

dlllk1191BA,{p)

~ /NO!lly(U3er)

Fig. 3. Client Agent Statechart diagram

When attempt at completing a purchase is successful, the Client agent sends messages to

all Buyer agents to cease to exist. The situation is slightly more complicated when the attempt

was w1s uccessful. Note that it is quite possible thai the first MCDM analysis was undertaken

before all Buyer agents have complete their "first roWJd" of price negotiations. They could have

contacted the Client while it was "thinking" which of the existing offers to choose. Therefore,

when the Client agent analyses available reservations, they include not only reservations thai

have been already considered, but also possibly new ones thai have arrived in the meantime. As

a result of the MCDM procedure another attempt at making a purchase can be made. If none

of available offers is acceptable, but purchase was not declared impossible, the Client agent un

dertakes the following actions: (I) infonns all Buyer agents that have already reported to cancel

current reservations and return to price negotiations (or just to return to price negotiations ifthey

previously failed) and (2) resets timer establishing how long it will wait before the next round

of MCDM analysis. Observe thai in this way, in the proposed system, it is possible thai some

agents make their second attempt at negotiating prices, while some agents have just finished

the first. As this process continues in an asynchronous fashion Buyer agents will make different

number of attempts at negotiating price that is acceptable to the Client agent. This process will

tenninate when all orders submitted by the customer have been either honored or abandoned.

For the time being we assume thai the "Sale finalization" process seen in Figure 3 is always

successful. In the future we plan to remove this somewhat artificial restriction.

Let us note that it is possible that since it is the Client agent that makes the finał determi

nation which otfer to accept, and that it has to communicate with one of its remotely Jocated

Buyer agents to actually complete a purchase, the request to attempt at making that purchase

could be network-delayed resulting in an expired reservation and inability to complete the task.

Unfortunately, this problem does not seem to have a simple solution, since price comparison

requires communication between agents participating in price negotiations. In our system we

have selected a central point-Client agent-that will collect all otfers, instead of all-to-all

communication. Since not all sites will conduct their price negotiations at the same time, and

with the same urgency, it is impossible to assure that the best otfer will stili be available, when

the "remaining" agents complete their negotiations. Therefore, our solution remains optima!

only in te1ms of reducing total network congestion by sending only minimal-size agents and

minimizing the total number of messa ges sen! over the network.

Finally, let us note that a complete information about all events taking place during servic

ing User-Client request (such as: refusal to admit to negotiations, results of price negotiations,

length of reservation, etc.) is stored for further information extraction. For instance, as a re

suit of data analysis, store that is constantly selling good(s) at very high prices may be simply

avoided.

Buyer agent Buyer agent (see Figure 4) is the only agent in the system that involves mobility.

It is either dispatched by the Client agent or created by the Gatekeeper agent on the request of

the Client. If it is dispatched, then upon arrival at the store it communicates with the Gatekeeper

(see Figure 6,7) to obtain entry to negotiations (in case when entry is not granted it informs its

Client agent and is killed). In the case of Client requesting creation of the Buyer, the Gatkeeper

may deny such request. In both cases, infom1ation about refusal to cooperate is stored by the

Client agent (e.g. e-stores thai do not want to cooperate may be removed from the list obtained

from the CIC; see box "Adjusting list" in Figure 2). N ext, the preregistered Buyer obtains from

the Gatekeeper the negotiation protocol and the current negotiation template and requests (and

obtains) an appropriate strategy module from the Client agent (see Figure 2). When all these

modules are installed Buyer infom1s the Gatekeeper that it is ready to negotiate (it is then regis

tered as such). Price negotiations start when the Buyer receives a start message from the Seller

' '
..
"

Fig. 4. Buyer Agent Statecharl diagram

agent (see Figure 9; note that the "Negotiations box" appearing there is "the same" for both

the Seller and the Buyer agents) that later participate in price negotiations; note also special

treatment of fixed-price negotiations by both the Buyer and the Gatekeeper agents. Upon com

pletion of negotiations, Buyer infom1s the Client about their result and, if necessary (when an

attempt at completing purchase is made), acts as an intermediary between the Client and the

Shop agents. In the case when purchase was not attempted or was not successful, Buyer agent

awaits the decision of the Client and if requested proceeds back to participate in price negotia

tions (before doing so it requests pennission to re-enter that may be granted or denied; updates

its negotiation temp late and, possibly, the strategy module-if the temp late has changed). This

process continues until the Buyer agent self-destructs on the request of the Client agent.

Shop agent On the "selling side" of the system, the Shop agent acts as the representative of the

User-Seller. We assume that after it is created, it persistently exists in the system until the User

Seller decides that it is no longer needed. The UML diagram representing the Shop agent is pre

sented in Figure 5. Upon its instantiation, the Shop agent creates and initializes its co-workers:

a Gatekeeper agent, a Warehouse agent and Seller agents (one for each product sold). Initializa

tion of the Warehouse agent involves passing information about goods thai are initially available

Fig. 5. Shop Agent Statechart diagram

for sale (see Figure 8), while initialization of the Gatekeeper agent involves providing it with

templates that are to be used initially in price negotiations of each product sold. Furtherrnore, the

Gatekeeper agent and the list ofproducts available in the store are registered with the CIC agent.

After the initialization stage, the Shop agent enters a complex state where it supervises ne

gotiations and product flow. First, it waits for finish of any price negotiation. If the negotiation

was successful, a given Seller infom1s the Shop agent, which is asking the Warehouse agent to

reserve a given quantity of a particular product for a specific amount of time. (Currently we as

sume that a single item of a given product is sold each time, but this, somewhat limiting, assump

tion will be removed in the future .) Events can then proceed according to following scenarios.

I. If the wim1ing Buyer confirms purchase then the Shop asks the Warehouse agent to check

the reservation.

Ifthe reservation did not expire then the Shop informs the Buyer agent about acceptance

oftransaction. This event starts the fina! stage, named "Sale finalization" which includes

such actions as payment and delivery.

In the opposite case, the Shop agent sends rejection to the Buyer agent

2. If the Cliem agent rejects purchase (and infom1s the Shop agent about it through the Buyer

agent) then the Shop agent asks the Warehouse agent to cancel the reservation.

,. -

•

Completing one of these scenarios "closes" this branch of Shop agent execution. Separately,

the Shop agent keeps track of all negotiations and transactions and periodically performs multi

criteria ana lysis (the MCDM module) that may result in changes in the negotiation temp late for

one or more products (e.g. minimal price, type of price negotiation mechanism, etc.). For in

stance, when only a few items are left they may be deeply-discounted, or put on sale through an

auction. In this case a new temp late is generated and sent to the Gatekeeper agent that switches

it in an appropriate moment (see below, Figures 6, 7).

Let us also note that, similarly to the C/ient agent, the Shop agent stores complete informa

tion about all events taking place in the e-store (such as: results ofprice negotiation, information

abo ut agents that actually purchased reserved product, information of agents that canceled reser

vations, etc.). This information, when analyzed, may result for instance in a given Client agent

being barred from entering negotiations.

Noli5calion

do I 1eod(11I reg. Buyera. no mo,11 p.-oductp)

0-"""""'i>O,-,.-,-~-.-.,,-ćlłl :;;~:~~~::;:::i;t
Hij I notify (pre,egi11,alion Buy«s)

magCA,nagBA do/ puah{r&gialralion lill,lemplata)

Fig. 6. Gatekeeper Agent Statechart diagram

Gatekeeper agent Shop agents cooperate directly with their Gatekeeper agents that (I) either

interact with incorning Buyer agents, and adrnit them to the negotiations (or reject their atternpt

at entering the host), or interact with Client agents and, on their request, create Buyer agents

(or reject such a request), and provide adrnitted / created Buyer agents with the protocol and

the current negotiation ternplate (2) in appropriate rnornents release Buyer agents to appropriate

Sellers and (3) manage updates ofternplate rnodules. The statechart diagram of the Gatekeeper

agent is presented in Figure 6 (the top level description of Gatekeeper functionality) and con

tinued in Figure 7 (depicting negotiation related activities). Each created or allowed to enter

Buyer agent is pul on a list of preregistered agents and provided with protocol and current tem

p late. Buyer agents remain on thai list until they receive their strategy module and complete

self-assembling. Assembled Buyer agents are put on a list of registered agents that await start of

price negotiations. When a minimum number of Buyer agents have registered (minimum for a

given fom1 ofnegotiations) and the wait-time has passed, the Gatekeeper passes their identifiers

and the current negotiation template to the Seller agent. Then it cleans the current list ofregis

tered Buyer agents and the admission/monitoring process is restarted (assuming that the Seller

agent is still alive). As stated above, our system allows Buyer agents that lost negotiations or that

Fig. 7. Staleclmrt diagram for Preparing Negotiations State

decided not to make a purchase to stay at the host and try to re-enter negotiations. They have

to ask pennission to be re-admined and if allowed back they receive an updated temp late ("old

Buyer" path). When a new template module is delivered by the Shop agent, a list of currently

registered Buyer agents is put inio a buffer ("Buffer registration list" box). These agents have to

be serviced first, using the current template that they have been provided with upon entering the

e-store. At the same time the new incoming agents will then be given the new template. Finally,

in a special case, when a given product has been sold-off and the Shop agent terminates the

Seller responsible for selling it, the Gatekeeper informs awaiting Buyer agents about this fact.

Warehouse agent Shop agent interacts also directly with the Warehouse agent (presented in

Figure 8). In the early stages of its functioning the Warehouse agent is supplied (by the Shop

agent) with infomrntion about products and their quantities (to be saved in a database). Then

fig. 8. Warehouse Agent Statechart cliagram

it enters a complex state where it (a) awaits notifications from the Shop agent and (b) acts

on them. The Shop agent notifies the Warehouse agent about: (i) registration of new products

for sale, (ii) product reservations, (iii) purchase confirmations, and (iv) purchase terminations.

Each of these notifications is followed by an appropriate response: (i) product registration, (ii)

product reservation, (iii) checking status of a reservation, (iv) cancellation of a reservation.

Finally, if quanti ty of some product becomes O, the Warehouse agent informs about it the Shop

agent, which (in the current state of our system) terminates the corresponding Seller agent, and

infom1s about it both the CIC and the Gatekeeper agents.

Seller agent Finally, the last agent working on the "selling side" of the system is the Se/ler

agent. It is characterized by a rather simple statechart diagram (see Figure 9). The simplicity

comes fo1111 the fact that, in the „Negotiations box," the complete negotiation framework pro

posed in (9, I OJ in enclosed. Observe that not all negotiations have to end in finding a winner

and our system is able to handle such an event. At the same time, all data about negotiations is

collected and analyzed by the Shop agent and, for instance, a sequence of failures could result

in a change of the negotiation templa te.

ł~ig. 9. Seller Agent Statechart Wagram

System activity diagram Lei us now combine activities of all agents in the system into one

diagram (see Figure IO, 11). This diagram represents flow of actions presented from the per

spective of the two main agents in the system: the Shop and the Client. Obviously, to keep that

diagram readable, we bad to omit large number of details that have been represented within

statechart diagrams of individual agents that should be "co-viewed" with the activity diagram.

4.3 Rule-Based Mechanism Representation

Lei us now describe how we have implemented in our system rule-based mechanisms. We start

by summarizing the framework for automated negotiation introduced in [9, IO] which is based

on an abstract negotiation process that comprises: a negotiation infrastructure, a generic negoti

ation protocol and a taxonomy of declarative rules. Here, the negotiation infrastructure defines

roles involved in the negotiation process: participants (in our system Buyer agents) and a host

(Seller agent). Pm1icipants negotiate by exchanging proposals within a "negotiation locale" that

is managed by the negotiation host. Depending on the type of negotiations, the host can also play

the role ofa pm1icipant (for example in an iterative bargaining scenario). The generic negotia

tion protocol defines, in terms of how and when messages should be exchanged between the host

and negotiation participants, the three main phases ofnegotiations: (I) admission, (2) exchange

of proposals and (3) formation of an agreement. Negotiation rui es are needed for enforcing a

specific negotiation mechanism. Rules are organized into a taxonomy that contains the follow

ing categories: (a) rules for admission ofparticipants to negotiations, (b) rules for checking the

Setler

Seller Creation

Negotiation process

Gatekeeper

Selier Registralion <c;signa! receipt>>

Asking to create Bu)'ilr

Fig. I O. Activity Diagram-before negotiation process

Buyer

Moving to the host

<<signal receipt>>

Refuse interaction

Ctienl

Walling for a User-Client order

CIC Reques\ Contact Data

Warehouse

Prcxluct
reservalion

L ___________ _

Cancelling reservatlon

SA

<<signal sending>>

<<slgnal sending>>

For BA: Reservation explred

<<slgnal sending>>
Deal

BA-wlnner

<<signal sendlng>>

SA:Conflrm

<<slgnal sendlng>>

Transfer Info to CA

l<I I < <~~g~~~~~~~>

«slgnal receipt»
Cootinue

Clienl

) p(~=~~~!~!:

J J)I :::':;',.ng Info

<<slgnal sendlng>>

not to buy

«slgnal sendlng>>

Continua

~ ---'=--=--=--=--=--=-"j_c..--::_-::.-::.-::.-::.-::.-::.-::.-::.-::...--------l-----1 -------l-____ ___ _j_ ___ _ __J

Fig. 11. Activity Diagram-aft.er negotiation process

validity ofnegotiation proposals, (c) rules for protocol enforcement, (d) rules for updating the

negotiation status and in forming participants, (e) rules for agreement formation and (t) rules for

controlling the negotiation tem1ination. Based on the categories of rui es identified as necessruy

to facilitate negotiations, in (9, I O] it is suggested to partition the negotiation host into a number

of corresponding components: Gatekeeper, Proposa/ Validator, Protoco/ Enforcer, Informa

tion Updater, Negotiation Terminator and Agreement Maker (that are called sub-agents). Each

component is responsible for enforcing a specific category ofrules. Host components internet

with each-other via a blackboard and with negotiation participants by direct messaging. Note

that these components are conceptualized as a part of the host (sub-agents), not as stand-alone

agents. This fact will have consequences as to how they have been implemented.

Before proceeding let us recall thai we have modified the proposed framework and upgraded

the Gatekeeper to become a full-fledged agent [I 9]. In its new role, the Gatekeeper agent has

also an increased scope of responsibilities (described above). This also means that admission

rules are no longer part of the negotiation process itself.

Let us now show: (i) how the negotiation host agent (Seller) is structured into components

(sub-agents); (ii) how rules are executed by the negotiation host in response to various mes

sages received from negotiation participants and how rule firing control is switched between

various cornponents of the negotiation host, and (iii) how the generic negotiation protocol was

implernented using JADE agent behaviors and ACL message exchanges between host and par

ticipants.

The Negotiation Host -Se//er agent li should be obvious by now thai what was defined in (9,

I O] as a negotiation host becarne a Se//er agent in our system. We will thus use these two terms

interchangingly. Host and Buyer agents are implemented as ordinary JADE agents and thus

they extend thejade.core.Agent class. The Se//er agent encapsulates the negotiation controlling

sub-agents that are irnplemented as ordinary Java classes (see Figure 12): Proposa/ Va/idator,

Protoco/ Enforcer, Jnformation Updater, Negotiation Terminator and Agreement Maker. Each

host cornponent defines a handle() method that is activated to check the category of rules that

are to be dealt with and delegates the call to the responsible component. Each component ac

tivates the rule engine via the myAgent member object that points to the parent host agent (see

• mPrcposal\/oilidatl'.lr

Ptotucolf:nforc.er

I Oku:kłmant I

Fig. 12. The class diagram showing the struchue of the Seller agent

Figure 12). Note, again, that these components are not full-blown JADE agents, but ordinary

mem ber objects within the Se/ler agent.

In addition to sub-agents responsible for protocol enforcement, the host encapsulates two

member objects representing the negotiation locale and the rule engine (see Figure 12): Nego

tiation Locale and Blackboard "boxes". The Negotiation Locale object stores the negotiation

template (a structure that defines negotiation parameters; see [9]) and the list of participants

that were admitted to a given negotiation (obtained from the Gatekeeper agent-see above).

The Negotiation Locale is operated on directly as a Java object. The Blackboard object is a Java

wrapper for a JESS rule engine (classjess.Rete) that is initialized with negotiation rules and

JESS templates for storing JESS facts within the blackboard. Whenever the category of nego

tiation rules is checked, the rule engine is activated and rules are fired to update facts within

that "JESS blackboard." Note that there is a elear distinction between the Java object called

Blackboard that encapsulates the JESS rule engine and the actual blackboard which is a set of

JESS facts that are updated by firing rules via the JESS engine.

Controlling Rule Execution Rather then implementing each component of the negotiation

host as a separate rule engine, we are using a single JESS rule engine that is shared by all host

components. This rule engine is implemented using class Jess.Rete. The advantage is that we

now have a single rule engine per negotiation host rather than 6 engines as suggested in (9) .

Furthennore, this means that in the case of m products sold, we will utilize m instances of the

JESS rule engine, instead of 6m instances necessary in (9, IO).

Rules and facts managed by the rule engine are partitioned into JESS modules. Currently

we are using one JESS module for storing the blackboard facts and a separate JESS module

for storing rules used by each component. Facts within the blackboard are instances of JESS

templates (dejiemplate statements) and they can represent: (!) the negotiation template; (2) the

active proposal that was validated by the Proposal Validator and the Proposal Enforcer com

ponents; (3) a withdrawn proposal; (4) seller reservation price (not visible to participants); (5)

negotiation participants; (6) the negotiation agreement that may eventually be generated at the

end of a negotiation; (7) the infonnation digest that is visible to the negotiation participants; (8)

the maximum time interval for submitting a new bid before the negotiation is declared complete;

or (9) the value of the current highest bid. Note that these facts have been currently adapted to

represent English auctions (and will be appropriately modified to represent other price negotia

tion mechanisms).

Each category of rules for mechanism enforcement is stored in a separate JESS module.

This module is controlled by the corresponding component of the Seller agent. Whenever the

component handles a message it activates the rules for enforcing the negotiation mechanism.

Taking into account thai all pertinent rules pertinent are stored intemally in a single JESS rule

base (attached to a single JESS rule engine), the JESS focus statement is used to control the

firing of rules located only in the focus module. This way, the JESS facility for partitioning

the rule-base into disjoint JESS modules proves very useful to efficiently control the separate

activation of each category of rules. Note also that JADE behaviors are scheduled for execution

in a non-preemptive way and this implies that firings of rule categories are correctly serialized

and thus they do not cause any synchronization problems. This fact also supports our decision

to utilize a single rule engine for each host.

Generic Negotiation Protocol and Agent Behaviors The generic negotiation protocol spec

ifies a minimal set of constraints on sequences of messages exchanged between the host and

participants. As specified in [9], the negotiation process has three phases: (I) admission, (2) pro

posal submission and (3) agreement formation. The admission phase has been removed from

the negotiation process described in [9), but it was implemented in exactly the same way as

suggested there. For instance, in the case of agent mobility it starts when a new participant

(Buyer agent) requires admission to the negotiation, by sending an ACL PROPOSE message

to the Gatekeeper agent. The Gatekeeper grants (or not) the admission of the participant to the

negotiation and responds accordingly with either an ACL ACCEPT-PROPOSAL or an ACL

REJECT-PROPOSAL message (currently admission is granted by default). In the way that the

system is currently implemented, the PROPOSE message is sent by the participant agent imme

diately after its initialization stage, just before its setup() method returns. The task ofreceiving

the admission proposal and issuing an appropriate response is implemented as a separate be

havior of the Gatekeeper agent.

When a Buyer agent is accepted to the negotiation, it also receives (from the Gatekeeper

agent) the negotiation protocol and templa te (representing parameters of auctions: auction type,

auctioned product, minimum bid increment, termination time window, currently highest bid).

Buyer agent will enter the phase of submitting proposals after it was dispatched to the negotia

tion (here, a number of Buyer agents !hat were granted admission is "simultaneously" released

by the Seller (that sends them a start message) and they-possibly imrnediately-start subrnit

ting bids according to their strategies [19)). The generic negotiation protocol states also that

a participant will be notified by the negotiation host if its proposal was either accepted (with

an ACL ACCEPT-PROPOSAL) or rejected (with an ACL REJECT-PROPOSAL). In the case

when a proposal was accepted, the protocol requires that the remaining participants will be

notified accordingly with ACL INFORM messages.

Strategi es of participant agents must be defined in accordance with the constraints stated by

the generic nego1ia1ion protocol. Basically, the strategy defines when a negotiation participant

will submit a proposal and what are the values of the proposal parameters. In our system (where

the English auction has been implemented), for the time being, we opted for an extremely simple

solution: the participant will submil a first bid imrnediately after it was released to the negotia

tion and subsequently, whenever it gets a notification that another participant issued a proposal

that was accepted by the host. The value of the bid is equal to the sum of the currently highest

bid and an increment value that is private to the participant. Additionally, each participant has its

own valuation of the negotiated product in terms ofa reservation price. Ifthe value of the new

bid exceeds this reservation price then the proposal submission is canceled. The implementa

tion of the participanl agent defines two JADE agent behaviors for dealing with situations stated

above. Obviously, as the system matures, we plan to add more complicated price negotiation

mechanisms. For these price negotiations we will develop, implement and experiment with a

number ofnegotiation strategies that can be found in the literature (e.g. see [20]).

Finally, the agreement formation phase can be triggered at any time. When the agreement

fom1ation ru les signal that an agreement was reached, the protocol states that all participants

involved in the agreement will be notified by the host with ACL INFORM messages. The agree

ment fomiation check is implemented as a timer task (classjava. uti/. TimerTask) that is executed

in the background thread ofajava.111il.Timerobject.

5 Concluding Remarks

In this chapter we have described an agent-based model e-commerce system that is currently

being developed and implemented in our group. This system, as it is being extended, is slowly

converging toward the main ideas underlying e-service intelligence systems. After presenting

background infomrntion about software agents and automafie negotiations we have provided a

description of the system, illustrated by its complete fom1al UML-based definition. We have

also argued that the proposed solution is able to mediate the existing contradiction between

agent mobility and intelligence, by precisely delineating which components, and when, have

to be pushed across the network. Furtherrnore, we have discussed in detail how the negotiation

framework, utilizing a rule-based engine is implemented in the system.

Currently, the proposed system is systematically being implemented and extended. We have

experimented with its earli er versions and were able to see that it scales well (on a network con

sisting of22 computers). Furthem1ore, we were a ble to successfully run it in a heterogeneous en

vironment consisting of Windows and Linux workstations. The results have been reported in [4].

More recently we have implemented and successfully experimented with the above described

rule-based engine approach, applied to the English auction mechanism, in which more than 140

agents negotiated prices within a single shop. Additional information can be found in [I, 2].

As the next steps we envision, among others: (1) completion ofintegration of the original

system skeleton with the rule-based engine, (2) addition ofrules for a number of additional price

negotiation protocols (e.g. Vickery auction, Dutch auction etc.), (3) implementation ofan initial

set of non-trivia! negotiation strategies for both buyers and sellers, (4) conceptualization of

MCDM processes, starting from the ways in which data conceming results of price negotiations

has to be stored so that it can be effectively utilized in support of decision making in the system

etc. We will report on the results in subsequent publications.

Acknowledgement

Work of Maria Ganzha and Marcin Paprzycki has been partially sponsored by the Maria Curie

IRG grant (project E-CAP).

References

l. Bćidic.ii, C., Ganzha, M., Paprzycki M.: Rule-Based Automated Price Negotiation: an Overview and an Experiment. In: Pro
ceedings of the bttemational Con/erence 011 Artificial Jmelligence and Sufi Computing, JCAJSC'2006, Zakopane, Poland.
Springer LNAI, 2006 (in press)

2. Biidki'i, C., Biid.itfl, A., Ganzha, M., lordache, A., Paprzyck..i M.: lmplementing Rule-based Mechanisms for Agent-based
Price Negotiations. In: L Liebrock (ed): Pmceedings of the ACM Symposyum on Applied Computing, SAC'2006, Dijon,
France. ACM Press, New York, NY, pp. 96-100, 2006.

3. Biididi., C., Ganzhu, M., Paprzycki, M., Pirviinescu, A.: Combining Rule-Based and Plug-in Coruponents in Agents for
Flexible Dynamie Negotiations. in: M. PechouCek, P. Pelta, and L.Z. Varga (Eds.): Pmceeding:,; o/CEEMAS'05, Budapest,
Hungary. LNAI 3690, Springer-Verlag, pp.555-558, 2005.

4. 88cLic3, C., Ganz.ha, M., Paprzycki, M., Pirviinescu, A.: Experimenting With a Multi-Agent E-Commerce Environment. In:
V. Malyshkin (Ed): Pmceedings of PaCT'2005, Krasnoyarsk, Russia. LNCS 3606, Springer-Verlag, pp.393-402, 2005.

5. Biididi, C., Ganzha, M., Paprzycki, M.: Mobile Agents in a Multi-Agent E-Commerce System. In: Proceedings 7th Jntema
tiunal Sympusium on Symbolic and Nwneric Algorithm.\'for Scientific Computing, SYNASC'0J, Tirni~oara, Romania. lEEE
Computer Society Press, Los Alamitos, CA, pp.207-214, 2005.

6. BiicLidi, C., Gm1zha, M., Paprzycki, M.: UML Models of Agents in a MulU-Agent E-Commerce System. ln: Proceedings
of the IEEE Conference of E-B11.dne.\·s Engineering, ICEBE 2005, Beijing, China. IEEE Computer Society Press, Los
Alami tos, CA, pp.56-6 1, 2005.

7. BiicLicl.i, C., Ganzha, M., Paprzycki, M.: Two Approaches lo Code Mobilily in an Agenl-based E-commercc System. ln: C.
Ard il (ed.): EnjiNmatika, Volume 7, pp.101 -107, 2005.

8. 8;idic5, C., Biidi!łi, A., Ganzha, M., lun.lache, A., Parzyck..i, M.: Rule-Based Framework for Aulomated Negoliation:

lnilial lmplemcnlaliun. I.n: P,vceedings I ·11 Conference on R11/e.,· and R11/e Markllp language\' for the Semanlic Web,
RuleML '2005, Galway, lreJand Lectw·c Noles in Computer Science 3791, Springer-Verlag, pp.193-198, 2005.

9. Bartolini, C., Preis!, C., Jennings, N.R.: Architecling for Reuse: A Software Framework for Automated Negotiation. ln:
PnH..·eeding.,· ojAOSE '2002: Int. Work.\'hoµ 011 Agent-Oriented Software Engineering, Bologna, llaly, LNCS 2585, Springer
Verlag, pp.88-100, 2002.

IO. Harlolini, C., Preisl, C., Jennings, N.R.: A Software Framework for Automated Negoliation. ln: Proceedings of
SELM4S'2/JI/.I. LNCS 3390, Springer-Verlag, pp.213-235, 2005.

11. Benyuucef, M., Alj, H., Levy, K., Keller, R.K.: A Rule-Driven Approach for Defining the Behaviour of Negotiating
Software Agenls . ln: J.Plaice et al. (eds.): Pmc:eedings of DCW'2002, LNCS 2468. Springer-Verlag, pp.165-181, 2002.

12. CJrnvez, V., Maes, P. : Kasbah: An Agcnl Marketplacc for Buying and Selling Goods. ln: Pmc. o/the First int. Con/ on
the Prncfical Apµlication oflntelligenf Agents and M11/ti-Agent Technology. London, UK, 1996.

13. Chmiel, K., Czech, D., Paprzycki, M.: Agent Technology in Modelling E-commerce Process; Sample lmplementation. ln:
C. Daniłowicz {ed.): Mu/Jimedia and Network Jn/ormation Sysrems, Volume 2, Wrocław Universily of Technology Press,
pp. 13-22, 2004.

14 . Chmiel, K. , Tomiak, D., Gawineck.i, M., Karczmarek, P., Szymczak. Paprzycki, M.: Tesling the Efficiency of JADE Agent
Pla1fonn. ln: Pmc,·eedings o/the 3"' International Symposiwn on Para/le! and Distributed Compuling, Carle, lreland IEEE
Computer Society Press, Los Alamitos, CA, USA, pp.49-57, 2004.

15. Chmiel, K., Gawineck.i, M., Kaczmarek, P., Szymczak, M., Marcin Paprzycki: Efficiency of JADE Agent Platfonn. in:
Scie111ific Programming, vol. 13, no.2, pp.159-l 72, 2005.

16. Dumas, M., Governalori, G., ter Hofstede, A.H.M., Oaks, P.: A Forma} Approach to Negotiating Agents Deve]opment In:
Electronic Commerce Re.\'earc:h and Applic:atiom, Vol.I, lssue 2 Summer, Elsevier Science, pp.193-207, 2002.

17. FJPA: Foundation for Physical Agents. See http: //www.fipa.org.
18. Fuggetta, A., Pieca, G.P., Vigna, G.: Underslanding Code Mobility. ln: JEEE Tran.rnclions on Software Engineering,

vol.24, no.5, IEEE Computer Science Press, pp.342-361, 1998.
19. Ganzha, M., Paprzycki, M., Pirv3nescu, A., Bild.id, C, Abraham, A.: JADE-based Multi-Agent E-cornmerce Environment:

lnitial Jmplemc::ntation, In: Ana/ele UniversilliJii din Timi$Oara, Seria .Afalemalicii-111/onnaticii, Vol. XLII, Fasc. specia1,
pp.79-100. 2004.

20. Govematori, O., Dumas, M., ler Hofslede, A.H.M., and Oaks, P.: A fonnal approach to protocols and stralegies for (lega!)
nego1iation. Jn: He1u·y Prak.ken {ed.): Pmc,·tling\· of the 811' int. Conference on Artificial Intelligence and Law, lAAIL, ACM
Press, pp.168-177, 2001.

21. JADE : Java Agt::nl Development Framcwork. See http: //jade. cselt. i t.
22. JESS: Java Experl System Shell. See http://herzberg.ca. sandia. gov/jess/.
23. Kowalczyk, R.: On Fuzzy e-Negotiation Agents: Aulonomous negoliation wilh incomplele and imprecise infonnation, In:

Pmc.DEXA '2000, London, UK, pp.1034-1038, 2000.
24. Kowalczyk., R., Franczyk, B., Speck. A.: Inter-Market, towards inte11igent mobile agent E-Market places. In: Proc. 9th

Annual IEEE Jnternmational Conference and Workvhop on the Engineering of Computer-Ba.\·ed Sy,\'lemv, ECBS '2002,
Lund, Sweden, pp.268-276, 2002.

25. Kowalczyk, R., Ulieru, M., Unland, R.: lnlegrating Mobile and lntelligent Agents in Advanced E-cornmerce: A SUIVey.
ln: Agent Technologie.\', Jnfra\·tmctures, Tools, ami Application.\' for E-Service.\·, P,vceedings NODe '2002 Agen1-Re/a1ed
H1orkvhops, Erfurt, Germany. LNAI 2592, Springer-Verlag, pp.295-313, 2002.

26. Laudon, K.C., Traver, C.G.: E-commerc:e. busine.\'.\". technology .. mdely(2"J ed). Pearson Addison-Wesley, 2004.
27 . Loclrner, K.M., Wellman, M.P. : Rule-Bused Specificalion of Auction Mechanisms. In: Proc:. AAMAS'04, ACM Press,

New York, USA , 2004 .
28. Lomuscio, A.R., Wooldridge, M., Jennings, N.R.: A classification scheme for negotiation in electronic commerce. In;

F. Dignum, C. Siern.1 (Eds.): Agent Mediated Elel'lronic: Commen.:e: The Ewvpean Agenllink Per.\peclive. LNCS 1991,
Springer-Verlag, I 9-33, 2002.

29. Maes, P., Gutunan, R.H., Moukas, A.O.: Agenls that Buy and Scil: Transfom1ing Commerce as we Know li. ln
Comm1mications of the ACM, Vol.42, No.3, pp.81-91, 1999.

30. Michael, S.: Design of Roles and Protocols for Electronic Negotiations. In: Elei:lronic: Commerce Researc:h Jo11rnal, Vol.I
No.3, pp.335-353, 2001.

31. Nwana, H., Ndumu, D.: A Perspective on Software Agenls Research. ln: The Knowledge Engineering Review, 14(2),
pp.1-18, 1999.

32. Paprzycki, M., Abraham, A.: Agent Systems Today; Methodological Considerations. ln: Proceeding.\· of 2003 lnlerna
tional Con/en.mee on Management of ~-Commerce and e-Governmenl, Nanchang, China. Jangxi Science and Technology
Press, China, pp.416-421, 2003.

33 Pirvanescu, A., B4djca, C., Ghanza, M., Paprzycki , M.: Developing a JADE-based Multi-Agent E-Commerce Environ
ment. ln: N uno Guinmrcs and Pedro Jsaias (eds.): Proc:eeding.\' JADJS International Conference on Applied Computing,
AC'li5, Algaive, Porrugal. IADIS Press, Lisbon, pp.425-432, 2005.

34. Pirv3nescu, A., 83didi, C., Ghanza, M., Paprzycki, M.: Conceplual ArchHecture and Sample Jmplementalion of a
Multi-Agenl E-Commerce System. ln: Ian Dumitrache, Calalin Buiu, (Eds.): Proc:eedings of the 15 th lnternalional
Conferem:e on Control Sy.vlem.,· and Comp111er Science CSCS'J5). "Politehnica Press" Publishing House, Bucharest, 2005,
Vol.2, pp.620-625

35. Rolli, D., Eberhart, A.: An Auclion Reference Model for Describing and Running Auctions, Wirlschaftsinfonnalik 2005,
Physica-Verlag, pp.289-308.

36. Rolli, O., Luckner, S., Gimpel, H., Weinhardl, C.: A Descriptive Auction Language. ln: International Journal ofElecJ,vnic
11-/arkels, 2006, 16(1), pp. 51-62.

37. Skylogiannis, T., An1oniou, G., Bassiliades, N.: A System for Automated Agent Negotiation with Defeasible Logic-Based
Strategies - Prc:liminary Report. ln: Bolt!y, H. , Antoniou, G. (eds): Proc:eeding.,· RuleML '04, Hiroshima, Japan. LNCS
3323, Springc:r-Verlag, pp.205-213, 2004.

38. Tamma, V, Wooldridge, M., Dickinson, I: An Ontology Based Approach to Aulomated Negotiation. In: Pmceed;ng.\'
A.gem Mediarecl Electrunic: Commen:e. AMEC'02. LNAl 2531, Springer-Verlag, pp.219~237, 2002.

39. Trnstour, D., Barlolini, C.. Preist, C.: Seman1ic Web Support for the Business~to-Business E-Commerce Lifecycle. In:
Pmct!eding.\' uf 1he WIVW'O]: International World Wide Web Conference, Hawaii, USA. ACM Press, New York, USA,
pp.89-98, 2002

40. Wooldridge, M.: An lntroduction to MultiAgent Systems, John Wilcy & Sans, 2002.

41. Wunnan, P.R., Wellman, M.P., Walsh, W.E : A Paramelerization of the Auction Design Space. ln: Games and El·onomic:
Behavior, 35, Vol.1/2, pp.271-303, 2001.

42. Wunuan, P.R., Wellman, M.P., Walsh, W.E: Specifying Rules for Electronic Auclions. ln: Al Magazine 23(3), pp.15-23,
2002.

