

Developing a Model Agent-based E-commerce System

Costin Bidicd', Maria Ganzha®?, and Marcin Paprzycki®*

! University of Craiova, Software Engineering Department, Bvd.Decebal 107, Craiova, RO-200440, Romania,
badica_costin@software.ucv.ro
? Elblag University of Humanities and Economy, ul. Lotnicza 2, 82-300 Elblag, Poland,
3 Computer Science lnstitute, SWPS, ul. Chodakowska 19/31, 03-815 Warsaw, Poland,
4 Systemn Research Institute Polish Academy of Science, ul. Newelska 6, 01-447 Warsaw, Poland, {aria.Ganzha,
Marcin.Paprzycki}@ibspan.waw.pl

Abstract

It is easy to realize that goals set behind a large class of agent systems match these put forward
for systems defined as e-service intelligence. In this chapter we describe a model agent-based
e-cominierce system that utilizes rule-based approach for price negotiations. Furthermore, the

proposed system attempts at mediating the apparent contradiction between agent mobility and

intelligence.
1 Introduction and Overview

Recently an increasing interest in combining Internet-based electronic services (e-services) with
“Intelligent” functions can be observed (these new e-services are often called e-service intelli-
gence). While this particular trend is relatively new, creation of intelligent distributed systems
in form of software agents can be traced back a least to the seminal paper of P. Maes [29].
While her main concern was development of an infrasiructure dealing with information over-
load, further research concerned applications of software agents in a number of areas including
e-government, e-learning, e-shopping, e-marketing, e-banking, e-logistics etc. There, software
agents are to facilitate much higher quality information, personalized recommendation, deci-
sion support, quasi-direct user participation in organizational planning, knowledge discovery
etc. When developed and implemented, agent systems are to be adaptive, personalized, proac-
tive and accessible from a broad variety of devices [40]. It is therefore easy to see how software
agents, and agent systems in general, can be viewed as an incarnation of e-service intelligence.

While there exist a large number of attempts at developing agent-based systems, they are

mostly small-scale demonstrator systems—Ilater described in academic publications. Separately,

some applications utilize the agent metaphor, but not existing agent tools and environments. Fi-
nally it is almost impossible to find out if actual agent systems exist in the industry; e.g. the true
role of the Concordia agent system within the Mitsubishi Corp, or the extent to which software
agents are used within Daimler-Chrysler. While a number of possible reasons for this situation
have been suggested (for instance see {31,32]), one of them has been recently dispelled. It was
shown that modern agent environments (e.g. JADE [21]), even when running on an antiquated
hardware, can easily scale to 2000 agents and 300,000 messages [14, 15]. Thus it was experi-
mentally established that iz is possible to build, and experiment with, large-scale agent systems.
Therefore, it is extremely important to follow the positive program put forward by Nwana and

Ndumu [31] and focus on developing and implementing such systems.

One of the well-known applications where software agents are to play an important role is
e-commerce. Modern agent environments (such as JADE) can support implementation of quasi-
realistic model e-commerce scenarios. Moreover, advances in auction theory have produced a
general methodology for describing price negotiations. Combination of these factors gave new
impetus to research on automating e-commerce. In this context, autonomous, and sometimes
mobile, software agents are cited as a potentially fruitful way of approaching e-commerce au-

tomation [25].

Since autonomy is a broad concept that can be defined in many ways, we would like to
narrow it down and focus on adaptability viewed as ability to update the negotiation “mecha-
nism” to engage in unknown in advance forms of price negotiations. Obviously, another aspect
of autonomy is decision autonomy that can be understood as capability to reason over past ex-
periences and domain knowledge in order to maximize “utility” (making it very closely related

to “intelligence”™).

Finally, the notion of agent mobility refers to its capacity to migrate from one computer to
another. While the goal of such a migration is typically related to acting on behalf of some soft-
ware or human entity, it does not depend on the intelligence that agents are possibly equipped
with. However, to be able to facilitate e-service intelligence, we have to be able to combine the
two—as mobile agents have to be able to dynamically adapt to situations found within visited

sites. Therefore, agent mobility requires transfer of code, data, process and authority between

machines. This makes mobile intelligent agents very heavy [40] and later in this chapter we
discuss a partial solution of this problem.

In our work we have been developing a skeleton system in which autonomous agents interact
in a way that models realistic scenarios arising in an e-marketplace (for a summary of our early
results see [19] and references collected there). Here, we have two long-term goals in mind. The
first one is to broaden understanding of technical aspects of developing agent systems, such as
agent functionalities, their interactions and communication, agent mobility etc. We are also con-
cerned with the fact that without agents systems being actually implemented using tools that are
apparently designed to do this, agent research will never be able to reach beyond academia. Suc-
cess in achieving the first goal will allow utilization of our systems as a tool-box for modeling
processes occurring in an e-marketplace. For instance, it will be possible to apply it to study: ef-
fects of pricing strategies, of negotiation protocols and strategies, flow of commodities etc. Due
to agent flexibility it will be relatively easy to experiment with various e-commerce scenarios.

In this chapter we proceed as follows. In the next section we provide background informa-
tion and follow with the description of our system formalized through a complete set of UML
diagrams. We then discuss in some detail (including implementation specifics) how rule based

engine can be used to facilitate autonomous price negotiations.

2 Background

2.1 Agent Systems in E-Commerce

While there exist many definitions of agents, for the purpose of this chapter we will concep-
tualize them as: encapsulated computer programs, situated in an environment, and capable of
flexible, autonomous actions focused on meeting their design objectives [40}. For such agents,
e-commerce is considered to be one of the paradigmatic application areas [25].

Proliferation of e-commerce is strongly related to the explosive growth of the Internet. For
example, the total number of Internet hosts with domain names was estimated at 150 millions in
2003, while in the same year, Web content was estimated at 8000 millions of Web pages ([26]).
At the same time, e-commerce revenue projections were estimated to reach in 2006 up to $0.3

trillions for B2C e-commerce and up to $5.4 trillions for B2B e-commerce ([26]).

E-commerce utilizes (to various degrees) digital technologies to mediate commercial trans-
actions. As a part of our research we have modified slightly Laudons approach ([26]) and con-
ceptualized a commercial transaction as consisting of four phases:

— pre-contractual phase including activities like need identification, product brokering, mer-
chant brokering, and matchmaking;

— negotiation where participants negotiate according to the rules of the market mechanism and
using their private negotiation strategies;

— contract execution including activities like order submission, logistics, and payment;

- post-contractual phase that includes activities like collecting managerial information and

product or service evaluation.

While there exist many scenarios of applying agents in e-commerce, automated trading is one
of the more promising ones. In particular, we are interested in using agents to support all four,
outlined above, phases of a commercial transaction, by addressing questions like: how is an
e-shop to negotiate price with e-buyers, what happens before negotiations start and after they
are finished, which e-store is the purchase actually made from etc, thus going beyond the phase
of negotiation itself.

Unfortunately, our research indicates that most existing automated trading systems are not
yetready to become the foundation of the next generation of e-commerce. For example, the Kas-
bah Trading System ([12]) supports buying and selling but does not include auctions; SILKROAD
([30]), FENAs ([23]) and Inter-Market ({24]) exist as “frameworks™ but lack an actual imple-

mentation (which is typical for most agent systems in general [31]).
2.2 Automated and Agent-based Negotiations

In the context of this chapter we understand negotiations as a process by which agents come to a
mutually acceptable agreement on a price ([28]). When designing systems for automated nego-
tiations, we distinguish between negotiation mechanisms (protocols) and negotiation strategies.
Protocol defines “rules of encounter” between negotiation participants by specifying require-
ments that enable their interaction. The strategy defines the behavior of participants aiming at
achieving a desired outcome. This behavior must be consistent with the negotiation protocol,

and usually is specified to maximize “gains” of each individual participant.

Auctions are one of the most popular and well-understood forms of automated negotia-
tions ([41]). An increased interest has been manifested recently in attempts to parameterize the
auction design space with the goal of facilitating more flexible automated negotiations in multi-
agent systems (|41, 28]). One of the first attempts for standardizing negotiation protocols was
introduced by the Foundation for Intelligent Physical Agents—FIPA ([17]). FIPA defined a set
of standard specifications of agent negotiation protocols including English and Dutch auctions.

Authors of [9, 10] analyzed the existing approaches to formalizing negotiations (including
FIPA protocols) and argued that they do not provide enough structure for the development
of truly portable systems. Consequently, they outlined a complete framework comprising: (1)
negotiation infrastructure, (2) a generic negotiation protocol and (3) taxonomy of declarative
rules. The negotiation infrastructure defines roles of negotiation participants and of a host. Par-
ticipants negotiate by exchanging proposals and, depending on the negotiations type, the host
can also become a participant. The generic negotiation protocol defines the three phases of
a negotiation: admission, exchange of proposals and formation of an agreement, in terms of
how, when and what types of messages should be exchanged between the host and participants.
Negotiation rules are used for enforcing the negotiation mechanism. Rules are organized into
a taxonomy: rules for admission of participants to negotiations, rules for checking the valid-
ity of negotiation proposals, rules for protocol enforcement, rules for updating the negotiation
status and informing participants, rules for agreement formation and rules for controlling the
negotiation termination. Finally, they introduce a negotiation template that contains parameters
that distinguish one form of negotiations from another, as well as specific values characteriz-
ing given negotiation. In this context it should be noted that rule-based approaches have been
indicated as a very promising technique for introducing “intelligence” into negotiating agents
([9,11,16,27,37,41,42,20]). Furthermore, proposals have been put forward to use rules for
describing both negotiation mechanisms ({9, 38]) and strategies ({16, 37]).

With so much work already done in the area of agents and agent systems emerging in the

context of autonomous price negotiations, let us underline what makes our approach unique.

— In most, it not all, papers only a “single price negotiation” is considered. Specifically, ne-

gotiations of a single item or a single collection of items is contemplated. Once such a

negotiation is over, a group of agents (agent system) that participated in it completes its
work. We are interested in a different (and a considerably more realistic) scenario when a
number of products of a given type are placed for sale one after another. While this situation
closely resembles what happens in any Internet store, it is practically omitted from research
considerations. In this chapter, for clarity of enclosed UML diagrams, we depict situation
where an almost unlimited number of items is to be sold. However, this assumption has only

aesthetical reasons.

Fact that multiple items are to be sold has also an important consequence for the way that
price negotiations are organized. In the literature it is very often assumed that agents join
an ongoing negotiation process as soon as they are ready (see for instance [9]), while agent-
actions that take place after price negotiation is completed are disregarded. Since we sell
multiple items one after another, we have decided to treat price negotiations as a “discrete
process.” Here, except of a specific case of fixed price mechanism, buyer agents are “col-
lected” and released in a group to participate in a given price negotiation. While the negoti-
ation takes place, buyer agents communicate only with the seller agent—e.g. the host (they
can be envisioned as being placed in a closed negotiation room). At the same time the next

group of buyer agents is collected (as they arrive) and will participate in the next negotiation.

Fact that multiple subsequent auctions (involving the same product) take place allows us to
go beyond one more popular “limitation” of known to us agent systems. While sometimes
they involve rather complicated price negotiations, e.g. mixed auctions (see for instance {35,
36]), since only a single item or a single collection of items are sold, it is only that given price
negotiation mechanism that is taken into account. In our case, since multiple negotiations
are used to sell items of the same product we conceptualize situation in which price nego-
tiation mechanism changes. For instance, first 25 items may be sold using English Auction,
while the next 37 using fixed price with a deep discount.

Furthermore, we consider the complete e-commerce system, which mearns that after nego-
tiation is completed we conceptualize subsequent actions that may, or may not result in an
actual purchase. In the case when purchase does not take place, we specify what should

happen to all involved agents.

— While agent mobility is often considered to be important in the context of e-commerce sys-
tems, above described confiict between agent mobility and intelligence is rarely recognized.
In our work we address this question by designing modular agents and clearly delineating
which modules have to be sent, when, by whom and where.

— Finally, the complete system is being implemented using JADE; an actual agent environ-

ment.
3 Code Mobility in an Agent-Based E-Commerce System

Code mobility has been recognized as one of key enablers of large scale distributed applica-
tions, while its specific technologies, design pattems and applications have been systematically
analyzed ([18]). Furthermore, recent research results suggest that blending mobility and intel-
ligence can have important benefits, especially in advanced e-commerce; by providing applica-
tion components with automated decision-making capabilities and ubiquity as required in net-
worked environments ([25]). At the sanie time it has been argued that, as a general feature, agent
mobility is unnecessary. Therefore, we asked a basic question: why, in the case of e-commerce,
should one use mobile agents instead of messaging? To answer it, let us consider someone who,
behind a slow Internet connection (which is not an uncommon situation), tries to participate in
an eBay auction. In this case it is almost impossible to assure that this persons bid (1) reaches
eBay server in time, (2) is sufficiently large to outbid opponents that have been bidding simulta-
neously (information about auction progress as well as user responses may not be able to reach
their destinations sufficiently fast). As a result, network-caused delays may prevent purchase of
the desired product. Obviously, this would not be the case if an autonomous agent representing
that user was co-located with the negotiation host. In this context, one can obviously ask about
the price of moving buyer agents across the network. Naturally, it may happen that an agent may
not be able to participate in an auction because it does not reach the host in time. In response let
us observe that: (1) if it is a particular single auction that the user is interested in, then agent not
reaching the host has exactly the same effect as not being able to win because of bid(s) being
late and/or too small; (2) therefore, it is only an agent that reaches the lLost in time that gives
its user any chance to effectively participate in price negotiations; (3) furthermore, if an agent

reaches its destination, it will be able to effectively participate in all subsequent negotiations

within that host (and we assume across this paper that multiple negotiations involving items of
the same product take place), while delays caused by network traffic may permanently prevent

user from effective participation in any of them. For an extended discussion of the need for

agent nmobility in e-commerce see (7).

Let us now sketch proposed resolution of an above mentioned obvious contradiction be-
tween agent mability and adaptivity. In our work, we utilize the negotiation framework in-
troduced in [9, 10], where the negotiation protocol is a generic set of rules that describes all
negotiations, while the negotiation template is a set of parameters that establishes the form of
negotiation and its details. Finally, there is the negoriation strategy defining outcome optimizing
actions of individual negotiation participants. It should be obvious that the negotiation protocol
is generic and public—all agents participating in all negotiations have to use it. Therefore buyer
agent can receive it upon its arrival at the host; similarly to the negotiation template which has
to be “local” as it describes currently used form of negotiations (and which can change over
time). It is only the strategy that is “private” and has to be obtained from the client agent (we
name client agent agents representing User-Clients). At the same time, it has to be assumed that
depending on the form of negotiation, different strategies will be used, and thus strategy is not
known in advance. Therefore, since the protocol and the template can be obtained within the
e-store, carrying them across the network is unnecessary. Unfortunately, it is not possible to es-
tablish the negotiation form in advance and send buyers with the negotiation strategy pre-loaded.
Recall that in our system we assume that e-stores respond to the flow of commodities by actively
changing forms of price negotiations. This being the case, by the time the buyer agent reaches its
destination its strategy module may be useless, as the form of negotiations has already changed.
We thus propose two network-traffic minimizing approaches to agent mobility. In the first case
(named thereafter agent mobility) only an agent skeleton is sent across the network and upon
arrival it obtains the negotiation protocol and the template and then requests the strategy mod-
ule from the client agent. In the second case (named thereafter code mobility) buyer agents are
created by the host (on the basis of a request from the client cgent) and assembled including (1}
protocol, (2) actual template, and (3) information who they represent. Then, again, they request

an appropriate strategy module from their designated client agent. Observe, that since only the

strategy module is “secret,” while the remaining parts of the buyer are public and open to any

scrutiny at any time, this latter solution should not directly result in an increased security risk.

Cllant Qaclsion
Making

F‘{Purchasing side B—Flnlormalion centeg-

Malntaining
products DB

CIC Agent

Warehouse Agenﬂ

Shop Declsion

Making

Reglstration Creatlon of
Reservation

\ O

=D

about result

\Shop Agent User_Seller
SellerAge\r\l\

<<include>>

_____________ Creating List of
Participants

~

Gatekeapar Agent

£

Cllept Agent

Communication

User_Cllent

Admitting to
negotlations

Fig. 1. Usc case diagram

4 Description of the System
4.1 Conceptual Architecture

In our description of the system we utilize its UML-based formalization. Due to lack of space we
have decided to present a set of UML diagrams of the system, rather than lengthy descriptions of
its features and underlying assumptions. Interested readers should consult ([6, 7, 19]) for more
details. In Figure 1 we present the use case diagram of our system that depicts all of its agents
and their interactions. We can distinguish three major parts of the system: (1) the information
center where white-page and yellow-page type data is stored—this is our current solution of the
matchmaking problem [38), (2) the purchasing side where agents and activities representing
User-Client reside, and (3) the seller side where the same is depicted for the User-Seller. Let

us now describe in detail each of the agents (except the CIC agent that plays only an auxiliary

role; see [19]) found in Figure 1.

4.2 UML Models of Agents in the System

User lerminated interuption

(Creation of BAs
one more adoress not hirst acdrass) / raad noxt address

Asking 1o create

entry / send{B_ID)

Croation of BA Sending BA
do croale(8_ID) 80/ send(BA(B_ID),address]

last elemanl of Ust done

[a0tall BAS],

{no more produdt || refused) Stoning information
Listening BAIGA o — do { store(into)

do { send{B_|D,sirategy}

[¥-st time]

[need svalegy)

Fig. 2. Client Agent Statechart diagram

Client agent On the purchasing side, we have two agents. The Client agent, represented in
Figures 2 and 3 exists in a complex state. On the one hand it listens for orders from the User-
Client and, to fulfill them: (1) queries the CIC agent which has access to information which
stores sell the requested product and if they create Buyer agents locally (or if such agent has to
be sent to them), (2) then it dispatches or requests creation of Buyer agents to / by each such
e-store (identified by its Garekeeper agent). At the same time, it directly manages the process of
making purchases on behalf of the User-Client (Figure 3), on the basis of Buyer agent messages
informing about results of price negotiations (fet us note that in the case of multiple orders sepa-
rate groups of Buyer agents—corresponding to separate products—will be managed in the same
fashion). For a certain amount of time the Client agent collects reports sent by Buyer agents.
When the wait-time is over (or when all Buyer agents have reported back), Client agent enters
a complex state. On the one hand it continues listening for messages from Buyer agents (obvi-
ously, if all have reported already then none will be coming). On the other hand it goes through
a multi-criteria decision making procedure (the “MCDM” box) that has one of three possible
outcomes: (i) to attempt at completing a selected purchase, (ii) to await better opportunity, or

(iii) to declare the purchase impossible and notify the User-Client accordingly. Note that, in a

realistic system, the MCDM analysis should be truly multi-criteria and include factors such as:

price, history of dealing with a given e-shop, delivery conditions etc,

Nollfying 8As)] T

9o / notity(iry once more) Suspend BAs
do / senciBAs "s1op")

Idesf] / Notity User

do / kil all BAs (p)

Bhiandon purciiese / Notty(User) [

Lisiering BAa messsges
o / couniftins):cauntiresutt nombar)

Canelling purchase

Confirming purchase(®_10) || Waling for BA cesporsa |

e]

pxpired]

([sonaog)
l ot snnd(!ll'quJ b toreiresun)

Fig. 3. Client Agent Statechart diagram

When attempt at completing a purchase is successful, the Client agent sends messages to
all Buyer agents to cease to exist. The situation is slightly more complicated when the attempt
was unsuccessful. Note that it is quite possible that the first MCDM analysis was undertaken
before all Buyer agents have complete their “first round” of price negotiations. They could have
contacted the Client while it was “thinking” which of the existing offers to choose. Therefore,
when the Client agent analyses available reservations, they include not only reservations that
have been already considered, but also possibly new ones that have arrived in the meantime. As
a result of the MCDM procedure another attempt at making a purchase can be made. If none
of available offers is acceptable, but purchase was not declared impossible, the Client agent un-
dertakes the following actions: (1) informs all Buyer agents that have already reported to cancel
current reservations and return to price negotiations (or just to return to price negotiations if they
previously failed) and (2) resets timer establishing how long it will wait before the next round
of MCDM analysis. Observe that in this way, in the proposed system, it is possible that some
agents make their second attenipt at negotiating prices, while some agents have just finished
the first. As this process continues in an asynchronous fashion Buyer agents will make different
number of attempts at negotiating price that is acceptable to the Client agent. This process will
terminate when all orders submitted by the customer have been either honored or abandoned.
For the time being we assume that the “Sale finalization” process seen in Figure 3 is always

successful, In the future we plan to remove this somewhat artificial restriction.

Let us note that it is possible that since it is the Client agent that makes the final determi-
nation which offer to accept, and that it has to communicate with one of its remotely located
Buyer agents to actually complete a purchase, the request to attempt at making that purchase
could be network-delayed resulting in an expired reservation and inability to complete the task.
Unfortunately, this problem does not seem to have a simple solution, since price comparison
requires communication between agents participating in price negotiations. In our system we
have selected a central point—Clien: agent—that will collect all offers, instead of all-to-all
communication. Since not all sites will conduct their price negotiations at the same time, and
with the same urgency, it is impossible to assure that the best offer will still be available, when
the “remaining” agents complete their negotiations. Therefore, our solution remains optimal
only in terms of reducing total network congestion by sending only minimal-size agents and
minimizing the total number of messages sent over the network.

Finally, let us note that a complete information about all events taking place during servic-
ing User-Client request (such as: refusal to admit to negotiations, results of price negotiations,
length of reservation, etc.) is stored for further information extraction. For instance, as a re-
sult of data analysis, store that is constantly selling good(s) at very high prices may be simply

avoided.

Buyer agent Buyer agent (see Figure 4) is the only agent in the system that involves mobility.
It is either dispatched by the Clienr agent or created by the Gatekeeper agent on the request of
the Client. If it is dispatched, then upon arrival at the store it communicates with the Gatekeeper
(see Figure 6,7) to obtain entry to negotiations (in case when entry is not granted it informs its
Client agent and is killed). In the case of Client requesting creation of the Buyer, the Gatkeeper
may deny such request. In both cases, information about refusal to cooperate is stored by the
Client agent (e.g. e-stores that do not want to cooperate may be removed from the list obtained
from the CJC; see box “Adjusting list” in Figure 2). Next, the preregistered Buyer obtains from
the Gatekeeper the negotiation protocol and the current negotiation template and requests (and
obtains) an appropriate strategy module from the Client agent (see Figure 2). When all these
modules are instailled Buyer informs the Garekeeper that it is ready to negotiate (it is then regis-

tered as such). Price negotiations start when the Buyer receives a start message from the Seller

Ny

p anmive /l eniry | sand{GA, RagistrationForm) j‘
do/ go(adcress) GA srawer
fnew} (ol t

Listening GA/CA megCA{stratagy) Listening SeA.GA

Geting lemplats (negel/
(r%(g > O
do / analyze template eniry / slalesnot ready enbry / slate=ready
sampiataj

(crealed by GAY

dot

(price not matching} / send(CA,Rasult)

Cancefing of purchase Aftempting purchasa

eniry / sand(SA refuse) entry / 6o SA.YES)
Wailing for SA answer I ‘ Completing purchase '
{answer=axpired] xil / sond(CA Bnewer} ' fanswer=coal} ‘l antry / banaler{CA jnfo} l

Fig. d. Buyer Agent Statechart diagram

agent (see Figure 9; note that the “Negotiations box™ appearing there is “the same” for both
the Seller and the Buyer agents) that later participate in price negotiations; note also special
treatment of fixed-price negotiations by both the Buyer and the Gatekeeper agents. Upon com-
pletion of negotiations, Buyer informs the Client about their result and, if necessary (when an
attempt at completing purchase is made), acts as an intermediary between the Client and the
Shop agents. In the case when purchase was not attempted or was not successful, Buyer agent
awaits the decision of the Client and if requested proceeds back to participate in price negotia-
tions (before doing so it requests permission to re-enter that may be granted or denied; updates
its negotiation template and, possibly, the strategy module—if the template has changed). This

process continues until the Buyer agent self-destructs on the request of the Client agent.

Shop agent On the “selling side” of the system, the Shop agent acts as the representative of the
User-Seller. We assume that after it is created, it persistently exists in the system until the User-
Seller decides that it is no longer needed. The UML diagram representing the Shop agent is pre-
sented in Figure 5. Upon its instantiation, the Shop agent creates and initializes its co~-workers:
a Gatekeeper agent, a Warehouse agent and Seller agents (one for each product sold). Initializa-

tion of the Warehouse agent invelves passing information about goods that are initially available

Graation of 5 SaA

wnlry ! send(WA.add(p.j)
o craste(SeASe_ID.p))

01 6an3(GA Sa_iO tampiale)

Compleligwork __}

Creation of a GA o /K all agents permminiven
Ao/ 5endCIC GA)
1sagata(CIC) tosminated by UssfSeller magUsecsy
T, s
.] 0T | k! G sumep $n.10)
- * [camesg]
lospired) FasgWA{In/ aboul reyervalion) [Nosicaton G) —
40/ 3610(GA kilad Se_I0)
N ¢ o) ik o
(oK) 3 maglag)
[_sm oo
60 ! SQnA(WA.chack(ni_res)) Reguesting WA
oect

4

anicy / sand{WA,cancul(ty_tsz)

- Im“‘" e Reghation rasiks

P

(omr oo omioecs | ST
Changuig 1he template of negotiatians

dot RendWAp. @) MCDM
e e e
((rowm) | s o A mion e] e smeSAna tanpite e 50.0)]

2 o/ sanc{BA Raluse]

@

BA ncuf

0o # skBA. N_ras)

Fig. 5. Shop Agent Statechart diagram

for sale (see Figure 8), while initialization of the Garekeeper agent involves providing it with
templates that are to be used initially in price negotiations of each product sold. Furthermore, the
Gatekeeper agent and the list of products available in the store are registered with the CIC agent.

After the initialization stage, the Shop agent enters a complex state where it supervises ne-
gotiations and product flow. First, it waits for finish of any price negotiation. If the negotiation
was successful, a given Seller informs the Shop agent, which is asking the Warehouse agent to
reserve a given quantity of a particular product for a specific amount of time. (Currently we as-
sume that a single item of a given product is sold each time, but this, somewhat limiting, assump-

tion will be removed in the future.) Events can then proceed according to following scenarios.

1. If the winning Buyer confirms purchase then the Shop asks the Warehouse agent to check
the reservation.

— If the reservation did not expire then the Shop informs the Buyer agent about acceptance
of transaction. This event starts the final stage, named “Sale finalization” which includes
such actions as payment and delivery.

— In the opposite case, the Shop agent sends rejection to the Buper agent

2. If the Clien: agent rejects purchase (and informs the Shop agent about it through the Buyer

agent) then the Shop agent asks the Warehouse agent to cancel the reservation.

